1
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Nishimura K, Shiotani T, Tawara I, Katayama N. Pravastatin prevents colitis-associated carcinogenesis by reducing CX3CR1 high M2-like fibrocyte counts in the inflamed colon. Sci Rep 2024; 14:23021. [PMID: 39362935 PMCID: PMC11449942 DOI: 10.1038/s41598-024-74215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, 515- 8557, Mie, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, 510-0293, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Takuya Shiotani
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| |
Collapse
|
2
|
Singh D, Mehghini P, Rodriguez-Palacios A, Di Martino L, Cominelli F, Basson AR. Anti-Inflammatory Effect of Dietary Pentadecanoic Fatty Acid Supplementation on Inflammatory Bowel Disease in SAMP1/YitFc Mice. Nutrients 2024; 16:3031. [PMID: 39275347 PMCID: PMC11397537 DOI: 10.3390/nu16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dietary fats have been linked to the increasing incidence of chronic diseases, including inflammatory bowel diseases (IBD), namely, Crohn's disease (CD). METHODS This study investigated the impact of pentadecanoic acid (C15:0), a type of an odd-numbered chain saturated fatty acid, for its potential anti-inflammatory properties in different mouse models of experimental IBD using the SAMP1/YitFc (SAMP) mouse line (14- or 24-week-old), including chronic ileitis and DSS-induced colitis. To quantitively assess the effect of C:15, we tested two dosages of C:15 in selected experiments in comparison to control mice. Intestinal inflammation and intestinal permeability were used as primary outcomes. RESULTS In ileitis, C:15 supplementation showed an anti-inflammatory effect in SAMP mice (e.g., a reduction in ileitis severity vs. control p < 0.0043), which was reproducible when mice were tested in the DSS model of colitis (e.g., reduced permeability vs. control p < 0.0006). Of relevance, even the short-term C:15 therapy prevented colitis in mice by maintaining body weight, decreasing inflammation, preserving gut integrity, and alleviating colitis signs. CONCLUSIONS Collectively, the findings from both ileitis and colitis in SAMP mice indicate that C:15 may have therapeutic effects in the treatment of IBD (colitis in the short term). This promising effect has major translational potential for the alleviation of IBD in humans.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Mehghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Popovics P, Silver SV, Uchtmann KS, Arendt LM, Vezina CM, Ricke WA. CCR2 + monocytes/macrophages drive steroid hormone imbalance-related prostatic fibrosis. Sci Rep 2024; 14:15736. [PMID: 38977751 PMCID: PMC11231243 DOI: 10.1038/s41598-024-65574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Benign Prostatic Hyperplasia (BPH) is a complex condition leading to Lower Urinary Tract Symptoms in aging men, characterized by cellular proliferation, smooth muscle dysfunction, inflammation, and fibrosis. While BPH is known to involve heightened macrophage infiltration, the specific contribution of infiltrating monocytes/macrophages to the disease mechanism remains uncertain. This research explores the impact of reducing circulating monocytes and subsequently limiting their tissue infiltration by using Ccr2 knockout (Ccr2-KO) mice. Ccr2-KO and wild type mice were implanted with testosterone and estradiol (T + E2, 25 mg + 2.5 mg) pellets. Urinary function was assessed via weekly void spot assays over 12 weeks, and prostatic macrophage levels were visualized and quantified in tissue sections using an F4/80 antibody. Additionally, Ki-67 staining was used to evaluate cell proliferation, and picrosirius red staining to assess collagen accumulation. Increased voiding frequency which developed in T + E2 mice, was significantly ameliorated in Ccr2-KO mice, however, both Ccr2-KO and wild type (WT) mice showed increased bladder weights after three month, representing a hypertrophic response to bladder outlet obstruction. T + E2 substantially increased the density of macrophages in WT but not Ccr2-KO mouse prostate. Proliferation rate, as indicated by Ki-67 positivity, was elevated in the vental and anterior prostate lobes but was only marginally reduced in Ccr2-KO mice. Most importantly, a significant prostatic collagen accumulation was observed in WT mice that was markedly reduced by Ccr2 deficiency post T + E2 treatment. The absence of Ccr2 mitigates urinary dysfunction and alters prostatic macrophage levels and collagen accumulation in steroid hormone imbalance. These findings suggest a crucial role for monocyte infiltration, giving rise to macrophages or other cell derivatives, to drive fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- The Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- The Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Kristen S Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- George M. O'Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- George M. O'Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Seidelin JB, Bronze M, Poulsen A, Attauabi M, Woetmann A, Mead BE, Karp JM, Riis LB, Bjerrum JT. Non-TGFβ profibrotic signaling in ulcerative colitis after in vivo experimental intestinal injury in humans. Am J Physiol Gastrointest Liver Physiol 2024; 327:G70-G79. [PMID: 38713614 DOI: 10.1152/ajpgi.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Although impaired regeneration is important in many gastrointestinal diseases including ulcerative colitis (UC), the dynamics of mucosal regeneration in humans are poorly investigated. We have developed a model to study these processes in vivo in humans. Epithelial restitution (ER) and extracellular matrix (ECM) regulation after an experimental injury of the sigmoid colonic mucosa was assessed by repeated high-resolution endoscopic imaging, histological assessment, RNA sequencing, deconvolution analysis, and 16S rDNA sequencing of the injury niche microbiome of 19 patients with UC in remission and 20 control subjects. Human ER had a 48-h lag before induction of regenerative epithelial cells [wound-associated epithelial (WAE) and transit amplifying (TA) cells] along with the increase of fibroblast-derived stem cell growth factor gremlin 1 mRNA (GREM1). However, UC deconvolution data showed rapid induction of inflammatory fibroblasts and upregulation of major structural ECM collagen mRNAs along with tissue inhibitor of metalloproteinase 1 (TIMP1), suggesting increased profibrotic ECM deposition. No change was seen in transforming growth factor β (TGFβ) mRNA, whereas the profibrotic cytokines interleukin 13 (IL13) and IL11 were upregulated in UC, suggesting that human postinjury responses could be TGFβ-independent. In conclusion, we found distinct regulatory layers of regeneration in the normal human colon and a potential targetable profibrotic dysregulation in UC that could lead to long-term end-organ failure, i.e., intestinal damage.NEW & NOTEWORTHY The study reveals the regulatory dynamics of epithelial regeneration and extracellular matrix remodeling after experimental injury of the human colon in vivo and shows that human intestinal regeneration is different from data obtained from animals. A lag phase in epithelial restitution is associated with induction of stromal cell-derived epithelial growth factors. Postinjury regeneration is transforming growth factor β-independent, and we find a profibrotic response in patients with ulcerative colitis despite being in remission.
Collapse
Affiliation(s)
- Jakob B Seidelin
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariana Bronze
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Attauabi
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E Mead
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Chemistry; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, United States
| | - Jeffrey M Karp
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Anesthesiology, Perioperative and Pain Medicine,Brigham and Women's Hospital, Cambridge, Massachusetts, United States
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob T Bjerrum
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
6
|
Song T, Yao Y, Papoin J, Sherry B, Diamond B, Gu H, Blanc L, Zou YR. Host factor TIMP1 sustains long-lasting myeloid-biased hematopoiesis after severe infection. J Exp Med 2023; 220:e20230018. [PMID: 37851372 PMCID: PMC10585121 DOI: 10.1084/jem.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/10/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Infection is able to promote innate immunity by enhancing a long-term myeloid output even after the inciting infectious agent has been cleared. However, the mechanisms underlying such a regulation are not fully understood. Using a mouse polymicrobial peritonitis (sepsis) model, we show that severe infection leads to increased, sustained myelopoiesis after the infection is resolved. In post-infection mice, the tissue inhibitor of metalloproteinases 1 (TIMP1) is constitutively upregulated. TIMP1 antagonizes the function of ADAM10, an essential cleavage enzyme for the activation of the Notch signaling pathway, which suppresses myelopoiesis. While TIMP1 is dispensable for myelopoiesis under the steady state, increased TIMP1 enhances myelopoiesis after infection. Thus, our data establish TIMP1 as a molecular reporter of past infection in the host, sustaining hyper myelopoiesis and serving as a potential therapeutic target for modulating HSPC cell fate.
Collapse
Affiliation(s)
- Tengfei Song
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yonghong Yao
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Hua Gu
- Laboratory of Molecular Immunology, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
7
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
8
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
10
|
Solitano V, Dal Buono A, Gabbiadini R, Wozny M, Repici A, Spinelli A, Vetrano S, Armuzzi A. Fibro-Stenosing Crohn's Disease: What Is New and What Is Next? J Clin Med 2023; 12:jcm12093052. [PMID: 37176493 PMCID: PMC10179180 DOI: 10.3390/jcm12093052] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibro-stenosing Crohn's disease (CD) is a common disease presentation that leads to impaired quality of life and often requires endoscopic treatments or surgery. From a pathobiology perspective, the conventional view that intestinal fibro-stenosis is an irreversible condition has been disproved. Currently, there are no existing imaging techniques that can accurately quantify the amount of fibrosis within a stricture, and managing patients is challenging, requiring a multidisciplinary team. Novel therapies targeting different molecular components of the fibrotic pathways are increasing regarding other diseases outside the gut. However, a large gap between clinical need and the lack of anti-fibrotic agents in CD remains. This paper reviews the current state of pathobiology behind fibro-stenosing CD, provides an updated diagnostic and therapeutic approach, and finally, focuses on clinical trial endpoints and possible targets of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 4V2, Canada
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Endoscopy, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Colon and Rectal Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
11
|
Peng W, Kepsch A, Kracht TO, Hasan H, Wijayarathna R, Wahle E, Pleuger C, Bhushan S, Günther S, Kauerhof AC, Planinić A, Fietz D, Schuppe HC, Wygrecka M, Loveland KL, Ježek D, Meinhardt A, Hedger MP, Fijak M. Activin A and CCR2 regulate macrophage function in testicular fibrosis caused by experimental autoimmune orchitis. Cell Mol Life Sci 2022; 79:602. [PMID: 36434305 PMCID: PMC9700630 DOI: 10.1007/s00018-022-04632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Peng
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Artem Kepsch
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Till O Kracht
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Hiba Hasan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Eva Wahle
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - A Christine Kauerhof
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Ana Planinić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Paediatric Urology and Andrology, Justus Liebig University of Giessen, Giessen, Germany
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung, German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Davor Ježek
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
13
|
Muscat S, Nichols AEC, Gira E, Loiselle AE. CCR2 is expressed by tendon resident macrophage and T cells, while CCR2 deficiency impairs tendon healing via blunted involvement of tendon-resident and circulating monocytes/macrophages. FASEB J 2022; 36:e22607. [PMID: 36250393 PMCID: PMC9593314 DOI: 10.1096/fj.202201162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
During tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population. To begin to delineate the functions of tendon-resident versus circulation-derived macrophages, we examined the tendon healing phenotype in Chemokine Receptor 2 (CCR2) reporter (CCR2GFP/+ ), and knockout mice. CCR2 is a chemokine receptor primarily found on the surface of circulating bone marrow-derived monocytes, with CCR2 being an important mediator of macrophage recruitment to wound environments. Surprisingly, CCR2GFP/+ cells were present in the tendon during adult homeostasis, and single-cell RNA sequencing identified these cells as tendon-resident macrophages and T cells. During both homeostasis and healing, CCR2 knockout resulted in a substantial decrease in CCR2GFP+ cells and pan-macrophages. Additionally, loss of CCR2 resulted in reduced numbers of myofibroblasts and impeded functional recovery during late healing. This study highlights the heterogeneity of tendon-resident and recruited immune cells and their contributions following injury, and establishes an important role for CCR2 in modulating both the adult tendon cell environment and tendon healing process.
Collapse
Affiliation(s)
- Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Gira
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
15
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
17
|
Ueno A, Jijon HB, Peng R, Sparksman S, Mainoli B, Filyk A, Li Y, Wilson S, Novak K, Panaccione R, Hirota S, Dufour A, Lu C, Beck PL. Association of Circulating Fibrocytes With Fibrostenotic Small Bowel Crohn's Disease. Inflamm Bowel Dis 2022; 28:246-258. [PMID: 34428284 DOI: 10.1093/ibd/izab157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrocytes are hematopoietic cells with features of mesenchymal cells found in the circulation and inflammatory sites implicated in promoting fibrosis in many fibroinflammatory diseases. However, their role(s) in the development of intestinal fibrosis is poorly understood. Here, we investigated a potential role of fibrocytes in the development of fibrosis in Crohn's disease (CD) and sought factors that may impact their development and function. METHODS Plasma and mononuclear cells were collected from patients with and without fibrostenotic CD. Fibrocytes defined as CD11b+, CD34+, and Collagen 1+ were correlated with clinical assessments of fibrosis, including evaluation using intestinal ultrasound. We measured the levels of relevant circulating molecules via Luminex and studied the effect of patient plasma proteins on fibrocyte differentiation. RESULTS Fibrocyte numbers were increased in CD patients with stricturing Crohn's disease compared with patients with an inflammatory phenotype (P = .0013), with strong correlation between fibrocyte numbers and acoustic radiation force impulse (ARFI), a measure of bowel elasticity on intestinal ultrasound (R = .8383, P = .0127). Fibrostenotic plasma was a more potent inducer of fibrocyte differentiation in both primary human monocytes and cell line and contained increased levels of cytokines implicated in fibrocyte differentiation compared with plasma from inflammatory patients. Interestingly, increased fibrocyte numbers at time of ultrasound were associated with escalation of medical therapy and endoscopic/surgical management of small bowel strictures at 30 months follow-up. CONCLUSIONS Circulating fibrocytes strongly correlate with fibrostenotic disease in CD, and they may serve as predictors for escalation of medical +/- surgical therapy.
Collapse
Affiliation(s)
- Aito Ueno
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Humberto B Jijon
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Richard Peng
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven Sparksman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Barbara Mainoli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alexis Filyk
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yan Li
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stephanie Wilson
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kerri Novak
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Remo Panaccione
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Simon Hirota
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cathy Lu
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Paul L Beck
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Bamias G, Pizarro TT, Cominelli F. Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 28:337-349. [PMID: 34904152 PMCID: PMC8919810 DOI: 10.1093/ibd/izab251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn's disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- Gastrointestinal Unit, Third Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Theresa T Pizarro
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Address correspondence to: Fabio Cominelli, MD, PhD, ()
| |
Collapse
|
19
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Tsuboi J, Nagaharu K, Nishimura K, Shiotani T, Ohishi K, Tawara I, Katayama N. Irbesartan, an angiotensin II type 1 receptor blocker, inhibits colitis-associated tumourigenesis by blocking the MCP-1/CCR2 pathway. Sci Rep 2021; 11:19943. [PMID: 34620946 PMCID: PMC8497524 DOI: 10.1038/s41598-021-99412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
The introduction of anti-inflammatory therapies has enabled substantial improvement of disease activity in patients with inflammatory bowel diseases (IBD). However, IBD can lead to serious complications such as intestinal fibrosis and colorectal cancer. Therefore, novel therapies reducing the development of these complications are needed. Angiotensin II (Ang II) promotes tissue inflammation by stimulating the production of monocyte chemoattractant protein-1 (MCP-1) or proinflammatory cytokines. It plays a pivotal role in IBD progression. Although blockade of Ang II has been reported to ameliorate experimental colitis and reduce colorectal cancer risk, the cellular and molecular mechanisms remain poorly understood. Our previous work showed that irbesartan, an Ang II type 1 receptor blocker, reduced the number of C-C chemokine receptor 2-positive (CCR2+) monocytic cells in the inflamed pancreas. This study aimed to investigate the possible antifibrotic and antitumour effects of irbesartan using the azoxymethane/dextran sodium sulphate mouse model. Irbesartan suppressed MCP-1 production and the accumulation of Ly6C+CCR2+ monocytes and fibrocytes in the inflamed colon, downregulated the expression of type 1 collagen and matrix metalloproteinase 9 and inhibited the development of intestinal fibrosis and tumours. Our observations suggest that blocking the MCP-1/CCR2 pathway using irbesartan might be beneficial in preventing colitis-associated colon tumours.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Masahiro Masuya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, Mie, 515-8557, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Komei Nishimura
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takuya Shiotani
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Katayama
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
20
|
Unterweger AL, Rüscher A, Seuß M, Winkelmann P, Beigel F, Koletzko L, Breiteneicher S, Siebeck M, Gropp R, Aszodi A. NOD/scid IL-2Rγ null mice reconstituted with peripheral blood mononuclear cells from patients with Crohn's disease reflect the human pathological phenotype. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1631-1647. [PMID: 34499803 PMCID: PMC8589348 DOI: 10.1002/iid3.516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Introduction Crohn's disease (CD) is characterized by pronounced intestinal fibrosis and severe mucosal damage and conventional animal models are limited to reflect these pathological manifestations. The aim of this study was to examine whether the combination of patient immune‐profiling and preclinical studies in a mouse model based on NOD/scid IL‐2Rγnull (NSG) reconstituted with peripheral blood mononuclear cells (PBMC) from CD patients has the capacity to harmonize ex vivo human and in vivo animal studies. Methods Immunological profiles of CD (n = 24) and ulcerative colitis (UC) patients (n = 47) were established by flow cytometry of subgroups of immune cells and subjected to hierarchical cluster and estimation graphics analyses. Pathological phenotypes of NSG mice, which were reconstituted with PBMC from CD, UC, and non‐IBD donors (NSG‐CD, NSG‐UC, and NSG‐non‐IBD) were compared. Readouts were the clinical, colon, and histological scores; subtypes of immune cells from spleen and colon; and levels of inflammatory markers, such as c‐reactive protein (CRP), monocyte chemotactic protein (MCP)‐3, transforming growth factor‐beta (TGFß), and hepatocyte growth factor (HGF). Fibrocytes were identified by immunohistochemistry in colonic sections. Results CD patients were significantly clustered in a group characterized by increased levels of TH1, TH2 cells, and decreased levels of CD14+ CD163+ monocytes (p = .003). In contrast to NSG‐UC mice, NSG‐CD mice exhibited an immune‐remodeling phenotype characterized by enhanced collagen deposition, elevated levels of CD14+ CD163+ monocytes, HGF, and TGFß. This phenotype was further corroborated by the presence of human fibrocytes as components of fibrotic areas. Conclusion The NSG‐CD model partially reflects the human disease and allows for studying the development of fibrosis.
Collapse
Affiliation(s)
- Anna-Lena Unterweger
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Alena Rüscher
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Marietta Seuß
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Paula Winkelmann
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, Hospital of the LMU, Munich, München, Germany
| | - Leandra Koletzko
- Department of Medicine II, Hospital of the LMU, Munich, München, Germany
| | | | - Matthias Siebeck
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Roswitha Gropp
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, Munich, Germany
| | - Attila Aszodi
- Department of Experimental Surgery and Regenerative Medicine, Hospital of the LMU, Planegg, Germany
| |
Collapse
|
21
|
Soomro S, Venkateswaran S, Vanarsa K, Kharboutli M, Nidhi M, Susarla R, Zhang T, Sasidharan P, Lee KH, Rosh J, Markowitz J, Pedroza C, Denson LA, Hyams J, Kugathasan S, Mohan C. Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen. Nat Commun 2021; 12:3989. [PMID: 34183667 PMCID: PMC8239008 DOI: 10.1038/s41467-021-24235-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
In the search for improved stool biomarkers for inflammatory bowel disease (IBD), an aptamer-based screen of 1129 stool proteins was conducted using stool samples from an IBD cohort. Here we report that of the 20 proteins subsequently validated by ELISA, stool Ferritin, Fibrinogen, Haptoglobin, Hemoglobin, Lipocalin-2, MMP-12, MMP-9, Myeloperoxidase, PGRP-S, Properdin, Resistin, Serpin A4, and TIMP-1 are significantly elevated in both ulcerative colitis (UC) and Crohn's disease (CD) compared to controls. When tested in a longitudinal cohort of 50 UC patients at 4 time-points, fecal Fibrinogen, MMP-8, PGRP-S, and TIMP-2 show the strongest positive correlation with concurrent PUCAI and PGA scores and are superior to fecal calprotectin. Unlike fecal calprotectin, baseline stool Fibrinogen, MMP-12, PGRP-S, TIMP-1, and TIMP-2 can predict clinical remission at Week-4. Here we show that stool proteins identified using the comprehensive aptamer-based screen are superior to fecal calprotectin alone in disease monitoring and prediction in IBD.
Collapse
Affiliation(s)
- Sanam Soomro
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Suresh Venkateswaran
- Department of Pediatrics, Emory University School of Medicine and Children Health Care of Atlanta, Atlanta, GA, USA
| | - Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Marwa Kharboutli
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Malavika Nidhi
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ramya Susarla
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ting Zhang
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-based Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, TX, USA
| | - Joel Rosh
- Division of Gastroenterology, Hepatology, and Nutrition, Goryeb Children's Hospital, Atlantic Health, Morristown, NJ, USA
| | - James Markowitz
- Division of Gastroenterology, Hepatology, and Nutrition, Cohen Children's Medical Center Of New York, New Hyde Park, NY, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-based Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, TX, USA
| | - Lee A Denson
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children Health Care of Atlanta, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
22
|
Clift CL, Su YR, Bichell D, Jensen Smith HC, Bethard JR, Norris-Caneda K, Comte-Walters S, Ball LE, Hollingsworth MA, Mehta AS, Drake RR, Angel PM. Collagen fiber regulation in human pediatric aortic valve development and disease. Sci Rep 2021; 11:9751. [PMID: 33963260 PMCID: PMC8105334 DOI: 10.1038/s41598-021-89164-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Congenital aortic valve stenosis (CAVS) affects up to 10% of the world population without medical therapies to treat the disease. New molecular targets are continually being sought that can halt CAVS progression. Collagen deregulation is a hallmark of CAVS yet remains mostly undefined. Here, histological studies were paired with high resolution accurate mass (HRAM) collagen-targeting proteomics to investigate collagen fiber production with collagen regulation associated with human AV development and pediatric end-stage CAVS (pCAVS). Histological studies identified collagen fiber realignment and unique regions of high-density collagen in pCAVS. Proteomic analysis reported specific collagen peptides are modified by hydroxylated prolines (HYP), a post-translational modification critical to stabilizing the collagen triple helix. Quantitative data analysis reported significant regulation of collagen HYP sites across patient categories. Non-collagen type ECM proteins identified (26 of the 44 total proteins) have direct interactions in collagen synthesis, regulation, or modification. Network analysis identified BAMBI (BMP and Activin Membrane Bound Inhibitor) as a potential upstream regulator of the collagen interactome. This is the first study to detail the collagen types and HYP modifications associated with human AV development and pCAVS. We anticipate that this study will inform new therapeutic avenues that inhibit valvular degradation in pCAVS and engineered options for valve replacement.
Collapse
Affiliation(s)
- Cassandra L Clift
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Yan Ru Su
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Bichell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather C Jensen Smith
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | - M A Hollingsworth
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, MUSC Proteomics Center, Bruker-MUSC Clinical Glycomics Center of Excellence, Medical University of South Carolina, 173 Ashley Ave, BSB358, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
Wang T, Gao L, Yang Z, Wang F, Guo Y, Wang B, Hua R, Shang H, Xu J. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J Inflamm Res 2021; 14:1085-1110. [PMID: 33790622 PMCID: PMC8007621 DOI: 10.2147/jir.s294630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypertension (HTN) is a major risk factor for cardiovascular disease. In recent years, there were numerous studies on the function of stress in HTN. However, the gut dysbiosis linked to hypertension in animal models under stress is still incompletely understood. Purpose of this study is to use multiple determination method to determine the juvenile stage intestinal bacteria, cytokines and changes in hormone levels. Methods Four groups of juvenile male spontaneously hypertensive rats (SHRs) and age-matched male Wistar-Kyoto (WKY) rats were randomly selected as control and experimental groups. Rats in the two stress groups were exposed to restraint stress for 3 hours per day for 7 consecutive days. In one day three times in the method of non-invasive type tail-cuff monitoring blood pressure. The detailed mechanism was illuminated based on the intestinal change using immunohistochemical and immunofluorescence staining and the stress-related hormone and inflammation factors were analyzed via ELISA method. The integrity of the epithelial barrier was assessed using FITC/HRP and the expression levels of proteins associated with the tight junction was detected by Western blot. The alteration of stress-related intestinal flora from ileocecal junction and distal colon were also analyzed using its 16S rDNA sequencing. Results The results indicate that acute stress rapidly increases mean arterial pressure which is positive correlation to hormone concentration, especially in SHR-stress group. Meanwhile, stress promoted the enhancement of epithelial permeability accompanied with a reduced expression of the tight junction-related protein and the macrophages (Mφ) aggregation to the lamina propria. There were remarkable significant increase of stress-related hormones and pro-inflammatory factor interleukin (IL)-6 along with a decrease in the diversity of intestinal flora and an imbalance in the F/B ratio. Conclusion Our results reveal that stress accompanied with HTN could significantly disrupt the domino effect between intestinal flora and homeostasis.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zejun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Feifei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Boya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, People's Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
24
|
Gaurav R, Mikuls TR, Thiele GM, Nelson AJ, Niu M, Guda C, Eudy JD, Barry AE, Wyatt TA, Romberger DJ, Duryee MJ, England BR, Poole JA. High-throughput analysis of lung immune cells in a combined murine model of agriculture dust-triggered airway inflammation with rheumatoid arthritis. PLoS One 2021; 16:e0240707. [PMID: 33577605 PMCID: PMC7880471 DOI: 10.1371/journal.pone.0240707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Ted R. Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Amy J. Nelson
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Austin E. Barry
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Todd A. Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Debra J. Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Michael J. Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Bryant R. England
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
25
|
Guccini I, Revandkar A, D'Ambrosio M, Colucci M, Pasquini E, Mosole S, Troiani M, Brina D, Sheibani-Tezerji R, Elia AR, Rinaldi A, Pernigoni N, Rüschoff JH, Dettwiler S, De Marzo AM, Antonarakis ES, Borrelli C, Moor AE, Garcia-Escudero R, Alajati A, Attanasio G, Losa M, Moch H, Wild P, Egger G, Alimonti A. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell 2021; 39:68-82.e9. [PMID: 33186519 DOI: 10.1016/j.ccell.2020.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/12/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer. Senescence driven either by PTEN deficiency or chemotherapy limits the progression of prostate cancer in mice. TIMP1 deletion allows senescence to promote metastasis, and elimination of senescent cells with a senolytic BCL-2 inhibitor impairs metastasis. Mechanistically, TIMP1 loss reprograms the senescence-associated secretory phenotype (SASP) of senescent tumor cells through activation of matrix metalloproteinases (MMPs). Loss of PTEN and TIMP1 in prostate cancer is frequent and correlates with resistance to docetaxel and worst clinical outcomes in patients treated in an adjuvant setting. Altogether, these findings provide insights into the dual roles of tumor-associated senescence and can potentially impact the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ilaria Guccini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne 1011, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne 1011, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | | | - Angela Rita Elia
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich 8091, Switzerland
| | - Susanne Dettwiler
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich 8091, Switzerland
| | - Angelo M De Marzo
- Departments of Pathology, Urology and Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Emmanuel S Antonarakis
- Departments of Oncology and Urology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid 28040, Spain; Biomedicine Research Institute, Hospital 12 Octubre, Madrid 28041, Spain; CIBERONC, Madrid 28029, Spain
| | - Abdullah Alajati
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marco Losa
- Anatomical Pathology Specialization Unit, Toma Advanced Biomedical Assay, Busto Arsizio 21052, Italy
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich 8091, Switzerland
| | - Peter Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60596 Frankfurt Am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Frankfurt 60438, Germany
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland; Università della Svizzera Italiana, Lugano 6900, Switzerland; Department of Medicine, University of Padua, Padua 35128, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
26
|
Zarog MA, O'Leary DP, Kiernan MG, Bolger J, Tibbitts P, Coffey SN, Lowery A, Byrnes GJ, Peirce C, Dunne CP, Coffey JC. Role of circulating fibrocytes in the diagnosis of acute appendicitis. BJS Open 2020; 4:1256-1265. [PMID: 33047514 PMCID: PMC7709380 DOI: 10.1002/bjs5.50350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Improved diagnostic biomarkers are required for acute appendicitis. The circulating fibrocyte percentage (CFP) is increased in inflammatory states, but has not been studied in acute appendicitis. This study aimed to determine CFP in acute appendicitis and compare diagnostic accuracy with standard serological biomarkers. Methods A prospective cohort study was carried out between June 2015 and February 2016 at University Hospital Limerick. The CFP was determined by dual‐staining peripheral venous samples for CD45 and collagen I using fluorescence‐activated cell sorting, and correlated with histopathological diagnoses. The accuracy of CFP in determining histological acute appendicitis was characterized and compared with the white cell count, C‐reactive protein concentration, neutrophil count, lymphocyte count and neutrophil : lymphocyte ratio. Results Of 95 adults recruited, 15 were healthy individuals and 80 had suspected appendicitis at presentation. Forty‐six of these 80 patients had an appendicectomy, of whom 34 had histologically confirmed appendicitis. The CFP was statistically higher in patients with pathologically proven acute appendicitis than in healthy controls (median 6·1 (i.q.r. 1·6–11·6) versus 2·3 (0·9–3·4) per cent respectively; P = 0·008). The diagnostic accuracy of CFP, as determined using the area under the receiver operating characteristic (ROC) curve, was similar to that of standard biomarkers. In multinomial regression analysis, only raised CFP was retained as an independent prognostic determinant of acute appendicitis (odds ratio 1·57, 95 per cent c.i. 1·05 to 2·33; P = 0·027). Conclusion The CFP is increased in histologically confirmed acute appendicitis and is as accurate as standard serological biomarkers in terms of diagnosis.
Collapse
Affiliation(s)
- M A Zarog
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - D P O'Leary
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - M G Kiernan
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - J Bolger
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - P Tibbitts
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - S N Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - A Lowery
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - G J Byrnes
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - C Peirce
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland
| | - C P Dunne
- Graduate Entry Medical School, Limerick, Ireland.,Centre for Interventions in Infection, Inflammation and Immunity, University of Limerick, Limerick, Ireland
| | - J C Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, Limerick, Ireland.,Centre for Interventions in Infection, Inflammation and Immunity, University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Guo N, Chen Y, Su B, Yang X, Zhang Q, Song T, Wu H, Liu C, Liu L, Zhang T. Alterations of CCR2 and CX3CR1 on Three Monocyte Subsets During HIV-1/ Treponema pallidum Coinfection. Front Med (Lausanne) 2020; 7:272. [PMID: 32626718 PMCID: PMC7314900 DOI: 10.3389/fmed.2020.00272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
HIV-1/Treponema pallidum (T. pallidum) coinfection has become a global challenge, and three monocyte subsets express varying levels of the chemokine receptors CCR2 and CX3CR1. We recently evaluated the association between monocyte subsets and regulatory T cells in HIV-infected individuals with syphilis. Currently, the dynamic changes of CCR2 and CX3CR1 on monocyte subsets during HIV-1 and syphilis coinfection have not been fully investigated. In this study, cell surface staining was used to explore CCR2 and CX3CR1 expression on three monocyte subsets during HIV-1/T. pallidum coinfection. We found that CCR2 densities on the classical monocyte subsets decreased in acute HIV-1 infected (AHI) patients, chronic HIV-1-infected individuals without antiviral therapy (ART) (CHI+ ART–), chronic HIV-1-infected individuals receiving ART (CHI+ART+), rapid plasma reagin-positive (RPR+) individuals, CHI+ ART– plus RPR+ (CHI+RPR+ ART–) individuals, and CHI+ART+ plus RPR+ (CHI+RPR+ART+) individuals. CX3CR1 density increased on the three monocyte subsets during HIV-1 and/or T. pallidum infection. CX3CR1 density on the intermediate and non-classical monocyte subsets in CHI+ ART– individuals was lower than that in CHI+ART+ individuals, and CX3CR1 density on the three monocyte subsets in CHI+ART+ individuals was higher than that in CHI+RPR+ART+ individuals. Our data provide new insight into the roles of CCR2 and CX3CR1 on three monocyte subsets in HIV-1 and T. pallidum pathogenesis.
Collapse
Affiliation(s)
- Na Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yongchang Chen
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xiaodong Yang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Qiuyue Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Ting Song
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Cuie Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lifeng Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
28
|
Bosco DB, Tian DS, Wu LJ. Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS J 2020; 287:4822-4837. [PMID: 32473609 DOI: 10.1111/febs.15428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Epilepsy is a major neurological condition that affects millions of people globally. While a number of interventions have been developed to mitigate this condition, a significant number of patients are refractory to these treatments. Consequently, other avenues of research are needed. One such avenue is modulation of the immune system response to this condition, which has mostly focused on microglia, the resident immune cells of the central nervous system (CNS). However, other immune cells can impact neurological conditions, principally blood-borne monocytes that can infiltrate into brain parenchyma after seizures. As such, this review will first discuss how monocytes can be recruited to the CNS and how they can be distinguished from there immunological cousins, microglia. Then, we will explore what is known about the role monocytes have within seizure pathogenesis and epilepsy. Considering how little is known about monocyte function in seizure- and epilepsy-related pathologies, further studies are warranted that investigate infiltrated blood-borne monocytes as a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
He JS, Tan JY, Li XZ, Feng R, Xiong SS, Lin SN, Qiu Y, Mao R. Serum biomarkers of fibrostenotic Crohn's disease: Where are we now? J Dig Dis 2020; 21:336-341. [PMID: 32496631 DOI: 10.1111/1751-2980.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis and subsequent stricture formation are major clinical challenges in inflammatory bowel disease, resulting in an increased rate of operation and poor prognosis compared with those without. With the changing perception that intestinal fibrosis is irreversible to the point of view that it is reversible in recent years, various candidate serum biomarkers have been studied over the past decades, which may stratify patients based on their risks of developing stenosis and enable the detection of early stages of fibrosis. However, reliable and accurate biomarkers are still unavailable due to conflicting results and the lack of high-quality evidence. In this review we summarized the serum biomarkers that have been proposed for intestinal fibrosis in recent years, which includes gene polymorphisms or variants, epigenetic markers, extracellular matrix components, growth factors, and antibodies, aiming to provide clues for future research.
Collapse
Affiliation(s)
- Jin Shen He
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin Yu Tan
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Zhi Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shan Shan Xiong
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Nan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Abstract
Purpose This review highlights the roles of fibrocytes—their origin, markers, regulation and functions—including contributions to corneal wound healing and fibrosis. Methods Literature review. Results Peripheral blood fibroblast-like cells, called fibrocytes, are primarily generated as mature collagen-producing cells in the bone marrow. They are likely derived from the myeloid lineage, although the exact precursor remains unknown. Fibrocytes are identified by a combination of expressed markers, such as simultaneous expression of CD34 or CD45 or CD11b and collagen type I or collagen type III. Fibrocytes migrate into the wound from the blood where they participate in pathogen clearance, tissue regeneration, wound closure and angiogenesis. Transforming growth factor beta 1 (TGF-β1) and adiponectin induce expression of α-smooth muscle actin and extracellular matrix proteins through activation of Smad3 and adenosine monophosphate-activated protein kinase pathways, respectively. Fibrocytes are important contributors to the cornea wound healing response and there are several mechanisms through which fibrocytes contribute to fibrosis in the cornea and other organs, such as their differentiation into myofibroblasts, production of matrix metalloproteinase, secretion of tissue inhibitor of metalloproteinase, and release of TGF-β1. In some tissues, fibrocytes may also contribute to the basement membrane regeneration and to the resolution of fibrosis. Conclusions New methods that block fibrocyte generation, fibrocyte migration, and their differentiation into myofibroblasts, as well as their production of matrix metalloproteinases, tissue inhibitor of metalloproteinase, and TGF-β1, have therapeutic potential to reduce the accumulation of collagens, maintain tissue integrity and retard or prevent the development of fibrosis.
Collapse
|
31
|
Nguyen WNT, Jacobsen EA, Finney CAM, Colarusso P, Patel KD. Intravital imaging of eosinophils: Unwrapping the enigma. J Leukoc Biol 2020; 108:83-91. [PMID: 32170880 DOI: 10.1002/jlb.3hr0220-396r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are traditionally associated with allergic and parasitic inflammation. More recently, eosinophils have also been shown to have roles in diverse processes including development, intestinal health, thymic selection, and B-cell survival with the majority of these insights being derived from murine models and in vitro assays. Despite this, tools to measure the dynamic activity of eosinophils in situ have been lacking. Intravital microscopy is a powerful tool that enables direct visualization of leukocytes and their dynamic behavior in real-time in a wide range of processes in both health and disease. Until recently eosinophil researchers have not been able to take full advantage of this technology due to a lack of tools such as genetically encoded reporter mice. This mini-review examines the history of intravital microscopy with a focus on eosinophils. The development and use of eosinophil-specific Cre (EoCre) mice to create GFP and tdTomato fluorescent reporter animals is also described. Genetically encoded eosinophil reporter mice combined with intravital microscopy provide a powerful tool to add to the toolbox of technologies that will help us unravel the mysteries still surrounding this cell.
Collapse
Affiliation(s)
- William N T Nguyen
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth A Jacobsen
- Division of Allergy and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Constance A M Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Kamala D Patel
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Smith TJ. Thyroid-associated ophthalmopathy: Emergence of teprotumumab as a promising medical therapy. Best Pract Res Clin Endocrinol Metab 2020; 34:101383. [PMID: 32088116 PMCID: PMC7344338 DOI: 10.1016/j.beem.2020.101383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO) remains a vexing autoimmune component of Graves' disease that can diminish the quality of life as a consequence of its impact on visual function, physical appearance and emotional well-being. Because of its relative rarity and variable presentation, the development of highly effective and well-tolerated medical therapies for TAO has been slow relative to other autoimmune diseases. Contributing to the barriers of greater insight into TAO has been the historical absence of high-fidelity preclinical animal models. Despite these challenges, several agents, most developed for treatment of other diseases, have found their way into consideration for use in active TAO through repurposing. Among these, teprotumumab is a fully human inhibitory monoclonal antibody against the insulin-like growth factor I receptor. It has shown remarkable effectiveness in moderate to severe, active TAO in two completed multicenter, double masked, and placebo controlled clinical trials. The drug exhibits a favorable safety profile. Teprotumumab has recently been approved by the U.S. F.D.A, and may rapidly become the first line therapy for this disfiguring and potentially blinding condition.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
33
|
Hempel F, Roderfeld M, Savai R, Sydykov A, Irungbam K, Schermuly R, Voswinckel R, Köhler K, Churin Y, Kiss L, Bier J, Pons-Kühnemann J, Roeb E. Depletion of Bone Marrow-Derived Fibrocytes Attenuates TAA-Induced Liver Fibrosis in Mice. Cells 2019; 8:cells8101210. [PMID: 31591328 PMCID: PMC6829877 DOI: 10.3390/cells8101210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived fibrocytes (FC) represent a unique cell type, sharing features of both mesenchymal and hematopoietic cells. FC were shown to specifically infiltrate the injured liver and participate in fibrogenesis. Moreover, FC exert a variety of paracrine functions, thus possibly influencing the disease progression. However, the overall contribution of FC to liver fibrosis remains unclear. We aimed to study the effect of a specific FC depletion, utilizing a herpes simplex virus thymidine kinase (HSV-TK)/Valganciclovir suicide gene strategy. Fibrosis was induced by oral thioacetamide (TAA) administration in C57BL/6J mice. Hepatic hydroxyproline content was assessed for the primary readout. The HSV-TK model enabled the specific depletion of fibrocytes. Hepatic hydroxyproline content was significantly reduced as a result of the fibrocyte ablation (−7.8%; 95% CI: 0.7–14.8%; p = 0.033), denoting a reduced deposition of fibrillar collagens. Lower serum alanine transaminase levels (−20.9%; 95% CI: 0.4–36.9%; p = 0.049) indicate a mitigation of liver-specific cellular damage. A detailed mode of action, however, remains yet to be identified. The present study demonstrates a relevant functional contribution of fibrocytes to chronic toxic liver fibrosis, contradicting recent reports. Our results emphasize the need to thoroughly study the biology of fibrocytes in order to understand their importance for hepatic fibrogenesis.
Collapse
Affiliation(s)
- Felix Hempel
- Department of Gastroenterology, Justus Liebig University, D-35392 Giessen, Germany.
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, D-35392 Giessen, Germany.
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), D-61231 Bad Nauheim, Germany.
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, D-35392 Giessen, Germany.
| | - Akylbek Sydykov
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, D-35392 Giessen, Germany.
| | - Karuna Irungbam
- Department of Gastroenterology, Justus Liebig University, D-35392 Giessen, Germany.
| | - Ralph Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, D-35392 Giessen, Germany.
| | - Robert Voswinckel
- Department of Internal Medicine, Bürgerhospital, D-61169 Friedberg, Germany.
- Department of Internal Medicine, Hochwaldkrankenhaus, D-61231 Bad Nauheim, Germany.
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University, D-35392 Giessen, Germany.
| | - Yury Churin
- Department of Gastroenterology, Justus Liebig University, D-35392 Giessen, Germany.
| | - Ladislau Kiss
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, D-35392 Giessen, Germany.
| | - Jens Bier
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, D-35392 Giessen, Germany.
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Justus Liebig University, D-35392 Giessen, Germany.
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|