1
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern U.S.A. coastal cities. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2024; 50:28-38. [PMID: 39658537 DOI: 10.52707/1081-1710-50.1-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 12/12/2024]
Abstract
Human cases of arboviral disease transmitted by Aedes mosquitoes are increasing worldwide and spreading to new areas of the United States. These diseases continue to re-emerge, likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami, FL is in the tropical zone, while Charleston, SC is in the humid subtropical zone, and both cities are established hotspots for arboviruses. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, U.S.A
- Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A
- Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, U.S.A
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A.,
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A.,
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, U.S.A
| |
Collapse
|
2
|
Wagner-Coello HU, Villar ME, DeGennaro M. Incorporating citizen science engagement in a vector surveillance undergraduate internship. DISCOVER EDUCATION 2024; 3:191. [PMID: 39445030 PMCID: PMC11493780 DOI: 10.1007/s44217-024-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Citizen science is recognized as an important tool to engage the public in important scientific and environmental issues that impact them. Mosquito surveillance-based citizen science in college curricula have not received much attention even though its usage has the potential to actively engage students in inquiry and elevate student support for science. FLAGG (Florida Aedes Genome Group) was a course-based internship where college students engaged in mosquito egg collections, learned about disease transmission, and gained an understanding of data collection in scientific research. This paper reports on a study comparing the outcomes of FLAGG participants with students in other college internships and students who had never done an internship. Findings show that participation in the citizen science mosquito control internship not only increased knowledge and skills in mosquito abatement, but also increased confidence and to a certain extent, sense of engagement, when compared to other groups. These results support the inclusion of citizen science methods in college-based curricula, where benefits extend beyond content learning. Supplementary Information The online version contains supplementary material available at 10.1007/s44217-024-00293-6.
Collapse
Affiliation(s)
- Helen Urpi Wagner-Coello
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Maria Elena Villar
- Department of Communication Studies, Northeastern University, Boston, MA 02115 USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| |
Collapse
|
3
|
Krambrich J, Nguyen-Tien T, Pham-Thanh L, Dang-Xuan S, Andersson E, Höller P, Vu DT, Tran SH, Vu LT, Akaberi D, Ling J, Pettersson JHO, Hesson JC, Lindahl JF, Lundkvist Å. Study on the temporal and spatial distribution of Culex mosquitoes in Hanoi, Vietnam. Sci Rep 2024; 14:16573. [PMID: 39020003 PMCID: PMC11255287 DOI: 10.1038/s41598-024-67438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Arboviruses transmitted by mosquitoes, including Japanese encephalitis virus (JEV), present a substantial global health threat. JEV is transmitted by mosquitoes in the genus Culex, which are common in both urban and rural areas in Vietnam. In 2020, we conducted a 1-year survey of Culex mosquito abundance in urban, suburban, and peri-urban areas of Hanoi using CDC-light traps. Mosquitoes were identified to species and sorted into pools based on species, sex, and trap location. The mosquito pools were also investigated by RT-qPCR for detection of JEV. In total, 4829 mosquitoes were collected over a total of 455 trap-nights, across 13 months. Collected mosquitoes included Culex, Aedes, Anopheles, and Mansonia species. Culex mosquitoes, primarily Cx. quinquefasciatus, predominated, especially in peri-urban areas. Most Culex mosquitoes were caught in the early months of the year. The distribution and abundance of mosquitoes exhibited variations across urban, suburban, and peri-urban sites, emphasizing the influence of environmental factors such as degree of urbanization, temperature and humidity on Culex abundance. No JEV was detected in the mosquito pools. This study establishes baseline knowledge of Culex abundance and temporal variation, which is crucial for understanding the potential for JEV transmission in Hanoi.
Collapse
Affiliation(s)
- Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden.
| | - Thang Nguyen-Tien
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Long Pham-Thanh
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Ella Andersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Patrick Höller
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Duoc Trong Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Son Hai Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Lieu Thi Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| | - John H-O Pettersson
- Clinical Microbiology, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jenny C Hesson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern USA coastal cities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597792. [PMID: 38895389 PMCID: PMC11185711 DOI: 10.1101/2024.06.06.597792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| |
Collapse
|
5
|
Johnson BJ, Weber M, Al-Amin HM, Geier M, Devine GJ. Automated differentiation of mixed populations of free-flying female mosquitoes under semi-field conditions. Sci Rep 2024; 14:3494. [PMID: 38347111 PMCID: PMC10861447 DOI: 10.1038/s41598-024-54233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/10/2024] [Indexed: 02/15/2024] Open
Abstract
Great advances in automated identification systems, or 'smart traps', that differentiate insect species have been made in recent years, yet demonstrations of field-ready devices under free-flight conditions remain rare. Here, we describe the results of mixed-species identification of female mosquitoes using an advanced optoacoustic smart trap design under free-flying conditions. Point-of-capture classification was assessed using mixed populations of congeneric (Aedes albopictus and Aedes aegypti) and non-congeneric (Ae. aegypti and Anopheles stephensi) container-inhabiting species of medical importance. Culex quinquefasciatus, also common in container habitats, was included as a third species in all assessments. At the aggregate level, mixed collections of non-congeneric species (Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) could be classified at accuracies exceeding 90% (% error = 3.7-7.1%). Conversely, error rates increased when analysing individual replicates (mean % error = 48.6; 95% CI 8.1-68.6) representative of daily trap captures and at the aggregate level when Ae. albopictus was released in the presence of Ae. aegypti and Cx. quinquefasciatus (% error = 7.8-31.2%). These findings highlight the many challenges yet to be overcome but also the potential operational utility of optoacoustic surveillance in low diversity settings typical of urban environments.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Michael Weber
- Biogents AG, Weissenburgstr. 22, 93055, Regensburg, Germany
| | - Hasan Mohammad Al-Amin
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Martin Geier
- Biogents AG, Weissenburgstr. 22, 93055, Regensburg, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
6
|
Unlu I, Buckner EA, Medina J, Vasquez C, Cabrera A, Romero-Weaver AL, Ramirez D, Kendziorski NL, Kosinski KJ, Fedirko TJ, Ketelsen L, Dorsainvil C, Estep AS. Insecticide resistance of Miami-Dade Culex quinquefasciatus populations and initial field efficacy of a new resistance-breaking adulticide formulation. PLoS One 2024; 19:e0296046. [PMID: 38346028 PMCID: PMC10861066 DOI: 10.1371/journal.pone.0296046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024] Open
Abstract
Sporadic outbreaks of human cases of West Nile virus (WNV), primarily vectored by Culex quinquefasciatus Say in suburban and urban areas, have been reported since introduction of the virus into Florida in 2001. Miami-Dade County, Florida is part of one of the largest metropolitan areas in the United States, supports Cx. quinquefasciatus year-round, and recently experienced over 60 human cases of WNV during one outbreak. To facilitate more effective integrated vector management and public health protection, we used the Centers for Disease Control and Prevention (CDC) bottle bioassay method to evaluate the susceptibility of adult Cx. quinquefasciatus collected from 29 locations throughout Miami-Dade County to pyrethroid and organophosphate adulticide active ingredients (AIs) used by Miami-Dade County Mosquito Control. We also determined the frequency of the 1014 knockdown resistance (kdr) mutation for Cx. quinquefasciatus from a subset of 17 locations. We detected resistance to two pyrethroid AIs in all tested locations (permethrin: 27 locations, deltamethrin: 28 locations). The 1014F allele was widely distributed throughout all 17 locations sampled; however, 29.4% of these locations lacked 1014F homozygotes even though phenotypic pyrethroid resistance was present. Organophosphate resistance was more variable; 20.7% of the locations tested were susceptible to malathion, and 33.3% of the populations were susceptible to naled. We subsequently conducted a field trial of ReMoa Tri, a recently approved multiple AI adulticide formulation labelled for resistant mosquitoes, against a mixed location field population of Miami-Dade Cx. quinquefasciatus. Average 24-hr mortality was 65.1 ± 7.2% and 48-hr mortality increased to 85.3 ± 9.1%, indicating good control of these resistant Cx. quinquefasciatus. This current study shows that insecticide resistance is common in local Cx. quinquefasciatus but effective options are available to maintain control during active disease transmission in Miami-Dade County.
Collapse
Affiliation(s)
- Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Eva A. Buckner
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Johanna Medina
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Aimee Cabrera
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Ana L. Romero-Weaver
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Daviela Ramirez
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Natalie L. Kendziorski
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Kyle J. Kosinski
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - T. J. Fedirko
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Leigh Ketelsen
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Chelsea Dorsainvil
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Alden S. Estep
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida, United States of America
| |
Collapse
|
7
|
Wilke ABB, Vasquez C, Medina J, Unlu I, Beier JC, Ajelli M. Presence and abundance of malaria vector species in Miami-Dade County, Florida. Malar J 2024; 23:24. [PMID: 38238772 PMCID: PMC10797977 DOI: 10.1186/s12936-024-04847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Malaria outbreaks have sporadically occurred in the United States, with Anopheles quadrimaculatus serving as the primary vector in the eastern region. Anopheles crucians, while considered a competent vector, has not been directly implicated in human transmission. Considering the locally acquired Plasmodium vivax cases in Sarasota County, Florida (7 confirmed cases), Cameron County, Texas (one confirmed case), and Maryland (one confirmed case) in the summer of 2023. The hypothesis of this study is that major cities in the United States harbour sufficient natural populations of Anopheles species vectors of malaria, that overlap with human populations that could support local transmission to humans. The objective of this study is to profile the most abundant Anopheles vector species in Miami-Dade County, Florida-An. crucians and An. quadrimaculatus. METHODS This study was based on high-resolution mosquito surveillance data from 2020 to 2022 in Miami-Dade County, Florida. Variations on the relative abundance of An. crucians and An. quadrimaculatus was assessed by dividing the total number of mosquitoes collected by each individual trap in 2022 by the number of mosquitoes collected by the same trap in 2020. In order to identify influential traps, the linear distance in meters between all traps in the surveillance system from 2020 to 2022 was calculated and used to create a 4 km buffer radius around each trap in the surveillance system. RESULTS A total of 36,589 An. crucians and 9943 An. quadrimaculatus were collected during this study by the surveillance system, consisting of 322 CO2-based traps. The findings reveal a highly heterogeneous spatiotemporal distribution of An. crucians and An. quadrimaculatus in Miami-Dade County, highlighting the presence of highly conducive environments in transition zones between natural/rural and urban areas. Anopheles quadrimaculatus, and to a lesser extent An. crucians, pose a considerable risk of malaria transmission during an outbreak, given their high abundance and proximity to humans. CONCLUSIONS Understanding the factors driving the proliferation, population dynamics, and spatial distribution of Anopheles vector species is vital for implementing effective mosquito control and reducing the risk of malaria outbreaks in the United States.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
8
|
Zardini A, Menegale F, Gobbi A, Manica M, Guzzetta G, d'Andrea V, Marziano V, Trentini F, Montarsi F, Caputo B, Solimini A, Marques-Toledo C, Wilke ABB, Rosà R, Marini G, Arnoldi D, Pastore Y Piontti A, Pugliese A, Capelli G, Della Torre A, Teixeira MM, Beier JC, Rizzoli A, Vespignani A, Ajelli M, Merler S, Poletti P. Estimating the potential risk of transmission of arboviruses in the Americas and Europe: a modelling study. Lancet Planet Health 2024; 8:e30-e40. [PMID: 38199719 DOI: 10.1016/s2542-5196(23)00252-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.
Collapse
Affiliation(s)
- Agnese Zardini
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Francesco Menegale
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Department of Mathematics, University of Trento, Trento, Italy
| | - Andrea Gobbi
- Digital Industry Center, Fondazione Bruno Kessler, Trento, Italy
| | - Mattia Manica
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Giorgio Guzzetta
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Valeria d'Andrea
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | | | - Filippo Trentini
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy; Department of Decision Sciences, Bocconi University, Milan, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Angelo Solimini
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Cecilia Marques-Toledo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Giovanni Marini
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Daniele Arnoldi
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Ana Pastore Y Piontti
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Annapaola Rizzoli
- Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Stefano Merler
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy
| | - Piero Poletti
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy; Epilab-Joint Research Unit, Fondazione Edmund Mach-Fondazione Bruno Kessler Joint Research Unit, Trento, Italy.
| |
Collapse
|
9
|
Wei L, FernÁndez-Santos NA, Hamer GL, Lara-RamÍrez EE, RodrÍguez-PÉrez MA. Daytime Resting Activity of Aedes Aegypti and Culex Quinquefasciatus Populations in Northern Mexico. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:157-167. [PMID: 37603406 DOI: 10.2987/23-7122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aedes aegypti and Culex quinquefasciatus are disease vectors distributed throughout much of the world and are responsible for a high burden of vector-borne disease, which has increased during the last 2 decades. Most pathogens vectored by these mosquitoes do not have therapeutic remedies; thus, combating these diseases is dependent upon vector control. Improvements in vector control strategies are urgently needed, but these hinge on understanding the biology and ecology of Ae. aegypti and Cx. quinquefasciatus. Both species have been extensively investigated, but further knowledge on diel resting activity of these vectors can improve vector surveillance and control tools for targeting resting vector populations. From April to December 2021, we determined outdoor daytime resting habits of Ae. aegypti and Cx. quinquefasciatus male, female, and blood-fed female populations in Reynosa, Mexico, using large red odor-baited wooden box traps. The daytime resting activity for Ae. aegypti males, females, and blood-fed females was restricted to a period between 0900 h and 1300 h, with a peak at 0900 h, while the resting activity of Cx. quinquefasciatus male, female, and blood-fed females was between 0700 h and 1100 h, with a peak at 0700 h. A generalized additive model was developed to relate relative humidity and temperature to resting Cx. quinquefasciatus and Ae. aegypti male, female, and blood-fed populations caught in traps. This study advances the understanding of outdoor resting behavior for 2 important vector mosquito species and discusses future studies to fill additional knowledge gaps.
Collapse
|
10
|
Wilke ABB, Damian D, Litvinova M, Byrne T, Zardini A, Poletti P, Merler S, Mutebi JP, Townsend J, Ajelli M. Spatiotemporal distribution of vector mosquito species and areas at risk for arbovirus transmission in Maricopa County, Arizona. Acta Trop 2023; 240:106833. [PMID: 36736524 DOI: 10.1016/j.actatropica.2023.106833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Mosquito-borne diseases are a major global public health concern and mosquito surveillance systems are essential for the implementation of effective mosquito control strategies. The objective of our study is to determine the spatiotemporal distribution of vector mosquito species in Maricopa County, AZ from 2011 to 2021, and to identify the hotspot areas for West Nile virus (WNV) and St. Louis Encephalitis virus (SLEV) transmission in 2021. The Maricopa County Mosquito Control surveillance system utilizes BG-Sentinel and EVS-CDC traps throughout the entire urban and suburban areas of the county. We estimated specific mosquito species relative abundance per unit area using the Kernel density estimator in ArcGIS 10.2. We calculated the distance between all traps in the surveillance system and created a 4 km buffer radius around each trap to calculate the extent to which each trap deviated from the mean number of Culex quinquefasciatus and Culex tarsalis collected in 2021. Our results show that vector mosquito species are widely distributed and abundant in the urban areas of Maricopa County. A total of 691,170Cx. quinquefasciatus, 542,733 Cx. tarsalis, and 292,305 Aedes aegypti were collected from 2011 to 2022. The relative abundance of Ae. aegypti was highly seasonal peaking in the third and fourth quarters of the year. Culex quinquefasciatus, on the other hand, was abundant throughout the year with several regions consistently yielding high numbers of mosquitoes. Culex tarsalis was abundant but it only reached high numbers in well-defined areas near irrigated landscapes. We also detected high levels of heterogeneity in the risk of WNV and SLEV transmission to humans disregarding traps geographical proximity. The well-defined species-specific spatiotemporal and geographical patterns found in this study can be used to inform vector control operations.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Dan Damian
- Maricopa County Environmental Services, Department Vector Control Division, Phoenix, AZ, USA
| | - Maria Litvinova
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Thomas Byrne
- Center for Healthcare Organization and Implementation Research, VA Bedford Healthcare System, Bedford, MA, USA; Boston University School of Social Work, Boston, MA, USA
| | - Agnese Zardini
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Piero Poletti
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Stefano Merler
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, CO, USA
| | - John Townsend
- Maricopa County Environmental Services, Department Vector Control Division, Phoenix, AZ, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
11
|
Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti. Acta Trop 2023; 239:106837. [PMID: 36657506 DOI: 10.1016/j.actatropica.2023.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.
Collapse
|
12
|
Wilke ABB, Mhlanga A, Kummer AG, Vasquez C, Moreno M, Petrie WD, Rodriguez A, Vitek C, Hamer GL, Mutebi JP, Ajelli M. Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies. PLoS Negl Trop Dis 2023; 17:e0011074. [PMID: 36701264 PMCID: PMC9879453 DOI: 10.1371/journal.pntd.0011074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Mathematical models have been widely used to study the population dynamics of mosquitoes as well as to test and validate the effectiveness of arbovirus outbreak responses and mosquito control strategies. The objective of this study is to assess the diel activity of mosquitoes in Miami-Dade, Florida, and Brownsville, Texas, the most affected areas during the Zika outbreak in 2016-2017, and to evaluate the effectiveness of simulated adulticide treatments on local mosquito populations. To assess variations in the diel activity patterns, mosquitoes were collected hourly for 96 hours once a month from May through November 2019 in Miami-Dade County, Florida, and Brownsville, Texas. We then performed a PERMANOVA followed by a SIMPER analysis to assess whether the abundance and species richness significantly varies at different hours of the day. Finally, we used a mathematical model to simulate the population dynamics of 5 mosquito vector species and evaluate the effectiveness of the simulated adulticide applications. A total of 14,502 mosquitoes comprising 17 species were collected in Brownsville and 10,948 mosquitoes comprising 19 species were collected in Miami-Dade County. Aedes aegypti was the most common mosquito species collected every hour in both cities and peaking in abundance in the morning and the evening. Our modeling results indicate that the effectiveness of adulticide applications varied greatly depending on the hour of the treatment. In both study locations, 9 PM was the best time for adulticide applications targeting all mosquito vector species; mornings/afternoons (9 AM- 5 PM) yielded low effectiveness, especially for Culex species, while at night (12 AM- 6 AM) the effectiveness was particularly low for Aedes species. Our results indicate that the timing of adulticide spraying interventions should be carefully considered by local authorities based on the ecology of the target mosquito species in the focus area.
Collapse
Affiliation(s)
- André B. B. Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Adequate Mhlanga
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Allisandra G. Kummer
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Art Rodriguez
- Public Health Department, City of Brownsville, Brownsville, Texas, United States of America
| | - Christopher Vitek
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, United States of America
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Perrin A, Glaizot O, Christe P. Worldwide impacts of landscape anthropization on mosquito abundance and diversity: A meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6857-6871. [PMID: 36107000 PMCID: PMC9828797 DOI: 10.1111/gcb.16406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/23/2023]
Abstract
In recent decades, the emergence and resurgence of vector-borne diseases have been well documented worldwide, especially in tropical regions where protection and defense tools for human populations are still very limited. In this context, the dynamics of pathogens are influenced by landscape anthropization (i.e., urbanization, deforestation, and agricultural development), and one of the mechanisms through which this occurs is a change in the abundance and/or diversity of the vectors. An increasing number of empirical studies have described heterogeneous effects of landscape anthropization on vector communities; therefore, it is difficult to have an overall picture of these effects on a global scale. Here, we performed a meta-analysis to quantify the impacts of landscape anthropization on a global scale on the presence/abundance and diversity of mosquitoes, the most important arthropods affecting human health. We obtained 338 effect sizes on 132 mosquito species, compiled from 107 studies in 52 countries that covered almost every part of the world. The results of the meta-analysis showed an overall decline of mosquito presence/abundance and diversity in response to urbanization, deforestation, and agricultural development, except for a few mosquito species that have been able to exploit landscape anthropization well. Our results highlighted that these few favored mosquito species are those of global concern. They, thus, provide a better understanding of the overall effect of landscape anthropization on vector communities and, more importantly, suggest a greater risk of emergence and transmission of vector-borne diseases in human-modified landscapes.
Collapse
Affiliation(s)
- Antoine Perrin
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Olivier Glaizot
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Museum of ZoologyLausanneSwitzerland
| | - Philippe Christe
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Srisuka W, Sulin C, Sommitr W, Rattanarithikul R, Aupalee K, Saeung A, Harbach RE. Mosquito (Diptera: Culicidae) Diversity and Community Structure in Doi Inthanon National Park, Northern Thailand. INSECTS 2022; 13:814. [PMID: 36135515 PMCID: PMC9505505 DOI: 10.3390/insects13090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Urbanization and human activities create new suitable aquatic habitats for the immature stages of mosquitoes in many countries. This also applies to Doi Inthanon National Park in northern Thailand, which is named for the highest mountain in the country. Despite its popularity, there is no information regarding mosquito diversity and community structure in the different ecosystems of the park. Monthly collections of immature stages from various habitats were conducted from August 2004 to December 2005 using dipping and sucking methods. The specimens collected from each habitat were reared to adults and identified based on their morphology. Diversity parameters and community structure were statistically analyzed. A total of 140 species (3795 specimens) belonging to 15 genera were identified. Among these, four genera (Culex, Aedes, Anopheles, and Uranotaenia) had high species richness, each represented by 48, 27, 19, and 15 species, respectively. Aedes albopictus was the most relatively abundant species, representing 6.7% of the total number of captured specimens, followed by Tripteroides aranoides (5.6%) and Cx. mimulus (5%). Species richness in natural habitats was significantly higher than in artificial containers. Species richness and abundance were highest in the rainy season. In comparison to agricultural areas and villages, mosquito diversity was found to be higher in forest areas. Ground pools, stream pools, rock pools, bamboo stumps, bamboo internode, and rice fields were the most preferred natural habitats. The results indicate that Doi Inthanon National Park has a high mosquito diversity. Each species exhibits differences in abundance and distribution in different habitats, which is useful information for planning conservation measures and vector control in the park.
Collapse
Affiliation(s)
- Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | - Chayanit Sulin
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | - Wirat Sommitr
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | | | - Kittipat Aupalee
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ralph E. Harbach
- Scientific Associate, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
15
|
Petrucciani A, Yu G, Ventresca M. Multi-season transmission model of Eastern Equine Encephalitis. PLoS One 2022; 17:e0272130. [PMID: 35976903 PMCID: PMC9385034 DOI: 10.1371/journal.pone.0272130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Eastern Equine Encephalitis (EEE) is an arbovirus that, while it has been known to exist since the 1930's, recently had a spike in cases. This increased prevalence is particularly concerning due to the severity of the disease with 1 in 3 symptomatic patients dying. The cause of this peak is currently unknown but could be due to changes in climate, the virus itself, or host behavior. In this paper we propose a novel multi-season deterministic model of EEE spread and its stochastic counterpart. Models were parameterized using a dataset from the Florida Department of Health with sixteen years of sentinel chicken seroconversion rates. The different roles of the enzootic and bridge mosquito vectors were explored. As expected, enzootic mosquitoes like Culiseta melanura were more important for EEE persistence, while bridge vectors were implicated in the disease burden in humans. These models were used to explore hypothetical viral mutations and host behavior changes, including increased infectivity, vertical transmission, and host feeding preferences. Results showed that changes in the enzootic vector transmission increased cases among birds more drastically than equivalent changes in the bridge vector. Additionally, a 5% difference in the bridge vector's bird feeding preference can increase cumulative dead-end host infections more than 20-fold. Taken together, this suggests changes in many parts of the transmission cycle can augment cases in birds, but the bridge vectors feeding preference acts as a valve limiting the enzootic circulation from its impact on dead-end hosts, such as humans. Our what-if scenario analysis reveals and measures possible threats regarding EEE and relevant environmental changes and hypothetically suggests how to prevent potential damage to public health and the equine economy.
Collapse
Affiliation(s)
- Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Geonsik Yu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Mario Ventresca
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
16
|
Coatsworth H, Lippi CA, Vasquez C, Ayers JB, Stephenson CJ, Waits C, Florez M, Wilke AB, Unlu I, Medina J, Ryan SJ, Lednicky JA, Beier JC, Petrie W, Dinglasan RR. A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. LANCET REGIONAL HEALTH. AMERICAS 2022; 11:100231. [PMID: 36778921 PMCID: PMC9903724 DOI: 10.1016/j.lana.2022.100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. We hypothesized that we would find a number of DENV-1 positive mosquito pools, and that the distribution of these arbovirus-positive mosquito pools would be associated with those neighborhoods for which imported DENV cases have been recently reported in 2019 and 2020. Methods We collected and screened Aedes aegypti, Ae. albopictus, Anopheles crucians, Culex coronator, Cx. nigripalpus, and Cx. quinquefasciatus mosquitoes from Miami-Dade County (Florida) for DENV and WNV by rRT-qPCR. Spatial statistical analyses were performed to capture positive mosquito pool distribution in relation to land use, human demography, environmental variables, mosquito trap placement and reported human travel associated DENV cases to guide future mosquito control outbreak responses. Findings A rapid screen of 7,668 mosquitoes detected four DENV serotype 2 (DENV-2), nine DENV-4 and nine WNV-positive mosquito pools, which enabled swift and targeted abatement of trap sites by mosquito control. As expected, DENV-positive pools were in urban areas; however, we found WNV-positive mosquito pools in agricultural and recreational areas with no historical reports of WNV transmission. Interpretation These findings demonstrate the importance of proactive arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms, are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in mosquitoes in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought. Funding This research was supported in part by U.S. Centers for Disease Control and Prevention (CDC) grant 1U01CK000510-03, Southeastern Regional Center of Excellence in Vector Borne Diseases Gateway Program.
Collapse
Affiliation(s)
| | | | | | - Jasmine B. Ayers
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | - Christy Waits
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
- Navy Entomology Center of Excellence, Jacksonville, FL, USA
| | - Mary Florez
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | - Isik Unlu
- Miami-Dade Mosquito Control District, Miami, FL, USA
| | - Johana Medina
- Miami-Dade Mosquito Control District, Miami, FL, USA
| | - Sadie J. Ryan
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | - John A. Lednicky
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
17
|
P. MNP, D. RP, G. S, K. AAP, K. SM, A. SP, P. R, V. S, Dasgupta S, Krishnan J, Ishtiaq F. Island biogeography and human practices drive ecological connectivity in mosquito species richness in the Lakshadweep Archipelago. Sci Rep 2022; 12:8060. [PMID: 35577864 PMCID: PMC9110355 DOI: 10.1038/s41598-022-11898-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022] Open
Abstract
Mosquitoes are globally distributed and adapted to a broad range of environmental conditions. As obligatory hosts of many infectious pathogens, mosquito abundance and distribution are primarily determined by the presence and quality of larval habitats. To understand the dynamics and productivity of larval habitats in changing island environments, we conducted a four-month mosquito survey across ten inhabited islands in the Lakshadweep archipelago. Using fine-resolution larval habitat mapping, we recorded 7890 mosquitoes representing 13 species and 7 genera. Of these, four species comprised 95% of the total collections—Aedes albopictus (Stegomyia) was the dominant species followed by Armigeres subalbatus, Culex quinquefasciatus and Malaya genurostris. We found larval species richness was positively associated with the island area and mosquito larval richness (Chao1 estimator) was higher in artificial habitats than in natural habitats. Furthermore, mosquito species composition did not deteriorate with distance between islands. Mosquito abundance by species was associated with microclimatic variables—pH and temperature. We detected co-existence of multiple species at a micro-habitat level with no evidence of interactions like competition or predation. Our study analyzed and identified the most productive larval habitats –discarded plastic container and plastic drums contributing to high larval indices predicting dengue epidemic across the Lakshadweep islands. Our data highlight the need to devise vector control strategies by removal of human-induced plastic pollution (household waste) which is a critical driver of disease risk.
Collapse
|
18
|
Needs Assessment of Southeastern United States Vector Control Agencies: Capacity Improvement Is Greatly Needed to Prevent the Next Vector-Borne Disease Outbreak. Trop Med Infect Dis 2022; 7:tropicalmed7050073. [PMID: 35622700 PMCID: PMC9143300 DOI: 10.3390/tropicalmed7050073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A national 2017 vector control capacity survey was conducted to assess the United States’ (U.S.’s) ability to prevent emerging vector-borne disease. Since that survey, the southeastern U.S. has experienced continued autochthonous exotic vector-borne disease transmission and establishment of invasive vector species. To understand the current gaps in control programs and establish a baseline to evaluate future vector control efforts for this vulnerable region, a focused needs assessment survey was conducted in early 2020. The southeastern U.S. region was targeted, as this region has a high probability of novel vector-borne disease introduction. Paper copies delivered in handwritten envelopes and electronic copies of the survey were delivered to 386 unique contacts, and 150 returned surveys were received, corresponding to a 39% response rate. Overall, the survey found vector control programs serving areas with over 100,000 residents and those affiliated with public health departments had more core capabilities compared to smaller programs and those not affiliated with public health departments. Furthermore, the majority of vector control programs in this region do not routinely monitor for pesticide resistance. Taken as a whole, these results suggest that the majority of the southeastern U.S. is vulnerable to vector-borne disease outbreaks. Results from this survey raise attention to the critical need of providing increased resources to bring all vector control programs to a competent level, ensuring that public health is protected from the threat of vector-borne disease.
Collapse
|
19
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Mosquito surveillance in maritime entry ports in Miami-Dade County, Florida to increase preparedness and allow the early detection of invasive mosquito species. PLoS One 2022; 17:e0267224. [PMID: 35427409 PMCID: PMC9012365 DOI: 10.1371/journal.pone.0267224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive mosquito vector species have been inadvertently transported to new areas by humans for decades. Strong evidence supports that monitoring maritime, terrestrial, and aerial points of entry is an essential part of the effort to curb the invasion and establishment of invasive vector mosquito species. Miami-Dade County, Florida is an important operational hub for the cruise ship industry and leisure boats that routinely visit nearby areas in the Caribbean, and freight cargo ships transporting goods from Miami-Dade to Caribbean countries and vice versa. To deal with the increasing public health concern, we hypothesized that mosquito surveillance in small- and medium-sized maritime ports of entry in Miami-Dade is crucial to allow the early detection of invasive mosquito species. Therefore, we have selected 12 small- and medium-sized maritime ports of entry in Miami-Dade County with an increased flow of people and commodities that were not covered by the current mosquito surveillance system. Collection sites were comprised of two distinct environments, four marinas with international traffic of leisure boats, and eight maintenance and commercial freight cargo ship ports. Mosquitoes were collected weekly at each of the 12 collection sites for 24 hours for 6 weeks in the Spring and then for 6 additional weeks in the Summer using BG-Sentinel traps. A total of 32,590 mosquitoes were collected, with Culex quinquefasciatus and Aedes aegypti being the most abundant species totaling 19,987 and 11,247 specimens collected, respectively. Our results show that important mosquito vector species were present in great numbers in all of the 12 maritime ports of entry surveyed during this study. The relative abundance of Cx. quinquefasciatus and Ae. aegypti was substantially higher in the commercial freight cargo ship ports than in the marinas. These results indicate that even though both areas are conducive for the proliferation of vector mosquitoes, the port area in the Miami River is especially suitable for the proliferation of vector mosquitoes. Therefore, this potentially allows the establishment of invasive mosquito species inadvertently brought in by cargo freights.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
20
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors 2022; 15:51. [PMID: 35135589 PMCID: PMC8822692 DOI: 10.1186/s13071-022-05172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vector-borne diseases are a major burden to public health. Controlling mosquitoes is considered the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of integrated vector management, as surveillance programs are often the cornerstone for the development of mosquito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natural areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and CDC light traps. METHODS Mosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps baited with dry ice, totaling 105 trap-nights. RESULTS The BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures indicate the BG-Sentinel and CDC light traps had similar sampling power. CONCLUSION Even though BG-Sentinel traps had a slightly better performance, the difference was not statistically significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
21
|
Murray HL, Pruszynski CA, Hribar LJ. Ground Applications of Vectobac® WDG with A1 Super-Duty Mist Sprayer® and Micronair® AU5000 Atomizer for Suppression of Aedes aegypti Populations in the Florida Keys. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:271-279. [PMID: 34817608 DOI: 10.2987/21-7030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since 2011, the Florida Keys Mosquito Control District (FKMCD) has used the WALS® application strategy with VectoBac® WDG containing Bacillus thuringiensis israelensis via helicopter in Key West for the control of Aedes aegypti larval populations. In 2018, FKMCD conducted a study to determine the effectiveness of using a trailer-mounted A1 Super Duty Mist Sprayer® (A1 Mist Sprayers) with a Micronair® AU5000 (Micron Group) atomizer to apply VectoBac WDG by ground at the rate of 0.5 lb/acre (0.56 kg/ha). Bioassay cups were placed in a residential area encompassing open, moderate, and heavy cover scenarios between 0 and 300 ft (0-91.44 m) perpendicular to the spray line. An application rate of 0.5 lbs/acre (0.56 kg/ha) was used. Bioassay cups were collected after application and returned to the laboratory where 100 ml of distilled water and 10 F1 generation Ae. aegypti larvae were added. Laval mortality was monitored at 2, 4, and 24 h. Three separate runs were completed during the summer of 2018. Average larval mortality at 24 h was >90%. The field trial demonstrated sufficient efficacy to introduce this method of larviciding into operational use.
Collapse
Affiliation(s)
- Heidi L Murray
- Florida Keys Mosquito Control District, 503 107th Street, Gulf, Marathon, FL 33050
| | | | - Lawrence J Hribar
- Florida Keys Mosquito Control District, 503 107th Street, Gulf, Marathon, FL 33050
| |
Collapse
|
22
|
Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:22989. [PMID: 34836970 PMCID: PMC8626430 DOI: 10.1038/s41598-021-02061-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Urbanization processes are increasing globally. Anthropogenic alterations in the environment have profound effects on biodiversity. Decreased biodiversity due to biotic homogenization processes as a consequence of urbanization often result in increased levels of mosquito vector species and vector-borne pathogen transmission. Understanding how anthropogenic alterations in the environment will affect the abundance, richness, and composition of vector mosquito species is crucial for the implementation of effective and targeted mosquito control strategies. We hypothesized that anthropogenic alterations in the environment are responsible for increasing the abundance of mosquito species that are adapted to urban environments such as Aedesaegypti and Culexquinquefasciatus. Therefore, our objective was to survey mosquito relative abundance, richness, and community composition in Miami-Dade County, Florida, in areas with different levels of urbanization. We selected 24 areas, 16 remote areas comprised of natural and rural areas, and 8 urban areas comprised of residential and touristic areas in Miami-Dade County, Florida. Mosquitoes were collected weekly in each area for 24 h for 5 consecutive weeks from August to October 2020 using BG-Sentinel traps baited with dry ice. A total of 36,645 mosquitoes were collected, from which 34,048 were collected in the remote areas and 2,597 in the urban areas. Our results show a clear and well-defined pattern of abundance, richness, and community composition according to anthropogenic modifications in land use and land cover. The more urbanized a given area the fewer species were found and those were primary vectors of arboviruses, Ae.aegypti and Cx.quinquefasciatus.
Collapse
|
23
|
Rhoden K, Alonso J, Carmona M, Pham M, Barnes AN. Twenty years of waterborne and related disease reports in Florida, USA. One Health 2021; 13:100294. [PMID: 34368415 PMCID: PMC8326185 DOI: 10.1016/j.onehlt.2021.100294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
Florida represents a unique challenge for preventing and responding to infectious disease associated with water. This study cataloged the prevalence of reportable waterborne and water-related disease within Florida residents over the last twenty years and identified relationships between confirmed cases by location and additional risk factors. Data was collected through FLHealthCHARTS for confirmed cases between January 1, 1999 and December 31, 2019. Case records were compiled and analyzed by year, county, pathogen name and disease category, patient age, and where the infection was acquired. During this time, 218,707 cases of water-related disease were recorded with 214,745 due to waterborne disease, 3255 cases of water-related vector-borne disease, and 707 cases caused by a water-based toxin. Children aged 0–4 and the elderly demonstrated a higher proportion of waterborne disease while 45–49 year olds had increased rates of water-based toxins and water-related vector-borne disease. Most cases were reported in the southeast region. Across the state, opportunities for water contact have led to high rates of water-related infectious disease. Public health initiatives and response efforts should target the pathogens of greatest impact for each region, largely zoonotic waterborne diseases, using a One Health approach. Over 200,000 cases of water-related disease have been reported to the Florida Department of Health over the last 20 years Most reported disease is due to waterborne pathogens followed by water-related vector-borne disease and water-based toxins Salmonellosis makes up the largest reported water-related disease burden for Florida Children and seniors have higher risk for waterborne disease; adults have higher risk for toxins and vector-borne disease Water disease prevention and response must use a One Health model for collaboration with human and animal health providers
Collapse
Affiliation(s)
- Kelly Rhoden
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Jose Alonso
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Meg Carmona
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Michelle Pham
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Amber N Barnes
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
24
|
Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:14620. [PMID: 34272411 PMCID: PMC8285413 DOI: 10.1038/s41598-021-94202-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Species from the Culex coronator complex are Neotropical species and potential vectors of Saint Louis and West Nile viruses. Culex coronator was first described in Trinidad and Tobago in the early twentieth century and since then it has invaded and has been reported established in most countries of the Americas. Species from the Culex coronator complex were first detected in the United States in the state of Louisiana in 2004 and were subsequently detected in Florida in 2005, reaching Miami-Dade County in 2008. We hypothesize that species from the Cx. coronator complex are adapting to urban environments in Miami-Dade County, Florida, and are becoming more present and abundant in these areas. Therefore, our objective was to investigate the patterns of the presence and abundance of species from the Cx. coronator complex in the urban areas of Miami-Dade County. Here we used weekly data comprised of 32 CDC traps from 2012 to 2020 and 150 BG-Sentinel traps from 2016 to 2020. A total of 34,146 female mosquitoes from the Cx. coronator complex were collected, 26,138 by CDC traps and 8008 by BG-Sentinel traps. While the number of CDC traps that were positive was relatively constant at 26–30 positive traps per year, the number of positive BG-Sentinel traps varied substantially from 50 to 87 positive traps per year. Furthermore, the heat map and logistic general linear model for repeated measures analyses showed a significant increase in both the distribution and abundance of mosquitoes from the Cx. coronator complex, indicating that these species are becoming more common in anthropized habitats being able to thrive in highly urbanized areas. The increase in the distribution and abundance of species from the Cx. coronator complex is a major public health concern. The ability of species from the Cx. coronator complex to benefit from urbanization highlights the need to better understand the mechanisms of how invasive vector mosquito species are adapting and exploiting urban habitats.
Collapse
|
25
|
Arboviral diseases and poverty in Alabama, 2007-2017. PLoS Negl Trop Dis 2021; 15:e0009535. [PMID: 34228748 PMCID: PMC8284636 DOI: 10.1371/journal.pntd.0009535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 07/16/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Mosquito-borne viruses cause diseases of great public health concern. Arboviral disease case distributions have complex relationships with socioeconomic and environmental factors. We combined information about socio-economic (population, and poverty rate) and environmental (precipitation, and land use) characteristics with reported human cases of arboviral disease in the counties of Alabama, USA, from 2007–2017. We used county level data on West Nile virus (WNV), dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), California serogroup virus, Eastern equine encephalitis virus, and Saint Louis encephalitis virus to provide a detailed description of their spatio-temporal pattern. We found a significant spatial convergence between incidence of WNV and poverty rate clustered in the southern part of Alabama. DENV, CHIKV and ZIKV cases showed a different spatial pattern, being mostly located in the northern part, in areas of high socioeconomic status. The results of our study establish that poverty-driven inequities in arboviral risk exist in the southern USA, and should be taken into account when planning prevention and intervention strategies. Mosquito-borne arboviruses like West Nile virus (WNV), dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), California serogroup virus (CSV), Eastern equine encephalitis virus (EEE), and Saint Louis encephalitis virus (SLE) are on the rise globally. Socioeconomic and environmental conditions have played a role in directing in this expansion by creating conditions ideal for mosquito vectors and transmission. In this study, we used 10 years (2007–2017) of county level human arboviral case data from the US state of Alabama to better understand the roles socioeconomics (poverty rate) and environmental (land use, precipitation, land cover) conditions may play in driving patterns of arboviral disease in the southern US. We found a significant association between poverty rate and incidence of WNV, an arbovirus primarily transmitted by Culex spp. mosquitoes, which are known for thriving in contaminated water sources and sewage overflow. Conversely, cases of DENV, CHIKV, and ZIKV, arboviruses primarily transmitted by Aedes spp. mosquitoes, were reported in areas of high socioeconomic status. These findings suggest differential distribution of arboviruses relevant to human health in Alabama, and that poverty in the southern US is a significant factor that should be considered when planning WNV prevention and intervention strategies.
Collapse
|
26
|
Stevens MCA, Faulkner SC, Wilke ABB, Beier JC, Vasquez C, Petrie WD, Fry H, Nichols RA, Verity R, Le Comber SC. Spatially clustered count data provide more efficient search strategies in invasion biology and disease control. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02329. [PMID: 33752255 DOI: 10.1002/eap.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Geographic profiling, a mathematical model originally developed in criminology, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide range of applications, such as finding source populations of invasive species or breeding sites of vectors of infectious disease. The model provides a cost-effective approach for prioritizing search strategies for source locations and does so via simple data in the form of the positions of each observation, such as individual sightings of invasive species or cases of a disease. In doing so, however, classic geographic profiling approaches fail to make the distinction between those areas containing observed absences and those areas where no data were recorded. Absence data are generated via spatial sampling protocols but are often discarded during the inference process. Here we construct a geographic profiling model that resolves these issues by making inferences via count data, analyzing a set of discrete sentinel locations at which the number of encounters has been recorded. Crucially, in our model this number can be zero. We verify the ability of this new model to estimate source locations and other parameters of practical interest via a Bayesian power analysis. We also measure model performance via real-world data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade County, Florida, USA. In both cases, our novel model produces more efficient search strategies by shifting focus from those areas containing observed absences to those with no data, an improvement over existing models that treat these areas equally. Our model makes important improvements upon classic geographic profiling methods, which will significantly enhance real-world efforts to develop conservation management plans and targeted interventions.
Collapse
Affiliation(s)
- Michael C A Stevens
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, UK
| | - Sally C Faulkner
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, 33178, USA
| | - William D Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, 33178, USA
| | - Hannah Fry
- Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, UK
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Robert Verity
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1PG, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
27
|
Oliveira TMP, Laporta GZ, Bergo ES, Chaves LSM, Antunes JLF, Bickersmith SA, Conn JE, Massad E, Sallum MAM. Vector role and human biting activity of Anophelinae mosquitoes in different landscapes in the Brazilian Amazon. Parasit Vectors 2021; 14:236. [PMID: 33957959 PMCID: PMC8101188 DOI: 10.1186/s13071-021-04725-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Environmental disturbance, deforestation and socioeconomic factors all affect malaria incidence in tropical and subtropical endemic areas. Deforestation is the major driver of habitat loss and fragmentation, which frequently leads to shifts in the composition, abundance and spatial distribution of vector species. The goals of the present study were to: (i) identify anophelines found naturally infected with Plasmodium; (ii) measure the effects of landscape on the number of Nyssorhynchus darlingi, presence of Plasmodium-infected Anophelinae, human biting rate (HBR) and malaria cases; and (iii) determine the frequency and peak biting time of Plasmodium-infected mosquitoes and Ny. darlingi. METHODS Anopheline mosquitoes were collected in peridomestic and forest edge habitats in seven municipalities in four Amazon Brazilian states. Females were identified to species and tested for Plasmodium by real-time PCR. Negative binomial regression was used to measure any association between deforestation and number of Ny. darlingi, number of Plasmodium-infected Anophelinae, HBR and malaria. Peak biting time of Ny. darlingi and Plasmodium-infected Anophelinae were determined in the 12-h collections. Binomial logistic regression measured the association between presence of Plasmodium-infected Anophelinae and landscape metrics and malaria cases. RESULTS Ninety-one females of Ny. darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B were found to be infected with Plasmodium. Analysis showed that the number of malaria cases and the number of Plasmodium-infected Anophelinae were more prevalent in sites with higher edge density and intermediate forest cover (30-70%). The distance of the drainage network to a dwelling was inversely correlated to malaria risk. The peak biting time of Plasmodium-infected Anophelinae was 00:00-03:00 h. The presence of Plasmodium-infected mosquitoes was higher in landscapes with > 13 malaria cases. CONCLUSIONS Nyssorhynchus darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B can be involved in malaria transmission in rural settlements. The highest fraction of Plasmodium-infected Anophelinae was caught from midnight to 03:00 h. In some Amazonian localities, the highest exposure to infectious bites occurs when residents are sleeping, but transmission can occur throughout the night. Forest fragmentation favors increases in both malaria and the occurrence of Plasmodium-infected mosquitoes in peridomestic habitat. The use of insecticide-impregnated mosquito nets can decrease human exposure to infectious Anophelinae and malaria transmission.
Collapse
Affiliation(s)
- Tatiane M P Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil.
| | - Gabriel Z Laporta
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil
| | - Eduardo S Bergo
- Superintendencia de Controle de Endemias, Secretaria de Estado da Saúde, Araraquara, SP, Brazil
| | - Leonardo Suveges Moreira Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | - José Leopoldo F Antunes
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | | | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| |
Collapse
|
28
|
Benelli G, Wilke ABB, Bloomquist JR, Desneux N, Beier JC. Overexposing mosquitoes to insecticides under global warming: A public health concern? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143069. [PMID: 33127158 DOI: 10.1016/j.scitotenv.2020.143069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 05/26/2023]
Abstract
The combined effect of global warming and insecticide exposure on the spread of mosquito-borne diseases is poorly studied. In our opinion, more resources should be diverted to this topic to further research efforts and deal with this increasing threat. It is particularly important to determine how Aedes, Anopheles, and Culex vector species cope with insecticide exposure under warming temperatures, as well as how both stressors may impact the activity of mosquito biocontrol agents. Herein, we promote a discussion on the topic, fostering a research agenda with insights for the longer-term implementation of mosquito control strategies under the Integrated Vector Management framework.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - André B B Wilke
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R Bloomquist
- Neurotoxicology Laboratory, Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicolas Desneux
- University Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Robertson SN, Cameron AI, Morales PR, Burnside WM. West Nile Virus Seroprevalence in an Outdoor Nonhuman Primate Breeding Colony in South Florida. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:168-175. [PMID: 33441221 PMCID: PMC7974820 DOI: 10.30802/aalas-jaalas-20-000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022]
Abstract
West Nile virus (WNV) was first detected in Florida in July 2001, with 404 human cases reported to the Centers for Disease Control and Prevention as of February 2020. The subtropical climate of Florida is ideal for the mosquitoes that transmit WNV. We investigated the WNV seroprevalence in 3 NHP species housed outdoors at The Mannheimer Foundation in South Florida. From January to December 2016, 520 3 to 30 y old NHP were sampled at our 2 closed sites in Homestead and LaBelle: 200 rhesus macaques (Macaca mulatta), 212 cynomolgus macaques (Macaca fascicularis), and 108 hamadryas baboons (Papio hamadryas hamadryas). The presence of WNV IgG antibodies in these animals was determined by serum neutralization assays, which found a total seroprevalence of 14%. Seroprevalence was significantly higher in the baboons (29%) than the rhesus (11%) and cynomolgus (9%) macaques. The probability of seropositivity significantly increased with age, but sex and site did not significantly affect seroprevalence. The frequency of WNV seropositivity detected in these outdoor-housed NHP suggests that screening for WNV and other vector-borne diseases may be necessary prior to experimental use, particularly for infectious disease studies in which viremia or viral antibodies could confound results, and especially for populations housed outdoors in warm, wet climates. As no seropositive subjects demonstrated clinical signs of WNV and WNV exposure did not appear to significantly impact colony health, routine testing is likely unnecessary for most NHP colonies. However, WNV infection should still be considered as a differential diagnosis for any NHP presenting with nonspecific neurologic signs. Mosquito abatement plans and vigilant sanitation practices to further decrease mosquito and avian interaction with research NHP should also be considered.
Collapse
Affiliation(s)
| | - Angus I Cameron
- School of Pure and Applied Sciences, Florida SouthWestern State College, LaBelle, Florida
| | | | | |
Collapse
|
30
|
Oliveira-Christe R, Wilke ABB, Marrelli MT. Microgeographic Wing-Shape Variation in Aedes albopictus and Aedes scapularis (Diptera: Culicidae) Populations. INSECTS 2020; 11:insects11120862. [PMID: 33287264 PMCID: PMC7761735 DOI: 10.3390/insects11120862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Aedes albopictus and Aedes scapularis are vectors of several arboviruses, including the dengue, chikungunya, and Rocio virus infection. While Ae. albopictus is a highly invasive species native to Asia and has been dispersed by humans to most parts of the world, Ae. scapularis is native to Brazil and is widely distributed in the southeast of the country. Both species are highly anthropophilic and are often abundant in places with high human population densities. Because of the great epidemiological importance of these two mosquitoes and the paucity of knowledge on how they have adapted to different urban built environments, we investigated the microgeographic population structure of these vector species in the city of São Paulo, Brazil, using wing geometric morphometrics. Females of Ae. albopictus and Ae. scapularis were collected in seven urban parks in the city. The right wings of the specimens were removed and digitized, and eighteen landmarks based on vein intersections in the wing venation patterns were used to assess cross-sectional variation in wing shape and size. The analyses revealed distinct results for Ae. albopictus and Ae. scapularis populations. While the former had less wing shape variation, the latter had more heterogeneity, indicating a higher degree of intraspecific variation. Our results indicate that microgeographic selective pressures exerted by different urban built environments have a distinct effect on wing shape patterns in the populations of these two mosquito species studied here.
Collapse
Affiliation(s)
- Rafael Oliveira-Christe
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, 05403-000 Butanta, SP, Brazil;
| | - André Barretto Bruno Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Mauro Toledo Marrelli
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, 05403-000 Butanta, SP, Brazil;
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, 01246-904 Butanta, SP, Brazil
- Correspondence:
| |
Collapse
|
31
|
Multini LC, de Souza ALDS, Marrelli MT, Wilke ABB. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci Rep 2020; 10:18018. [PMID: 33093465 PMCID: PMC7581522 DOI: 10.1038/s41598-020-74152-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Fragmentation of natural environments as a result of human interference has been associated with a decrease in species richness and increase in abundance of a few species that have adapted to these environments. The Brazilian Atlantic Forest, which has been undergoing an intense process of fragmentation and deforestation caused by human-made changes to the environment, is an important hotspot for malaria transmission. The main vector of simian and human malaria in this biome is the mosquito Anopheles cruzii. Anthropogenic processes reduce the availability of natural resources at the tree canopies, An. cruzii primary habitat. As a consequence, An. cruzii moves to the border of the Atlantic Forest nearing urban areas seeking resources, increasing their contact with humans in the process. We hypothesized that different levels of anthropogenic changes to the environment can be an important factor in driving the genetic structure and diversity in An. cruzii populations. Five different hypotheses using a cross-sectional and a longitudinal design were tested to assess genetic structure in sympatric An. cruzii populations and microevolutionary processes driving these populations. Single nucleotide polymorphisms were used to assess microgeographic genetic structure in An. cruzii populations in a low-endemicity area in the city of São Paulo, Brazil. Our results show an overall weak genetic structure among the populations, indicating a high gene flow system. However, our results also pointed to the presence of significant genetic structure between sympatric An. cruzii populations collected at ground and tree-canopy habitats in the urban environment and higher genetic variation in the ground-level population. This indicates that anthropogenic modifications leading to habitat fragmentation and a higher genetic diversity and structure in ground-level populations could be driving the behavior of An. cruzii, ultimately increasing its contact with humans. Understanding how anthropogenic changes in natural areas affect An. cruzii is essential for the development of more effective mosquito control strategies and, on a broader scale, for malaria-elimination efforts in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Laura Cristina Multini
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | | | - Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
- São Paulo Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - André Barretto Bruno Wilke
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| |
Collapse
|
32
|
Wilke ABB, Vasquez C, Carvajal A, Medina J, Chase C, Cardenas G, Mutebi JP, Petrie WD, Beier JC. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci Rep 2020; 10:12925. [PMID: 32737356 PMCID: PMC7395141 DOI: 10.1038/s41598-020-69759-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Aedes aegypti is the main vector of dengue, Zika, chikungunya, and yellow fever viruses. Controlling populations of vector mosquito species in urban environments is a major challenge and being able to determine what aquatic habitats should be prioritized for controlling Ae. aegypti populations is key to the development of more effective mosquito control strategies. Therefore, our objective was to leverage on the Miami-Dade County, Florida immature mosquito surveillance system based on requested by citizen complaints through 311 calls to determine what are the most important aquatic habitats in the proliferation of Ae. aegypti in Miami. We used a tobit model for Ae. aegypti larvae and pupae count data, type and count of aquatic habitats, and daily rainfall. Our results revealed that storm drains had 45% lower percentage of Ae. aegypti larvae over the total of larvae and pupae adjusted for daily rainfall when compared to tires, followed by bromeliads with 33% and garbage cans with 17%. These results are indicating that storm drains, bromeliads and garbage cans had significantly more pupae in relation to larvae when compared to tires, traditionally know as productive aquatic habitats for Ae. aegypti. Ultimately, the methodology and results from this study can be used by mosquito control agencies to identify habitats that should be prioritized in mosquito management and control actions, as well as to guide and improve policies and increase community awareness and engagement. Moreover, by targeting the most productive aquatic habitats this approach will allow the development of critical emergency outbreak responses by directing the control response efforts to the most productive aquatic habitats.
Collapse
Affiliation(s)
- André Barretto Bruno Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Catherine Chase
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| | - Gabriel Cardenas
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| | - John-Paul Mutebi
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
33
|
Amos BA, Staunton KM, Ritchie SA, Cardé RT. Attraction Versus Capture: Efficiency of BG-Sentinel Trap Under Semi-Field Conditions and Characterizing Response Behaviors for Female Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:884-892. [PMID: 31977049 DOI: 10.1093/jme/tjz243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such is a threat to public health worldwide. Effective trapping methods are essential for surveillance of both the mosquito species and disease presence. The BG-Sentinel (BGS) is a widely used to trap Ae. aegypti but little is known of its efficiency, i.e., what proportion of the mosquitoes encountering the trap are captured. The first version of the BGS trap was predominantly white, and the current version is mostly navy blue. While this trap is often deployed without any olfactory lure, it can also be deployed with CO2 and/or a human skin odor mimic lure to increase capture rates. We tested the efficiency of capturing Ae. aegypti under semi-field conditions for the original white version without lures as well the blue version with and without various lure combinations. None of the configurations tested here captured 100% of the mosquitoes that encountered the trap. A navy-blue trap emitting CO2 and a skin odor mimic produced the highest capture (14% of the total insects in the semi-field cage), but its capture efficiency was just 5% (of mosquitoes encountering the trap). Mosquitoes often had multiple encounters with a trap that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Understanding these behaviors and the factors that induce them has the potential to suggest improvement in trap design and therefore capture efficiency.
Collapse
Affiliation(s)
- Brogan A Amos
- Department of Entomology, University of California Riverside, Riverside, CA
| | - Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Ring T Cardé
- Department of Entomology, University of California Riverside, Riverside, CA
| |
Collapse
|
34
|
Evaluation of the usefulness of Aedes aegypti rapid larval surveys to anticipate seasonal dengue transmission between 2012-2015 in Fortaleza, Brazil. Acta Trop 2020; 205:105391. [PMID: 32057775 DOI: 10.1016/j.actatropica.2020.105391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Rapid larval surveys have been mandated in nearly every urban Brazilian municipality and promoted by the Pan American Health Organization. These surveys purport to classify arbovirus transmission risk as a basis to triage local surveillance and vector control operations, yet no previous analyses have determined relative risk associated with marginal changes in infestation at administrative and temporal scales relevant to vector control. We estimated associations between entomological indices from six larval surveys and daily incidence rates of confirmed dengue cases in Fortaleza, Brazil using models adjusted for rainfall, and indicators of spatial association. Poor correspondence between infestation and incidence indicates that these surveys may systematically mislead vector control activities and treatment strategies in Fortaleza and in similar cities throughout Latin America. The co-circulation of multiple arboviruses enhances the importance of determining the true informational value of these surveys, and of identifying complementary tools to discern local and inter-annual transmission risk.
Collapse
|
35
|
Wilke ABB, Carvajal A, Vasquez C, Petrie WD, Beier JC. Urban farms in Miami-Dade county, Florida have favorable environments for vector mosquitoes. PLoS One 2020; 15:e0230825. [PMID: 32251419 PMCID: PMC7135078 DOI: 10.1371/journal.pone.0230825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
The creation of urban farms in complex urban built environments may create suitable local conditions for vector mosquitoes. Urban farms have been implicated in the proliferation of mosquitoes in Africa, but there is a dearth in the knowledge of their role in the proliferation of mosquitoes elsewhere. In this study, we surveyed two urban farms in Miami-Dade County, Florida. Our results show that urban farms provide favorable conditions for populations of vector mosquito species by providing a wide range of essential resources such as larval habitats, suitable outdoor resting sites, sugar-feeding centers, and available hosts for blood-feeding. A total of 2,185 specimens comprising 12 species of mosquitoes were collected over 7 weeks. The results varied greatly according to the urban farm. At the Wynwood urban farm, 1,016 specimens were collected but were distributed only between 3 species; while the total number of specimens collected at the Golden Glades urban farm was 1,168 specimens comprising 12 species. The presence of vector mosquitoes in urban farms may represent a new challenge for the development of effective strategies to control populations of vector mosquito species in urban areas.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
36
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Diaz Y, Belledent T, Gibson L, Petrie WD, Fuller DO, Beier JC. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS One 2020; 15:e0230748. [PMID: 32208462 PMCID: PMC7092980 DOI: 10.1371/journal.pone.0230748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Definable habitats at the neighborhood level provide a wide range of favorable habitats with optimal conditions and environmental resources for mosquito survival. Problematic habitats for controlling mosquitoes in urban environments such as tire shops, bromeliad patches, and construction sites must be taken into consideration in the development of effective mosquito management and control in urban areas. Cemeteries are often located in highly urbanized areas serving as a haven for populations of vector mosquito species due to the availability of natural resources present in most cemeteries. Even though Miami-Dade County, Florida was the most affected area in the United States during the Zika virus outbreak in 2016 and is currently under a mosquito-borne illness alert after 14 confirmed locally transmitted dengue cases, the role of cemeteries in the proliferation of vector mosquitoes is unknown. Therefore, our objective was to use a cross-sectional experimental design to survey twelve cemeteries across Miami-Dade County to assess if vector mosquitoes in Miami can be found in these areas. Our results are indicating that vector mosquitoes are able to successfully exploit the resources available in the cemeteries. Culex quinquefasciatus was the most abundant species but it was neither as frequent nor present in its immature form as Aedes aegypti and Aedes albopictus. This study revealed that vector mosquitoes, such as Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus are successfully exploiting the resources available in these areas being able to thrive and reach high numbers. Mosquito control strategies should consider both long-term strategies, based on changing human behavior to reduce the availability of aquatic habitats for vector mosquitoes; as well as short-term strategies such as drilling holes or adding larvicide to the flower vases. Simple practices would greatly help improve the effectiveness of mosquito management and control in these problematic urban habitats.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Yadira Diaz
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Teresa Belledent
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Laurin Gibson
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Douglas O. Fuller
- Department of Geography and Regional Studies, University of Miami, Coral Gables, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
37
|
Wilke ABB, Benelli G, Beier JC. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl Trop Dis 2020; 14:e0007864. [PMID: 31917804 PMCID: PMC6952076 DOI: 10.1371/journal.pntd.0007864] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, Pisa, Italy
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
38
|
Wilke ABB, Chase C, Vasquez C, Carvajal A, Medina J, Petrie WD, Beier JC. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep 2019; 9:15335. [PMID: 31653914 PMCID: PMC6814835 DOI: 10.1038/s41598-019-51787-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Global increases in temperatures and urbanization are impacting the epidemiology of mosquito-borne diseases. Urbanization processes create suitable habitats for vector mosquitoes in which there are a reduced number of predators, and human hosts are widely available. We hypothesize that mosquito vector species, especially Aedes aegypti, are locally concentrated primarily in those specific habitats at the neighborhood levels that provide suitable conditions and environmental resources needed for mosquito survival. Determining how mosquito vector species composition and abundance depend on environmental resources across habitats addresses where different types of vector control need to be applied. Therefore, our goal was to analyze and identify the most productive aquatic habitats for mosquitoes in Miami-Dade County, Florida. Immature mosquito surveys were conducted throughout Miami-Dade County from April 2018 to June 2019, totaling 2,488 inspections. Mosquitoes were collected in 76 different types of aquatic habitats scattered throughout 141 neighborhoods located in the urbanized areas of Miami-Dade County. A total of 44,599 immature mosquitoes were collected and Ae. aegypti was the most common and abundant species, comprising 43% of all specimens collected. Aedes aegypti was primarily found in buckets, bromeliads, and flower pots, concentrated in specific neighborhoods. Our results showed that aquatic habitats created by anthropogenic land-use modifications (e.g., ornamental bromeliads, buckets, etc.) were positively correlated with the abundance of Ae. aegypti. This study serves to identify how vector mosquitoes utilize the resources available in urban environments and to determine the exact role of these specific urban features in supporting populations of vector mosquito species. Ultimately, the identification of modifiable urban features will allow the development of targeted mosquito control strategies optimized to preventatively control vector mosquitoes in urban areas.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Catherine Chase
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|