1
|
Uruski P, Mikuła-Pietrasik J, Tykarski A, Książek K. Serum from Hypertensive Patients Induces Cancer-Supporting Phenotype of Vascular Endothelium In Vitro. Biomolecules 2024; 14:1374. [PMID: 39595551 PMCID: PMC11592052 DOI: 10.3390/biom14111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Large-scale epidemiological studies have established a bidirectional association between hypertension and cancer. However, the underlying mechanisms explaining this connection remain unclear. In our study, we investigated whether serum from patients with hypertension (HT) could enhance the aggressiveness of cancer cells in vitro through alterations in endothelial cell phenotype. METHODS Experiments were performed using EAhy926 endothelial cells and ovarian (SKOV-3), colorectal (SW480), pancreatic (PSN-1), breast (MCF-7), and lung (A549) cancer cell lines. RESULTS This study showed that conditioned medium (CM) produced by EAhy926 cells, when exposed to serum from patients with untreated hypertension (HT-CM), promotes the proliferation, migration, and invasion of every cancer cell line tested. In addition, endothelial cells subjected to HT serum promote the adhesion of all cancer cell types except PSN-1. An intensified transendothelial invasion of cancer cells was accompanied by decreased expression of junctional proteins (connexin 43, E-cadherin, occluding, desmoglein) in HT serum-treated endothelial cells. Quantitative analysis of the secretome of endothelial cells subjected to HT serum showed that they secrete increased amounts of CCL2, CXCL1, CXCL8, bFGF, HGF, IL-6, PAI-1, and TGF-β1. Moreover, cancer cells exposed to HT-CM display increased mRNA expression for several pro-cancerogenic agents, including CXCL8, tPA, and VEGF. CONCLUSIONS Our report shows that hypertension may potentiate cancer cell aggressiveness by modulating endothelial cell phenotype. Further tests with antihypertensive drugs are required to assess whether effective treatment of hypertension can mitigate its cancer-promoting potential.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| |
Collapse
|
2
|
Shen J, Lai Y, Lu Y, Liu Y, Zhang J, Wu Y, Pan Y, Chen H, Gao Q, Wei Q, Chen Y, Ye J, Lin Y, Liu B, Jiang J, Nan J. NRF2-HIF2α Signaling Attenuates Endothelial Cell Senescence and Maintains Intercellular Junctions in Diabetes. Int J Biol Sci 2024; 20:4055-4073. [PMID: 39113713 PMCID: PMC11302875 DOI: 10.7150/ijbs.96719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
In the context of diabetes, endothelial cells frequently exhibit compromised intercellular junctions and accelerated cellular senescence simultaneously. The precise mechanisms underlying these issues and the identification of effective treatments remain largely undefined. Our findings reveal that human umbilical vein endothelial cells (HUVECs) can counteract senescence and uphold the integrity of intercellular junctions under mildly to moderately elevated glucose levels (10 mM and 15 mM) via two primary mechanisms: i) The acetylation of NRF2 at lysine residues K56, K68, and K52 prevents its ubiquitination, enhancing the transcription of antioxidant genes GST, SOD1, and GPX1. This activity diminishes cytoplasmic oxidative stress, thereby mitigating endothelial cell senescence. ii) The interaction between the Neh2 domain of NRF2 and the PAS-B domain of HIF-2α within the nucleus curtails the attachment of HIF-2α to the NOX4/p22phox promoter. This action lessens oxidative stress near the cell membrane, maintaining intercellular junctions by safeguarding the disulfide bonds in occludin and E-cadherin from disruption. However, these protective strategies prove insufficient under severe hyperglycemic conditions (25 mM). Further investigation has identified Oltipraz, an activator of NRF2, as also promoting the degradation of HIF-2α. Through its simultaneous modulation of NRF2 and HIF-2α, Oltipraz significantly reduces cellular senescence and prevents the deterioration of intercellular junctions in HUVECs subjected to high glucose concentrations (25 mM). Our research positions Oltipraz as a promising therapeutic candidate for mitigating diabetes-induced vascular endothelial damage, potentially offering benefits against diabetes-related atherosclerosis and valvular calcification.
Collapse
Affiliation(s)
- Jian Shen
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yifan Lai
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaner Lu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yabin Liu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Jinlong Zhang
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yan Wu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yunan Pan
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Haibo Chen
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Qiyue Gao
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Qucheng Wei
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yuwen Chen
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Jian Ye
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingchen Liu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Jun Jiang
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Jinliang Nan
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
3
|
Jazwinska DE, Cho Y, Zervantonakis IK. Enhancing PKA-dependent mesothelial barrier integrity reduces ovarian cancer transmesothelial migration via inhibition of contractility. iScience 2024; 27:109950. [PMID: 38812549 PMCID: PMC11134878 DOI: 10.1016/j.isci.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer-mesothelial cell interactions are critical for multiple solid tumors to colonize the surface of peritoneal organs. Understanding mechanisms of mesothelial barrier dysfunction that impair its protective function is critical for discovering mesothelial-targeted therapies to combat metastatic spread. Here, we utilized a live cell imaging-based assay to elucidate the dynamics of ovarian cancer spheroid transmesothelial migration and mesothelial-generated mechanical forces. Treatment of mesothelial cells with the adenylyl cyclase agonist forskolin strengthens cell-cell junctions, reduces actomyosin fibers, contractility-driven matrix displacements, and cancer spheroid transmigration in a protein kinase A (PKA)-dependent mechanism. We also show that inhibition of the cytoskeletal regulator Rho-associated kinase in mesothelial cells phenocopies the anti-metastatic effects of forskolin. Conversely, upregulation of contractility in mesothelial cells disrupts cell-cell junctions and increases the clearance rates of ovarian cancer spheroids. Our findings demonstrate the critical role of mesothelial cell contractility and mesothelial barrier integrity in regulating metastatic dissemination within the peritoneal microenvironment.
Collapse
Affiliation(s)
- Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
4
|
Rutecki S, Pakuła-Iwańska M, Leśniewska-Bocianowska A, Matuszewska J, Rychlewski D, Uruski P, Stryczyński Ł, Naumowicz E, Szubert S, Tykarski A, Mikuła-Pietrasik J, Książek K. Mechanisms of carboplatin- and paclitaxel-dependent induction of premature senescence and pro-cancerogenic conversion of normal peritoneal mesothelium and fibroblasts. J Pathol 2024; 262:198-211. [PMID: 37941520 DOI: 10.1002/path.6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carboplatin (CPT) and paclitaxel (PCT) are the optimal non-surgical treatment of epithelial ovarian cancer (EOC). Although their growth-restricting influence on EOC cells is well known, their impact on normal peritoneal cells, including mesothelium (PMCs) and fibroblasts (PFBs), is poorly understood. Here, we investigated whether, and if so, by what mechanism, CPT and PCT induce senescence of omental PMCs and PFBs. In addition, we tested whether PMC and PFB exposure to the drugs promotes the development of a pro-cancerogenic phenotype. The results showed that CPT and PCT induce G2/M growth arrest-associated senescence of normal peritoneal cells and that the strongest induction occurs when the drugs act together. PMCs senesce telomere-independently with an elevated p16 level and via activation of AKT and STAT3. In PFBs, telomeres shorten along with an induction of p21 and p53, and their senescence proceeds via the activation of ERK1/2. Oxidative stress in CPT + PCT-treated PMCs and PFBs is extensive and contributes causatively to their premature senescence. Both PMCs and PFBs exposed to CPT + PCT fuel the proliferation, migration, and invasion of established (A2780, OVCAR-3, SKOV-3) and primary EOCs, and this activity is linked with an overproduction of multiple cytokines altering the cancer cell transcriptome and controlled by p38 MAPK, NF-κB, STAT3, Notch1, and JAK1. Collectively, our findings indicate that CPT and PCT lead to iatrogenic senescence of normal peritoneal cells, which paradoxically and opposing therapeutic needs alters their phenotype towards pro-cancerogenic. It cannot be excluded that these adverse outcomes of chemotherapy may contribute to EOC relapse in the case of incomplete tumor eradication and residual disease initiation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Poznań University of Medical Sciences Doctoral School, Poznań, Poland
| | | | | | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Łukasz Stryczyński
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Division of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
5
|
Bordoni B, Escher AR, Girgenti GT. Peritoneal Adhesions in Osteopathic Medicine: Theory, Part 1. Cureus 2023; 15:e42472. [PMID: 37502471 PMCID: PMC10369357 DOI: 10.7759/cureus.42472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peritoneal adhesions form as a result of trauma to the abdomen, injuries resulting from surgery, and infections. These tissutal neoformations are innervated and vascularized, and with lymphatic vessels, adherence becomes a new and independent structure, capable of negatively influencing visceral functions. Adherent neogenesis can be asymptomatic or can be a source of pain, limiting the patient's quality of life. Although adhesiolysis remains the elective approach to eliminate adhesions, this therapeutic route prepares the peritoneal anatomical area to recur. The article reviews information on adhesion formation and peritoneal anatomy, probable subjective predispositions, and pathways that carry nociception. The text aims to be a theoretical basis for making new treatment suggestions for non-invasive osteopathic medicine, through a second part will be discussed in another article.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Don Carlo Gnocchi Foundation, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Gregory T Girgenti
- Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
6
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
7
|
Zheng A, Wei Y, Zhao Y, Zhang T, Ma X. The role of cancer-associated mesothelial cells in the progression and therapy of ovarian cancer. Front Immunol 2022; 13:1013506. [PMID: 36268019 PMCID: PMC9577001 DOI: 10.3389/fimmu.2022.1013506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is currently one of the most common malignant tumors in females with poor survival rates around the world, killing about 200,000 women each year. Although great progress has been made in treatment, most patients receiving first-line therapy experience tumor recurrence. The tumor microenvironment plays an important role in regulating the progression and prognosis of ovarian cancer. Cancer-associated mesothelial cells are the main cell population in the tumor microenvironment, which affect the progression, prognosis and chemical resistance of ovarian cancer. Cancer-associated mesothelial cells can also interact with other microenvironmental components, such as exosomes, macrophages, and adipocytes. Some studies have developed drugs targeting cancer-associated mesothelial cells in ovarian cancer to evaluate the therapeutic efficiency. In this review we highlighted the key role of cancer-associated mesothelial cells in the progression and prognosis of ovarian cancer. We also described the progress of cancer-associated mesothelial cells targeted therapy for ovarian cancer. Continued insight into the role of cancer-associated mesothelial cells in ovarian cancer will potentially contribute to the development of new and effective therapeutic regiments.
Collapse
Affiliation(s)
- Aiping Zheng
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Tao Zhang
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- *Correspondence: Xuelei Ma,
| |
Collapse
|
8
|
Rutecki S, Szulc P, Pakuła M, Uruski P, Radziemski A, Naumowicz E, Moszyński R, Tykarski A, Mikuła-Pietrasik J, Książek K. Pro-cancerogenic effects of spontaneous and drug-induced senescence of ovarian cancer cells in vitro and in vivo: a comparative analysis. J Ovarian Res 2022; 15:87. [PMID: 35883110 PMCID: PMC9317468 DOI: 10.1186/s13048-022-01023-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Clinical outcomes of cancer cell senescence are still elusive. Here, we reveal and compare pro-cancerous activity of spontaneously and drug-inducible senescent ovarian cancer cells. Experiments were performed on tumors and tumor-derived primary epithelial ovarian cancer cells (pEOCs) that were obtained from chemotherapy-naïve patients and from patients who received carboplatin (CPT) and paclitaxel (PCT) before cytoreduction. Results The analysis of tumors showed that senescent cancer cells are present in patients from both groups, albeit most frequently and covering a greater area in tissues from chemotherapy-positive women. This in vivo senescence of pEOCs translated to an expression of senescence markers in early-passage cells in vitro. A conditioned medium from senescent pEOCs fueled the cancer progression, including adhesion of non-senescent pEOCs to normal peritoneal cells, and their increased proliferation, migration, invasion, and EMT. Senescent pEOCs’ secretome promoted angiogenic activity of vascular endothelium, induced senescence of normal peritoneal cells, reprogrammed their secretome towards hypersecretion of cancer-promoting proteins, and stimulated motility of cancer cells subjected to a mesothelium- and fibroblast-derived medium. The most striking finding was, however, that spontaneously senescent pEOCs supported all the above pro-cancerous effects more efficiently than drug-inducible senescent cells, which was plausibly related to augmented release of several cancer spread mediators by these cells. The prevalence of spontaneously senescent pEOCs was most evident in experiments on mice when they were able, unlike the drug-inducible cells, to promote the development of drug-sensitive i.p. xenografts. Conclusions Our study shows that spontaneous senescence of pEOCs should be treated as an independent pathogenetic factor of cancer progression.
Collapse
Affiliation(s)
- Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Paulina Szulc
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Artur Radziemski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, 28 czerwca 1956 r. 223/229 Str., 61-485, Poznań, Poland
| | - Rafał Moszyński
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland.
| |
Collapse
|
9
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
10
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
11
|
Del Rio D, Masi I, Caprara V, Spadaro F, Ottavi F, Strippoli R, Sandoval P, López-Cabrera M, Sainz de la Cuesta R, Bagnato A, Rosanò L. Ovarian Cancer-Driven Mesothelial-to-Mesenchymal Transition is Triggered by the Endothelin-1/β-arr1 Axis. Front Cell Dev Biol 2021; 9:764375. [PMID: 34926453 PMCID: PMC8672058 DOI: 10.3389/fcell.2021.764375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Transcoelomic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and host components. Tumor-derived factors might allow the conversion of mesothelial cells (MCs) into tumor-associated MCs, providing a favorable environment for SOC cell dissemination. However, factors and molecular mechanisms involved in this process are largely unexplored. Here we investigated the tumor-related endothelin-1 (ET-1) as an inducer of changes in MCs supporting SOC progression. Here, we report a significant production of ET-1 from MCs associated with the expression of its cognate receptors, ETA and ETB, along with the protein β-arrestin1. ET-1 triggers MC proliferation via β-arrestin1-dependent MAPK and NF-kB pathways and increases the release of cancer-related factors. The ETA/ETB receptor activation supports the genetic reprogramming of mesothelial-to-mesenchymal transition (MMT), with upregulation of mesenchymal markers, as fibronectin, α-SMA, N-cadherin and vimentin, NF-kB-dependent Snail transcriptional activity and downregulation of E-cadherin and ZO-1, allowing to enhanced MC migration and invasion, and SOC transmesothelial migration. These effects are impaired by either blockade of ETAR and ETBR or by β-arrestin1 silencing. Notably, in peritoneal metastases both ETAR and ETBR are co-expressed with MMT markers compared to normal control peritoneum. Collectively, our report shows that the ET-1 axis may contribute to the early stage of SOC progression by modulating MC pro-metastatic behaviour via MMT.
Collapse
Affiliation(s)
- Danila Del Rio
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.,Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
12
|
Zhang Q, Wu S, Sun G, Zhang R, Li X, Zhang Y, Huang F, Yuan D. Hyperglycemia aggravates monocyte-endothelial adhesion in human umbilical vein endothelial cells from women with gestational diabetes mellitus by inducing Cx43 overexpression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:234. [PMID: 33708861 PMCID: PMC7940931 DOI: 10.21037/atm-19-4738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is among the most common metabolic diseases during pregnancy and inevitably leads to maternal and fetal complications. Hyperglycemia results in injury to vascular endothelial cells, including monocyte-endothelial adhesion, which is considered to be the initiating factor of vascular endothelial cell injury. Connexin 43 (Cx43) plays a key role in this adhesion process. Therefore, this study aimed to explore the effects of Cx43 on monocyte-endothelial adhesion in GDM-induced injury of vascular endothelial cells. Methods Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords from pregnant women with and without GDM. THP-1 cells (a human leukemia monocytic cell line) adhering to HUVECs, related molecules [intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)], and the activity of the phosphoinositide 3-kinase/protein kinase B/Nuclear factor- kappa B (PI3K/AKT/NF-κB) signaling pathway were compared between the normal and GDM-HUVECs. Oleamide and specific small interfering ribonucleic acids (siRNAs) were used to inhibit Cx43 expression in GDM-HUVECs to observe the effects of Cx43 on the adhesion of THP-1 cells and HUVECs. Results A much higher number of THP-1 cells adhered to GDM-HUVECs than to normal HUVECs. This was accompanied by an increased expression of Cx43, ICAM-1, and VCAM-1, as well as activation of the PI3K/AKT/NF-κB signaling pathway. After the inhibition of Cx43 expression in GDM-HUVECs with oleamide and specific siRNA, THP-1-HUVEC adhesion, ICAM-1 and VCAM-1 expression, and activation of PI3K/AKT/NF-κB signaling pathway were all attenuated. Hyperglycemia was able to increase expression of Cx43 in HUVECs. Conclusions For the first time, Cx43 expression was found to be substantially higher in GDM-HUVECs than in normal HUVECs. Hyperglycemia caused the overexpression of Cx43 in HUVECs, which resulted in the activation of the PI3K/AKT/NF-κB signaling pathway and the increase of its downstream adhesion molecules, including ICAM-1 and VCAM-1, ultimately leading to increased monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoliang Sun
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
14
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
15
|
Ovarian Cancer Dissemination-A Cell Biologist's Perspective. Cancers (Basel) 2019; 11:cancers11121957. [PMID: 31817625 PMCID: PMC6966436 DOI: 10.3390/cancers11121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features, share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is a stepwise process that includes the formation of malignant outgrowths that detach and establish widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic backgrounds that characterize the disease. Development of treatment for metastatic disease will require detailed characterization of cellular processes involved in each step of EOC peritoneal dissemination. This article offers a review of the literature that relates to the current stage of knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology aspects of the process.
Collapse
|