1
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
2
|
Dou L, Liu C, Chen X, Yang Z, Hu G, Zhang M, Sun L, Su L, Zhao L, Jin Y. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs. Meat Sci 2023; 204:109235. [PMID: 37301103 DOI: 10.1016/j.meatsci.2023.109235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study evaluated the contributions of Clostridium butyricum on skeletal muscle development, gastrointestinal flora and meat quality of lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.43 ± 1.94 kg; age, 88 ± 5 days) were divided into two dietary treatments. The control group was fed the basal diet (C group), and the probiotic group was supplemented with C. butyricum on the basis of the C group (2.5 × 108 cfu/g, 5 g/day/lamb; P group) for 90 d. The results showed that dietary C. butyricum elevated growth performance, muscle mass, muscle fiber diameter and cross-sectional area, and decreased the shear force value of meat (P < 0.05). Moreover, C. butyricum supplementation accelerated protein synthesis by regulating the gene expression of IGF-1/Akt/mTOR pathway. We identified 54 differentially expressed proteins that regulated skeletal muscle development through different mechanisms by quantitative proteomics. These proteins were associated with ubiquitin-protease, apoptosis, muscle structure, energy metabolism, heat shock, and oxidative stress. The metagenomics sequencing results showed that Petrimonas at the genus level and Prevotella brevis at the species level in the rumen, while Lachnoclostridium, Alloprevotella and Prevotella at the genus level in the feces, were significantly enriched in the P group. Also, butyric acid and valeric acid levels were elevated in both rumen and feces of the P group. Overall, our results support the idea that C. butyricum could change gastrointestinal flora, and affect skeletal muscle development and meat quality of lambs by modulating gut-muscle axis.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
3
|
Zhang QB, Liu AY, Fang QZ, Wang F, Wang H, Zhou Y. Effect of Electrical Stimulation on Disuse Muscular Atrophy Induced by Immobilization: Correlation With Upregulation of PERK Signal and Parkin-Mediated Mitophagy. Am J Phys Med Rehabil 2023; 102:692-700. [PMID: 36630294 DOI: 10.1097/phm.0000000000002182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The aims of the study are to investigate the effect of electrical stimulation on disuse muscular atrophy induced by immobilization (IM) and to explore the role of PERK signal and Parkin-dependent mitophagy in this process. DESIGN In the first subexperiment, 24 rabbits were divided into four groups, which underwent different periods of IM. In the second subexperiment, 24 rabbits were divided into four groups on average in accordance with different kinds of interventions. To test the time-dependent changes of rectus femoris after IM, and to evaluate the effect of electrical stimulation, the wet weights, cross-sectional area and fat deposition of rectus femoris were assessed in this study, along with the protein levels of atrogin-1, p-PERK, Parkin, and COXIV. RESULTS The wet weights and cross-sectional area decreased, and the fat deposition increased in rectus femoris after IM, along with the elevated protein levels of atrogin-1, p-PERK, Parkin, and decreased protein levels of COXIV. The above histomorphological and molecular changes can be partially ameliorated by electrical stimulation. CONCLUSIONS Immobilization of unilateral lower limb could induce rectus femoris atrophy, which can be partially rectified by electrical stimulation. PERK signal and Parkin-mediated mitophagy may be the mechanisms by which electrical stimulation can play a significant role.
Collapse
Affiliation(s)
- Quan-Bing Zhang
- From the Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Q-BZ, FW, YZ); The Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei, China (A-YL); The Second Clinical Medicine College of Anhui Medical University, Hefei, China (Q-ZF); Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China (HW); and Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China (HW)
| | | | | | | | | | | |
Collapse
|
4
|
Mirzoev TM, Paramonova II, Rozhkov SV, Kalashnikova EP, Belova SP, Tyganov SA, Vilchinskaya NA, Shenkman BS. Metformin Pre-Treatment as a Means of Mitigating Disuse-Induced Rat Soleus Muscle Wasting. Curr Issues Mol Biol 2023; 45:3068-3086. [PMID: 37185725 PMCID: PMC10136829 DOI: 10.3390/cimb45040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Currently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS). Wistar rats were divided into four groups: (1) control (C), (2) control + metformin for 10 days (C+Met), (3) HS for 7 days (HS), (4) metformin treatment for 7 days before HS and during the first 3 days of 1-week HS (HS+Met). Anabolic and catabolic markers were assessed using WB and RT-PCR. Treatment with metformin partly prevented an HS-induced decrease in rat soleus weight and size of slow-twitch fibers. Metformin prevented HS-related slow-to-fast fiber transformation. Absolute soleus muscle force in the HS+Met group was increased vs. the HS group. GSK-3β (Ser9) phosphorylation was significantly increased in the HS+Met group vs. the HS group. Metformin pre-treatment partly prevented HS-induced decrease in 18S+28S rRNA content and attenuated upregulation of calpain-1 and ubiquitin. Thus, pre-treatment of rats with metformin can ameliorate disuse-induced reductions in soleus muscle weight, the diameter of slow-type fibers, and absolute muscle strength.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey V Rozhkov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
5
|
Hanson AM, Young MH, Harrison BC, Zhou X, Han HQ, Stodieck LS, Ferguson VL. Inhibiting myostatin signaling partially mitigates structural and functional adaptations to hindlimb suspension in mice. NPJ Microgravity 2023; 9:2. [PMID: 36646717 PMCID: PMC9842652 DOI: 10.1038/s41526-022-00233-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2022] [Indexed: 01/18/2023] Open
Abstract
Novel treatments for muscle wasting are of significant value to patients with disease states that result in muscle weakness, injury recovery after immobilization and bed rest, and for astronauts participating in long-duration spaceflight. We utilized an anti-myostatin peptibody to evaluate how myostatin signaling contributes to muscle loss in hindlimb suspension. Male C57BL/6 mice were left non-suspended (NS) or were hindlimb suspended (HS) for 14 days and treated with a placebo vehicle (P) or anti-myostatin peptibody (D). Hindlimb suspension (HS-P) resulted in rapid and significantly decreased body mass (-5.6% by day 13) with hindlimb skeletal muscle mass losses between -11.2% and -22.5% and treatment with myostatin inhibitor (HS-D) partially attenuated these losses. Myostatin inhibition increased hindlimb strength with no effect on soleus tetanic strength. Soleus mass and fiber CSA were reduced with suspension and did not increase with myostatin inhibition. In contrast, the gastrocnemius showed histological evidence of wasting with suspension that was partially mitigated with myostatin inhibition. While expression of genes related to protein degradation (Atrogin-1 and Murf-1) in the tibialis anterior increased with suspension, these atrogenes were not significantly reduced by myostatin inhibition despite a modest activation of the Akt/mTOR pathway. Taken together, these findings suggest that myostatin is important in hindlimb suspension but also motivates the study of other factors that contribute to disuse muscle wasting. Myostatin inhibition benefitted skeletal muscle size and function, which suggests therapeutic potential for both spaceflight and terrestrial applications.
Collapse
Affiliation(s)
- Andrea M. Hanson
- grid.266190.a0000000096214564Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder, CO USA
| | - Mary H. Young
- grid.266190.a0000000096214564Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder, CO USA
| | - Brooke C. Harrison
- grid.266190.a0000000096214564Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
| | - Xiaolan Zhou
- grid.417886.40000 0001 0657 5612Amgen Inc., Thousand Oaks, CA USA ,Present Address: AliveGen USA Inc., Thousand Oaks, CA USA
| | - H. Q. Han
- grid.417886.40000 0001 0657 5612Amgen Inc., Thousand Oaks, CA USA ,Present Address: AliveGen USA Inc., Thousand Oaks, CA USA
| | - Louis S. Stodieck
- grid.266190.a0000000096214564Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder, CO USA
| | - Virginia L. Ferguson
- grid.266190.a0000000096214564Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder, CO USA ,grid.266190.a0000000096214564Department of Mechanical Engineering, University of Colorado, Boulder, CO USA ,grid.266190.a0000000096214564BioFrontiers Institute, University of Colorado, Boulder, CO USA
| |
Collapse
|
6
|
Belova SP, Kalashnikova EP, Tyganov SA, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Effect of enhanced muscle tone on the expression of atrogenes and cytoskeletal proteins during postural muscle unloading. Arch Biochem Biophys 2022; 725:109291. [PMID: 35597296 DOI: 10.1016/j.abb.2022.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Skeletal muscle unloading leads to the decreased electrical activity and decline of muscle tone. AIMS Current study evaluated the effect of muscle tone preservation achieved by tetanus toxin (TeNT) treatment on signaling pathways regulating atrophic processes during unloading. MAIN METHODS Four groups of rats were used: non-treated control (C), control rats with TeNT administration (CT), 7 days of unloading/hindlimb suspension with placebo (HS), and 7 days of unloading with TeNT administration (HST). KEY FINDINGS Absolute and relative force of tetanic contractions was decreased by 65% in soleus muscle of HS rats when compared with C. Treatment with TeNT significantly lessened force decline in soleus muscle of HST rats when compared with HS. TeNT administration increased myosin heavy chain I beta (MyHC Iβ) expression in CT rats and prevented MyHC Iβ loss in HST group when compared with C rats. Desmin content was lower by 31.4% (p < 0.05) in HS group when compared with HST. Calpain-1 expression was increased in HS group when compared with C, CT and HST. There was a decrease in p-p70S6K content (41%, p < 0,05) and an increase in p-eEF2 content (77%, p < 0,05) in HS group when compared with C, while there were no significant differences in the content of these proteins between HST, CT and C groups. SIGNIFICANCE Treatment with TeNT significantly diminished unloading-induced decline of soleus muscle mass and mechanical properties and affected the regulation of MyHC Iβ expression. These effects are mediated by signaling pathways regulating protein synthesis and degradation.
Collapse
Affiliation(s)
- Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
7
|
Sharlo KA, Lvova ID, Shenkman BS. Interaction of Oxidative Metabolism and Epigenetic Regulation of Gene Expression under Muscle Functional Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
9
|
Paramonova II, Vilchinskaya NA, Shenkman BS. HDAC4 Is Indispensable for Reduced Slow Myosin Expression at the Early Stage of Hindlimb Unloading in Rat Soleus Muscle. Pharmaceuticals (Basel) 2021; 14:ph14111167. [PMID: 34832949 PMCID: PMC8617770 DOI: 10.3390/ph14111167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
It is well known that reduced contractile activity of the main postural soleus muscle during long-term bedrest, immobilization, hindlimb unloading, and space flight leads to increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). The signaling cascade such as HDAC4/MEF2-D pathway is well-known to take part in regulating MyHC I gene expression. Earlier, we found a significant increase of HDAC4 in myonuclei due to AMPK dephosphorylation during 24 h of hindlimb unloading via hindlimb suspension (HU) and it had a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(β) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. We hypothesized that dephosphorylated HDAC4 translocates into the nuclei and can lead to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with HDAC4 inhibitor (Tasquinimod) for 7 days before HU as well as during 24 h of HU. We discovered that Tasquinimod treatment prevented a decrease in pre-mRNA expression of MyHC I. Furthermore, 24 h of hindlimb suspension resulted in HDAC4 nuclear accumulation of rat soleus but Tasquinimod pretreatment prevented this accumulation. The results of the study indicate that HDAC4 after 24 h of HU had a significant impact on the precursor MyHC I mRNA expression in rat soleus.
Collapse
|
10
|
Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:20899. [PMID: 34686697 PMCID: PMC8536703 DOI: 10.1038/s41598-021-00319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.
Collapse
|
11
|
Mortreux M, Rosa‐Caldwell ME, Stiehl ID, Sung D, Thomas NT, Fry CS, Rutkove SB. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 2021; 9:e15042. [PMID: 34612585 PMCID: PMC8493566 DOI: 10.14814/phy2.15042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Megan E. Rosa‐Caldwell
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Ian D. Stiehl
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Physics and AstronomyDartmouth CollegeHanoverNew HampshireUSA
| | - Dong‐Min Sung
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Nicholas T. Thomas
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher S. Fry
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Seward B. Rutkove
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
12
|
Nemirovskaya TL. The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 2021; 22:ijms22105081. [PMID: 34064895 PMCID: PMC8151958 DOI: 10.3390/ijms22105081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.
Collapse
|
14
|
Sharlo KA, Paramonova II, Lvova ID, Mochalova EP, Kalashnikov VE, Vilchinskaya NA, Tyganov SA, Konstantinova TS, Shevchenko TF, Kalamkarov GR, Shenkman BS. Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int J Mol Sci 2021; 22:1372. [PMID: 33573052 PMCID: PMC7866401 DOI: 10.3390/ijms22031372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.
Collapse
Affiliation(s)
- Kristina A. Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Inna I. Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Irina D. Lvova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Vitaliy E. Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Natalia A. Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Tatyana S. Konstantinova
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Tatiana F. Shevchenko
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Grigoriy R. Kalamkarov
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| |
Collapse
|
15
|
Pathophysiology, Biomarkers, and Therapeutic Modalities Associated with Skeletal Muscle Loss Following Spinal Cord Injury. Brain Sci 2020; 10:brainsci10120933. [PMID: 33276534 PMCID: PMC7761577 DOI: 10.3390/brainsci10120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
A spinal cord injury (SCI) may lead to loss of strength, sensation, locomotion and other body functions distal to the lesion site. Individuals with SCI also develop secondary conditions due to the lack of skeletal muscle activity. As SCI case numbers increase, recent studies have attempted to determine the best options to salvage affected musculature before it is lost. These approaches include pharmacotherapeutic options, immunosuppressants, physical activity or a combination thereof. Associated biomarkers are increasingly used to determine if these treatments aid in the protection and reconstruction of affected musculature.
Collapse
|
16
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
17
|
Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life (Basel) 2020; 10:life10100235. [PMID: 33049988 PMCID: PMC7599661 DOI: 10.3390/life10100235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, scientists have relied on animals to understand the risks and consequences of space travel. Animals remain key to study the physiological alterations during spaceflight and provide crucial information about microgravity-induced changes. While spaceflights may appear common, they remain costly and, coupled with limited cargo areas, do not allow for large sample sizes onboard. In 1979, a model of hindlimb unloading (HU) was successfully created to mimic microgravity and has been used extensively since its creation. Four decades later, the first model of mouse partial weight-bearing (PWB) was developed, aiming at mimicking partial gravity environments. Return to the Lunar surface for astronauts is now imminent and prompted the need for an animal model closer to human physiology; hence in 2018, our laboratory created a new model of PWB for adult rats. In this review, we will focus on the rat model of PWB, from its conception to the current state of knowledge. Additionally, we will address how this new model, used in conjunction with HU, will help implement new paradigms allowing scientists to anticipate the physiological alterations and needs of astronauts. Finally, we will discuss the outstanding questions and future perspectives in space research and propose potential solutions using the rat PWB model.
Collapse
|
18
|
Vitadello M, Sorge M, Percivalle E, Germinario E, Danieli-Betto D, Turco E, Tarone G, Brancaccio M, Gorza L. Loss of melusin is a novel, neuronal NO synthase/FoxO3-independent master switch of unloading-induced muscle atrophy. J Cachexia Sarcopenia Muscle 2020; 11:802-819. [PMID: 32154658 PMCID: PMC7296270 DOI: 10.1002/jcsm.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unloading/disuse induces skeletal muscle atrophy in bedridden patients and aged people, who cannot prevent it by means of exercise. Because interventions against known atrophy initiators, such as oxidative stress and neuronal NO synthase (nNOS) redistribution, are only partially effective, we investigated the involvement of melusin, a muscle-specific integrin-associated protein and a recognized regulator of protein kinases and mechanotransduction in cardiomyocytes. METHODS Muscle atrophy was induced in the rat soleus by tail suspension and in the human vastus lateralis by bed rest. Melusin expression was investigated at the protein and transcript level and after treatment of tail-suspended rats with atrophy initiator inhibitors. Myofiber size, sarcolemmal nNOS activity, FoxO3 myonuclear localization, and myofiber carbonylation of the unloaded rat soleus were studied after in vivo melusin replacement by cDNA electroporation, and muscle force, myofiber size, and atrogene expression after adeno-associated virus infection. In vivo interference of exogenous melusin with dominant-negative kinases and other atrophy attenuators (Grp94 cDNA; 7-nitroindazole) on size of unloaded rat myofibers was also explored. RESULTS Unloading/disuse reduced muscle melusin protein levels to about 50%, already after 6 h in the tail-suspended rat (P < 0.001), and to about 35% after 8 day bed rest in humans (P < 0.05). In the unloaded rat, melusin loss occurred despite of the maintenance of β1D integrin levels and was not abolished by treatments inhibiting mitochondrial oxidative stress, or nNOS activity and redistribution. Expression of exogenous melusin by cDNA transfection attenuated atrophy of 7 day unloaded rat myofibers (-31%), compared with controls (-48%, P = 0.001), without hampering the decrease in sarcolemmal nNOS activity and the increase in myonuclear FoxO3 and carbonylated myofibers. Infection with melusin-expressing adeno-associated virus ameliorated contractile properties of 7 day unloaded muscles (P ≤ 0.05) and relieved myofiber atrophy (-33%) by reducing Atrogin-1 and MurF-1 transcripts (P ≤ 0.002), despite of a two-fold increase in FoxO3 protein levels (P = 0.03). Atrophy attenuation by exogenous melusin did not result from rescue of Akt, ERK, or focal adhesion kinase activity, because it persisted after co-transfection with dominant-negative kinase forms (P < 0.01). Conversely, melusin cDNA transfection, combined with 7-nitroindazole treatment or with cDNA transfection of the nNOS-interacting chaperone Grp94, abolished 7 day unloaded myofiber atrophy. CONCLUSIONS Disuse/unloading-induced loss of melusin is an early event in muscle atrophy which occurs independently from mitochondrial oxidative stress, nNOS redistribution, and FoxO3 activation. Only preservation of melusin levels and sarcolemmal nNOS localization fully prevented muscle mass loss, demonstrating that both of them act as independent, but complementary, master switches of muscle disuse atrophy.
Collapse
Affiliation(s)
- Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR-Institute for Neuroscience, Padova Section, Padova, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Percivalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Roberson PA, Shimkus KL, Welles JE, Xu D, Whitsell AL, Kimball EM, Jefferson LS, Kimball SR. A time course for markers of protein synthesis and degradation with hindlimb unloading and the accompanying anabolic resistance to refeeding. J Appl Physiol (1985) 2020; 129:36-46. [PMID: 32407240 DOI: 10.1152/japplphysiol.00155.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is associated with disease, aging, and disuse. Hindlimb unloading (HU) in animals provides an experimental model to study muscle atrophy. A comprehensive time course for how HU affects biomarkers of protein synthesis and degradation acutely and chronically and the associated resistance to an anabolic stimulus following disuse remain undocumented. Sixteen-week-old C57BL/6 mice underwent 0, 1, 12, 24, 72, 168, or 336 h of HU. Following 336 h of HU, mice were reloaded for 1, 24, or 72 h. Another group of mice underwent 120 h of HU, were fasted or refed, and were then compared with similar condition control animals (CTL). Protein content and phosphorylation of biomarkers of protein synthesis, degradation, and autophagy were assessed in the soleus muscle. Gastrocnemius, soleus, and plantaris muscles atrophied within 120 h of HU. Protein synthesis trended toward decrease following 24 h of HU. p70S6K phosphorylation and protein synthesis increased with reloading. Following HU, changes in MAFbx and DEPTOR expression and DEPTOR phosphorylation were consistent with development of a catabolic state. DEPTOR expression recovered following reloading. Animals that underwent 120 h of HU exhibited attenuation of refeeding-induced p70S6K phosphorylation compared with CTL counterparts. Following 120 h of HU, protein synthesis, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation, and DEPTOR, MAFbx, and Sestrin1 expression indicated a catabolic state. Following 120 h of HU, autophagy markers, including p62 expression, REDD1 expression, LC3 ratio, and Unc-51-like autophagy-activating kinase 1 (ULK1) phosphorylation, indicated impaired autophagy. HU promotes a deleterious balance between protein synthesis and degradation. The time course herein provides scientists information about when the associated biomarkers become affected.NEW & NOTEWORTHY Hindlimb unloading causes significant skeletal muscle atrophy by adversely affecting the balance between protein synthesis and breakdown. This study demonstrates a more complete time course for changes in biomarkers associated with protein synthesis and breakdown and investigates the associated anabolic resistance to an anabolic stimulus following hindlimb unloading. These data in concert with information from other studies provide a basis for designing future experiments to optimally interrogate a desired cellular biomarker or pathway.
Collapse
Affiliation(s)
- Paul A Roberson
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Kevin L Shimkus
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Jaclyn E Welles
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Dandan Xu
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Abigale L Whitsell
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Eric M Kimball
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Leonard S Jefferson
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| | - Scot R Kimball
- Pennsylvania State University, Department of Cellular and Molecular Physiology, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
20
|
Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P38α-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 2020; 21:ijms21082756. [PMID: 32326654 PMCID: PMC7215762 DOI: 10.3390/ijms21082756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023] Open
Abstract
To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading.
Collapse
Affiliation(s)
- Svetlana P. Belova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Boris S. Shenkman
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
- Correspondence:
| |
Collapse
|