1
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
2
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022; 13:16. [PMID: 35941607 PMCID: PMC9360664 DOI: 10.1186/s13227-022-00199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Water fleas of the genus Daphnia have been a model system for hundreds of years and is among the best studied ecological model organisms to date. Daphnia are planktonic crustaceans with a cyclic parthenogenetic life-cycle. They have a nearly worldwide distribution, inhabiting standing fresh- and brackish water bodies, from small temporary pools to large lakes. Their predominantly asexual reproduction allows for the study of phenotypes excluding genetic variation, enabling us to separate genetic from non-genetic effects. Daphnia are often used in studies related to ecotoxicology, predator-induced defence, host–parasite interactions, phenotypic plasticity and, increasingly, in evolutionary genomics. The most commonly studied species are Daphnia magna and D. pulex, for which a rapidly increasing number of genetic and genomic tools are available. Here, I review current research topics, where the Daphnia model system plays a critical role.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
5
|
Oliver A, Cavalheri HB, Lima TG, Jones NT, Podell S, Zarate D, Allen E, Burton RS, Shurin JB. Phenotypic and transcriptional response of Daphnia pulicaria to the combined effects of temperature and predation. PLoS One 2022; 17:e0265103. [PMID: 35834446 PMCID: PMC9282536 DOI: 10.1371/journal.pone.0265103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Daphnia, an ecologically important zooplankton species in lakes, shows both genetic adaptation and phenotypic plasticity in response to temperature and fish predation, but little is known about the molecular basis of these responses and their potential interactions. We performed a factorial experiment exposing laboratory-propagated Daphnia pulicaria clones from two lakes in the Sierra Nevada mountains of California to normal or high temperature (15°C or 25°C) in the presence or absence of fish kairomones, then measured changes in life history and gene expression. Exposure to kairomones increased upper thermal tolerance limits for physiological activity in both clones. Cloned individuals matured at a younger age in response to higher temperature and kairomones, while size at maturity, fecundity and population intrinsic growth were only affected by temperature. At the molecular level, both clones expressed more genes differently in response to temperature than predation, but specific genes involved in metabolic, cellular, and genetic processes responded differently between the two clones. Although gene expression differed more between clones from different lakes than experimental treatments, similar phenotypic responses to predation risk and warming arose from these clone-specific patterns. Our results suggest that phenotypic plasticity responses to temperature and kairomones interact synergistically, with exposure to fish predators increasing the tolerance of Daphnia pulicaria to stressful temperatures, and that similar phenotypic responses to temperature and predator cues can be produced by divergent patterns of gene regulation.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Hamanda B. Cavalheri
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Thiago G. Lima
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Natalie T. Jones
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Daniela Zarate
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Eric Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan B. Shurin
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Razak MR, Aris AZ, Md Yusoff F, Yusof ZNB, Kim SD, Kim KW. Assessment of RNA extraction protocols from cladocerans. PLoS One 2022; 17:e0264989. [PMID: 35472091 PMCID: PMC9041806 DOI: 10.1371/journal.pone.0264989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment studies has intensified in recent years due to their ecological importance in aquatic ecosystems. The molecular assessment such as gene expression analysis has been introduced in ecotoxicological and risk assessment to link the expression of specific genes to a biological process in the cladocerans. The validity and accuracy of gene expression analysis depends on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. However, the standard methods of RNA extraction from the cladocerans are still lacking. This study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recovery of extracted RNA and the extracted RNA was characterised using spectrophotometric analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the RNA extraction method towards downstream gene expression analysis. The results indicate that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the quantity (RNA concentration = 26.90 ± 6.89 ng/μl), quality (A260:230 = 1.95 ± 0.15, A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-PCR analysis shows that the method successfully amplified both alpha tubulin and actin gene at 33-35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with high and comprehensive quality control assessment will increase the accuracy and reliability of downstream gene expression, thus providing more ecotoxicological data at the molecular biological level on other freshwater zooplankton species.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
- Faculty of Agriculture, Department of Aquaculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Faculty of Biotechnology and Biomolecular Science, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Clark AD, Howell BK, Wilson AE, Schwartz TS. Draft genomes for one Microcystis-resistant and one Microcystis-sensitive strain of the water flea, Daphnia pulicaria. G3 (BETHESDA, MD.) 2021; 11:jkab266. [PMID: 34849790 PMCID: PMC8527513 DOI: 10.1093/g3journal/jkab266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Daphnia species are well-suited for studying local adaptation and evolutionary responses to stress(ors) including those caused by algal blooms. Algal blooms, characterized by an overgrowth (bloom) of cyanobacteria, are detrimental to the health of aquatic and terrestrial members of freshwater ecosystems. Some strains of Daphnia pulicaria have demonstrated resistance to toxic algae and the ability to mitigate toxic algal blooms. Understanding the genetic mechanism associated with this toxin resistance requires adequate genomic resources. Using whole-genome sequence data mapped to the Daphnia pulex reference genome (PA42), we present reference-guided draft assemblies from one tolerant and one sensitive strain of D. pulicaria, Wintergreen-6 (WI-6), and Bassett-411 (BA-411), respectively. Assessment of the draft assemblies reveal low contamination levels, and high levels (95%) of genic content. Reference scaffolds had coverage breadths of 98.9-99.4%, and average depths of 33X and 29X for BA-411 and WI-6, respectively. Within, we discuss caveats and suggestions for improving these draft assemblies. These genomic resources are presented with a goal of contributing to the resources necessary to understand the genetic mechanisms and associations of toxic prey resistance observed in this species.
Collapse
Affiliation(s)
- Amanda D Clark
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Bailey K Howell
- Bioinformatics REU Program, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alan E Wilson
- Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Ebner JN. Trends in the Application of "Omics" to Ecotoxicology and Stress Ecology. Genes (Basel) 2021; 12:1481. [PMID: 34680873 PMCID: PMC8535992 DOI: 10.3390/genes12101481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Our ability to predict and assess how environmental changes such as pollution and climate change affect components of the Earth's biome is of paramount importance. This need positioned the fields of ecotoxicology and stress ecology at the center of environmental monitoring efforts. Advances in these interdisciplinary fields depend not only on conceptual leaps but also on technological advances and data integration. High-throughput "omics" technologies enabled the measurement of molecular changes at virtually all levels of an organism's biological organization and thus continue to influence how the impacts of stressors are understood. This bibliometric review describes literature trends (2000-2020) that indicate that more different stressors than species are studied each year but that only a few stressors have been studied in more than two phyla. At the same time, the molecular responses of a diverse set of non-model species have been investigated, but cross-species comparisons are still rare. While transcriptomics studies dominated until 2016, a shift towards proteomics and multiomics studies is apparent. There is now a wealth of data at functional omics levels from many phylogenetically diverse species. This review, therefore, addresses the question of how to integrate omics information across species.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Kwon IH, Kim IY, Heo MB, Park JW, Lee SW, Lee TG. Real-time heart rate monitoring system for cardiotoxicity assessment of Daphnia magna using high-speed digital holographic microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146405. [PMID: 33774290 DOI: 10.1016/j.scitotenv.2021.146405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Machine vision techniques for monitoring heart rates in aquatic bioassays have been applied to cardiotoxicity assessment. However, the requisite large data sizes and long calculation times make long-term observations of heart rates difficult. In this study, we developed a real-time heart rate monitoring system for individual Daphnia magna in a water chamber mounter that immobilizes their movement in 100 mL media. Heart rates are calculated from real-time, time-resolved relative phase information from digital holograms acquired with a 200 fps camera and parallel computation using a graphics processing unit. With this system, we monitored the real-time changes in the heart rates of individual D. magna specimens exposed to H2O2 as a positive control for reactive oxygen species (ROS) levels in an aquatic environment for 10 h, a period long enough to observe dynamic heart rate responses to the mounting process and exposure and to establish heart rate trends. An additional group analysis was conducted to compare to conventional cardiotoxicity assessment, with results of both assessments showing that the heart rates reduced according to ROS level by H2O2 exposure concentration. Notably, the results of our real-time dynamic heart rate monitoring in aquatic conditions indicated that establishing a relaxation heart rate before measurements could improve the accuracy of toxicity assessment. It is believed that the system developed in this study, achieving the simultaneous measurement, analysis, and display of reconstructed results, will find wide application in other aquatic bioassays.
Collapse
Affiliation(s)
- Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - In Young Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Min Beom Heo
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; Department of Medical Physics, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; Department of Nano Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Yates MC, Derry AM, Cristescu ME. Environmental RNA: A Revolution in Ecological Resolution? Trends Ecol Evol 2021; 36:601-609. [PMID: 33757695 DOI: 10.1016/j.tree.2021.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
Current advancements in environmental RNA (eRNA) exploit its relatively fast turnover rate relative to environmental DNA (eDNA) to assess 'metabolically active' or temporally/spatially recent community diversity. However, this focus significantly underutilizes the trove of potential ecological information encrypted in eRNA. Here, we argue for pushing beyond current species-level eDNA detection capabilities by using eRNA to detect any organisms with unique eRNA profiles, potentially including different life-history stages, sexes, or even specific phenotypes within a species. We also discuss the future of eRNA as a means of assessing the physiological status of organisms and the ecological health of populations and communities, reflecting ecosystem-level conditions. We posit that eRNA has the potential to significantly improve the resolution of organism detection, biological monitoring, and biomonitoring applications in ecology.
Collapse
Affiliation(s)
- Matthew C Yates
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 1Y4, Canada.
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 1Y4, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
12
|
Jones CLC, Shafer ABA, Kim WD, Prater C, Wagner ND, Frost PC. The complexity of co-limitation: nutrigenomics reveal non-additive interactions of calcium and phosphorus on gene expression in Daphnia pulex. Proc Biol Sci 2020; 287:20202302. [PMID: 33352081 DOI: 10.1098/rspb.2020.2302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many lakes across Canada and northern Europe have experienced declines in ambient phosphorus (P) and calcium (Ca) supply for over 20 years. While these declines might create or exacerbate nutrient limitation in aquatic food webs, our ability to detect and quantify different types of nutrient stress on zooplankton remains rudimentary. Here, we used growth bioassay experiments and whole transcriptome RNAseq, collectively nutrigenomics, to examine the nutritional phenotypes produced by low supplies of P and Ca separately and together in the freshwater zooplankter Daphnia pulex. We found that daphniids in all three nutrient-deficient categories grew slower and differed in their elemental composition. Our RNAseq results show distinct responses in singly limited treatments (Ca or P) and largely a mix of these responses in animals under low Ca and P conditions. Deeper investigation of effect magnitude and gene functional annotations reveals this patchwork of responses to cumulatively represent a co-limited nutritional phenotype. Linear discriminant analysis identified a significant separation between nutritional treatments based upon gene expression patterns with the expression patterns of just five genes needed to predict animal nutritional status with 99% accuracy. These data reveal how nutritional phenotypes are altered by individual and co-limitation of two highly important nutritional elements (Ca and P) and provide evidence that aquatic consumers can respond to limitation by more than one nutrient at a time by differentially altering their metabolism. This use of nutrigenomics demonstrates its potential to address many of the inherent complexities in studying interactions between multiple nutritional stressors in ecology and beyond.
Collapse
Affiliation(s)
- Catriona L C Jones
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada K9K 0A7
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada K9K 0A7.,Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada K9K 0A7
| | - Clay Prater
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
13
|
Ravindran SP, Tams V, Cordellier M. Transcriptome‐wide genotype–phenotype associations in
Daphnia
in a predation risk environment. J Evol Biol 2020; 34:879-892. [DOI: 10.1111/jeb.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Accepted: 08/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Suda Parimala Ravindran
- Department of Marine Sciences Tjärnö Marine Laboratory University of Gothenburg Strömstad Sweden
| | - Verena Tams
- Institute of Marine Ecosystem and Fishery Science Universität Hamburg Hamburg Germany
| | | |
Collapse
|