1
|
Zhang C, Yu Y, Yue L, Chen Y, Chen Y, Liu Y, Guo C, Su Q, Xiang Z. Gut microbiota profiles of sympatric snub-nosed monkeys and macaques in Qinghai-Tibetan Plateau show influence of phylogeny over diet. Commun Biol 2025; 8:95. [PMID: 39833341 PMCID: PMC11747120 DOI: 10.1038/s42003-025-07538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals. The gut microbiota of plateau species has developed similar strategies to facilitate their hosts' adaptation to specific environments, including broadening its dietary niche and enhancing energy absorption. These findings will enhance our comprehension of the significance of primate gut microbiota in adapting to specific habitats.
Collapse
Affiliation(s)
- Chen Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Yu
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ling Yue
- Panzhihua Animal Disease Prevention and Control Center, Panzhihua, Sichuan, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yixin Chen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Cheng Guo
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Peng LH, Tan Y, Bajinka O. The influence of maternal diet on offspring's gut microbiota in early life. Arch Gynecol Obstet 2024; 309:1183-1190. [PMID: 38057588 DOI: 10.1007/s00404-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Li-Hua Peng
- Department of Physiology, Hunan Yongzhou Vocational Technical College, Yongzhou, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- School of Medicine and Allied Health Sciences, University of The Gambia, Serrekunda, Gambia.
| |
Collapse
|
3
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Cerdó T, Ruiz-Rodríguez A, Acuña I, Torres-Espínola FJ, Menchén-Márquez S, Gámiz F, Gallo M, Jehmlich N, Haange SB, von Bergen M, Campoy C, Suárez A. Infant gut microbiota contributes to cognitive performance in mice. Cell Host Microbe 2023; 31:1974-1988.e4. [PMID: 38052208 DOI: 10.1016/j.chom.2023.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Gut microbiota has been linked to infant neurodevelopment. Here, an association between infant composite cognition and gut microbiota composition is established as soon as 6 months. Higher diversity and evenness characterize microbial communities of infants with composite cognition above (Inf-aboveCC) versus below (Inf-belowCC) median values. Metaproteomic and metabolomic analyses establish an association between microbial histidine ammonia lyase and infant histidine metabolome with cognition. Fecal transplantation from Inf-aboveCC versus Inf-belowCC donors into germ-free mice shows that memory, assessed by a novel object recognition test, is a transmissible trait. Furthermore, Inf-aboveCC mice are enriched in species belonging to Phocaeicola, as well as Bacteroides and Bifidobacterium, previously linked to cognition. Finally, Inf-aboveCC mice show lower fecal histidine and urocanate:histidine and urocanate:glutamate ratios in the perirhinal cortex compared to Inf-belowCC mice. Overall, these findings reveal a causative role of gut microbiota on infant cognition, pointing at the modulation of histidine metabolite levels as a potential underlying mechanism.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Alicia Ruiz-Rodríguez
- Department of Biochemistry and Molecular Biology 2, Nutrition and Food Technology Institute "José Mataix" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain; Department of Microbiology, Nutrition and Food Technology Institute "José Mataix" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain.
| | - Inmaculada Acuña
- Department of Biochemistry and Molecular Biology 2, Nutrition and Food Technology Institute "José Mataix" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Francisco José Torres-Espínola
- EURISTIKOS Excellence Centre for Pediatric Research, Institute of Neurosciences, Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Sergio Menchén-Márquez
- Department of Psychobiology, Institute of Neurosciences, Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences, Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences, Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18014 Granada, Spain
| | - Nico Jehmlich
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Pediatric Research, Institute of Neurosciences, Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (IBS), 18014 Granada, Spain; Department of Pediatrics, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Nutrition and Food Technology Institute "José Mataix" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| |
Collapse
|
5
|
Guzzardi MA, La Rosa F, Granziera F, Panetta D, Pardo-Tendero M, Barone M, Turroni S, Faita F, Kusmic C, Brigidi P, Monleon D, Iozzo P. Gut-derived metabolites mediating cognitive development in 5-year-old children: Early-life transplant in mice has lasting effects throughout adulthood. Brain Behav Immun 2023; 114:94-110. [PMID: 37557963 DOI: 10.1016/j.bbi.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Federico Granziera
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy; Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Daniele Panetta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Mercedes Pardo-Tendero
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy; Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, 46010 Valencia, Spain.
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Faita
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Claudia Kusmic
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Daniel Monleon
- Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, 46010 Valencia, Spain.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| |
Collapse
|
6
|
Exploring the links between gut microbiota and excitatory and inhibitory brain processes in alcohol use disorder: A TMS study. Neuropharmacology 2023; 225:109384. [PMID: 36567005 DOI: 10.1016/j.neuropharm.2022.109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
While the impact of the gut microbiota on brain and behavior is increasingly recognized, human studies examining this question are still scarce. The primary objective of the current study was to explore the potential relationships between the gut microbiota composition, motor cortical excitability at rest and during inhibitory control, as well as behavioral inhibition, in healthy volunteers and in patients suffering from alcohol use disorder. Motor cortical excitability was examined using a range of transcranial magnetic stimulation (TMS) measures probed at rest, including the recruitment curve, short and long intracortical inhibition, and intracortical facilitation within the primary motor cortex. Moreover, TMS was applied during a choice reaction time task to assess changes in motor excitability associated with inhibitory control. Finally, behavioral inhibition was investigated using a neuropsychological task (anti-saccade). Overall, our results highlight several interesting correlations between microbial composition and brain measures. Hence, higher bacterial diversity, as well as higher relative abundances of UGC-002 and Christensenellaceae R-7 group were correlated with stronger changes in motor excitability associated with inhibitory control. Also, higher abundance of Anaerostipes was associated with higher level of corticospinal excitability. Finally, relative abundances of Bifidobacterium and Faecalibacterium were positively related to performance in the neuropsychological task, suggesting that they might have a positive impact on behavioral inhibition. Although correlation is not causation, the present study suggests that excitatory and inhibitory brain processes might be related to gut microbiota composition. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
|
7
|
Schade R, Song L, Cordner ZA, Ding H, Peterson DA, Moran TH, Tamashiro KL, Serre CBDL. Rat offspring's microbiota composition is predominantly shaped by the postnatal maternal diet rather than prenatal diet. Physiol Behav 2023; 258:113987. [PMID: 36198343 PMCID: PMC10088501 DOI: 10.1016/j.physbeh.2022.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/26/2023]
Abstract
This study assessed the impact of maternal diet during pregnancy versus lactation on offspring gut microbiota. Sprague-Dawley dams were fed high fat (HF) or Chow diets during pregnancy, and their male offspring were raised by a different dam consuming the same or opposite diet (Chow-Chow, Chow-HF, HF-Chow, and HF-HF). Microbiota analysis showed that maternal lactation diet, rather than pregnancy diet, determined offspring microbiota profiles at weaning. Increased abundances of Turicibacter, Staphylococcus , and Ruminococcus were characteristic of chow lactation groups. Lactococcus , Streptococcus , and Parabacteroides were characteristic of HF lactation groups and positively correlated with offspring body weight.
Collapse
Affiliation(s)
- Ruth Schade
- Department of Nutritional Sciences, University of Georgia, Athens, GA, U.S.A; Current address: Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, U.S.A
| | - Lin Song
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zachary A Cordner
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Hua Ding
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Timothy H Moran
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Kellie L Tamashiro
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A.
| | | |
Collapse
|
8
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
9
|
The Molecular Gut-Brain Axis in Early Brain Development. Int J Mol Sci 2022; 23:ijms232315389. [PMID: 36499716 PMCID: PMC9739658 DOI: 10.3390/ijms232315389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Millions of nerves, immune factors, and hormones in the circulatory system connect the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as well as during brain development. Altering the gut microbiota could serve as a therapeutic target for treating abnormalities associated with brain development. Neurophysiological development and immune regulatory disorders are affected by changes that occur in gut microbiota composition and function. The molecular aspects relevant to the GBA could help develop targeted therapies for neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore, we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential signaling pathways and roles of posttranscriptional modifications in brain functions. Our review summarizes the role of molecular GBA in early brain development and related disorders, providing cues for novel therapeutic targets.
Collapse
|
10
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Guzzardi MA, Collado MC, Panetta D, Tripodi M, Iozzo P. Maternal High-Fat Diet Programs White and Brown Adipose Tissues In Vivo in Mice, with Different Metabolic and Microbiota Patterns in Obesity-Susceptible or Obesity-Resistant Offspring. Metabolites 2022; 12:metabo12090828. [PMID: 36144232 PMCID: PMC9503350 DOI: 10.3390/metabo12090828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal obesity causes metabolic dysfunction in the offspring, including dysbiosis, overeating, obesity, and type 2 diabetes. Early-life phases are fundamental for developing subcutaneous (SAT) and brown adipose tissues (BAT), handling energy excesses. Imaging of 18F-fluorodeoxyglucose by positron emission tomography (PET) and radiodensity by computerized tomography (CT) allows assessing adipose tissue (AT) whitening and browning in vivo and the underlying metabolic efficiency. Our aim was to examine these in vivo traits in SAT and BAT concerning gut microbiota composition in 1- and 6-month-old mice born to normal (NDoff) and high-fat diet-fed dams (HFDoff), accounting for body weight responses. We found low radiodensity (high lipids) in HFDoff SAT at 1 month, relating to an increased abundance of Dorea genus in the caecum and activation of the fatty acid biosynthetic pathway. Instead, low BAT radiodensity and glucose uptake were seen in adult HFDoff. Glucose was shifted in favor of BAT at 1 month and SAT at 6 months. In adults, unclassified Enterococcaceae and Rikenellaceae, and Bacillus genera were negatively related to BAT, whereas unclassified Clostridiales genera were related to SAT metabolism. Stratification of HFDoff based on weight-response, namely maternal induced obesity (MIO-HFDoff) or obesity-resistant (MIOR-HFDoff), showed sex dimorphism. Both subgroups were hyperphagic, but only obese mice had hyper-leptinemia and hyper-resistinemia, together with BAT dysfunction, whereas non-obese HFDoff had hyperglycemia and SAT hypermetabolism. In the caecum, unclassified Rikenellaceae (10-fold enrichment in MIO-HFDoff) and Clostridiales genera (4-fold deficiency in MIOR-HFDoff) were important discriminators of these two phenotypes. In conclusion, SAT whitening is an early abnormality in the offspring of HFD dams. In adult life, maternal HFD and the induced excessive food intake translates into a dimorphic phenotype involving SAT, BAT, and microbiota distinctively, reflecting maternal diet*sex interaction. This helps explain inter-individual variability in fetal programming and the higher rates of type 2 diabetes observed in adult women born to obese mothers, supporting personalized risk assessment, prevention, and treatment.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Tripodi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3152789
| |
Collapse
|
12
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Avolio E, Olivito I, Rosina E, Romano L, Angelone T, Bartolo Anna D, Scimeca M, Bellizzi D, D'Aquila P, Passarino G, Alò R, Maria Facciolo R, Bagni C, De Lorenzo A, Canonaco M. Modifications of behavior and inflammation in mice following transplant with fecal microbiota from children with autism. Neuroscience 2022; 498:174-189. [DOI: 10.1016/j.neuroscience.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
14
|
Structural and functional neuroimaging of the effects of the gut microbiome. Eur Radiol 2022; 32:3683-3692. [PMID: 35029734 PMCID: PMC9124675 DOI: 10.1007/s00330-021-08486-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Interactions between intestinal microbiota and the central nervous system profoundly influence brain structure and function. Over the past 15 years, intense research efforts have uncovered the significant association between gut microbial dysbiosis and neurologic, neurodegenerative, and psychiatric disorders; however, our understanding of the effect of gut microbiota on quantitative neuroimaging measures of brain microstructure and function remains limited. Many current gut microbiome studies specifically focus on discovering correlations between specific microbes and neurologic disease states that, while important, leave critical mechanistic questions unanswered. To address this significant gap in knowledge, quantitative structural and functional brain imaging has emerged as a vital bridge and as the next step in understanding how the gut microbiome influences the brain. In this review, we examine the current state-of-the-art, raise awareness of this important topic, and aim to highlight immense new opportunities-in both research and clinical imaging-for the imaging community in this emerging field of study. Our review also highlights the potential for preclinical imaging of germ-free and gnotobiotic models to significantly advance our understanding of the causal mechanisms by which the gut microbiome alters neural microstructure and function. KEY POINTS: • Alterations to the gut microbiome can significantly influence brain structure and function in health and disease. • Quantitative neuroimaging can help elucidate the effect of gut microbiota on the brain and with future translational advances, neuroimaging will be critical for both diagnostic assessment and therapeutic monitoring.
Collapse
|
15
|
Ramírez-Acosta S, Selma-Royo M, Collado MC, Navarro-Roldán F, Abril N, García-Barrera T. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Sci Rep 2022; 12:4218. [PMID: 35273298 PMCID: PMC8913620 DOI: 10.1038/s41598-022-08121-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Selenium is a well-known essential element with important roles in human reproductive health mainly due to its antioxidant character. This study aimed to investigate the potential role of selenoproteins on gut microbiota and male reproductive health. A new assay for the absolute quantification of selenoproteins in testicular tissue based on two dimensional chromatography with inductively coupled plasma mass spectrometry was performed for the first time. The gut microbiota profile was obtained by 16S rRNA gene sequencing. Numerous associations were found between testicular selenoproteins and gut microbiota (e.g. Mucispirillum, related with sperm activity and testosterone, was associated with glutathione peroxidase (GPx) and selenoalbumin (SeAlb), while Escherichia/Shigella, related to sex hormones, correlated with GPx, selenoprotein P (SelP) and SeAlb). The effects of Se-supplementation on testicular selenoproteins only occur in conventional mice, suggesting a potential selenoproteins-microbiota interplay that underlies testicular function. The selenoproteins GPx and SelP have been quantified for the first time in the testicles, and the novel identification of SeAlb, a protein with nonspecifically incorporated Se, is also reported. These findings demonstrate the significant impact of Se-supplementation on gut microbiota and male reproductive health. In addition, the analytical methodology applied here in selenoprotein quantification in testicular tissue opens new possibilities to evaluate their role in gut microbiota and reproductive health axis.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Francisco Navarro-Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
16
|
Gauvrit T, Benderradji H, Buée L, Blum D, Vieau D. Early-Life Environment Influence on Late-Onset Alzheimer's Disease. Front Cell Dev Biol 2022; 10:834661. [PMID: 35252195 PMCID: PMC8891536 DOI: 10.3389/fcell.2022.834661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
With the expand of the population's average age, the incidence of neurodegenerative disorders has dramatically increased over the last decades. Alzheimer disease (AD) which is the most prevalent neurodegenerative disease is mostly sporadic and primarily characterized by cognitive deficits and neuropathological lesions such as amyloid -β (Aβ) plaques and neurofibrillary tangles composed of hyper- and/or abnormally phosphorylated Tau protein. AD is considered a complex disease that arises from the interaction between environmental and genetic factors, modulated by epigenetic mechanisms. Besides the well-described cognitive decline, AD patients also exhibit metabolic impairments. Metabolic and cognitive perturbations are indeed frequently observed in the Developmental Origin of Health and Diseases (DOHaD) field of research which proposes that environmental perturbations during the perinatal period determine the susceptibility to pathological conditions later in life. In this review, we explored the potential influence of early environmental exposure to risk factors (maternal stress, malnutrition, xenobiotics, chemical factors … ) and the involvement of epigenetic mechanisms on the programming of late-onset AD. Animal models indicate that offspring exposed to early-life stress during gestation and/or lactation increase both AD lesions, lead to defects in synaptic plasticity and finally to cognitive impairments. This long-lasting epigenetic programming could be modulated by factors such as nutriceuticals, epigenetic modifiers or psychosocial behaviour, offering thus future therapeutic opportunity to protect from AD development.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Hamza Benderradji
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Didier Vieau
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
17
|
Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, Gross G, Alkema W, Iozzo P. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022; 100:311-320. [PMID: 34920092 DOI: 10.1016/j.bbi.2021.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Nutrition, RB Mead Johnson Nutrition Institute, Nijmegen, the Netherlands.
| | - Wynand Alkema
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
18
|
Guzzardi MA, La Rosa F, Campani D, Cacciato Insilla A, De Sena V, Panetta D, Brunetto MR, Bonino F, Collado MC, Iozzo P. Maturation of the Visceral (Gut-Adipose-Liver) Network in Response to the Weaning Reaction versus Adult Age and Impact of Maternal High-Fat Diet. Nutrients 2021; 13:nu13103438. [PMID: 34684436 PMCID: PMC8541006 DOI: 10.3390/nu13103438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic-associated fatty liver disease is a major cause of chronic pathologies, of which maternal obesity is a frequent risk factor. Gut wall and microbiota, visceral fat, and liver form a pre-systemic network for substrates and pro-inflammatory factors entering the body, undergoing accelerated maturation in early-life when the weaning reaction, i.e., a transitory inflammatory condition, affects lifelong health. We aimed to characterize organ metabolism in the above network, in relation to weaning reaction and maternal obesity. Weaning or 6-months-old offspring of high-fat-diet and normal-diet fed dams underwent in vivo imaging of pre-/post-systemic glucose uptake and tissue radiodensity in the liver, visceral fat, and intestine, a liver histology, and microbiota and metabolic pathway analyses. Weaning mice showed the dominance of gut Clostridia and Bacteroidia members, overexpressing pathways of tissue replication and inflammation; adulthood increased proneness to steatohepatitis, and Desulfovibrio and RF39 bacteria, and lipopolysaccharide, bile acid, glycosaminoglycan, and sphingolipid metabolic pathways. In vivo imaging could track organ maturation, liver inflammation, and protective responses. A maternal high-fat diet amplified the weaning reaction, elevating liver glucose uptake, triglyceride levels, and steatohepatitis susceptibility along the lifespan. The visceral network establishes a balance between metabolism and inflammation, with clear imaging biomarkers, and crucial modulation in the weaning time window.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Vincenzo De Sena
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Specialties and Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
- Correspondence: ; Tel.: +39-050-315-2789
| |
Collapse
|
19
|
Cudrania tricuspidata Combined with Lacticaseibacillus rhamnosus Modulate Gut Microbiota and Alleviate Obesity-Associated Metabolic Parameters in Obese Mice. Microorganisms 2021; 9:microorganisms9091908. [PMID: 34576802 PMCID: PMC8468176 DOI: 10.3390/microorganisms9091908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of the presented study was to investigate the synbiotic effects of L. rhamnosus 4B15 and C. tricuspidata extract administration on the gut microbiota and obesity-associated metabolic parameters in diet-induced obese mice. Thirty-one 6-week-old male C57BL/N6 mice were divided into five diet groups: normal diet (ND, n = 7) group; high-fat diet (HFD, n = 6) group; probiotic (PRO, n = 5) group; prebiotic (PRE, n = 7) group; and synbiotic (SYN, n = 6) group. After 10 weeks, the percent of fat mass, serum triglyceride, and ALT levels were significantly reduced in SYN-fed obese mice, compared with other treatments. SYN treatment also modulated the abundance of Desulfovibrio, Dorea, Adlercreutzia, Allobaculum, Coprococcus, unclassified Clostridiaceae, Lactobacillus, Helicobacter, Flexispira, Odoribacter, Ruminococcus, unclassified Erysipelotrichaceae, and unclassified Desulfovibrionaceae. These taxa showed a strong correlation with obesity-associated indices. Lastly, the SYN-supplemented diet upregulated metabolic pathways known to improve metabolic health. Further investigations are needed to understand the mechanisms driving the synbiotic effect of C. tricuspidata and L. rhamnosus 4B15.
Collapse
|
20
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Callejón-Leblic B, Selma-Royo M, Collado MC, Abril N, García-Barrera T. Impact of Antibiotic-Induced Depletion of Gut Microbiota and Selenium Supplementation on Plasma Selenoproteome and Metal Homeostasis in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7652-7662. [PMID: 34171188 PMCID: PMC9161447 DOI: 10.1021/acs.jafc.1c02622] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Selenium (Se) is a micronutrient involved in important health functions and it has been suggested to shape gut microbiota. Limited information on Se assimilation by gut microbes and the possible link with selenoproteins are available. For this purpose, conventional and gut microbiota-depleted BALB/c mice were fed a Se-supplemented diet. The absolute quantification of mice plasma selenoproteins was performed for the first time using heteroatom-tagged proteomics. The gut microbiota profile was analyzed by 16S rRNA gene sequencing. Se-supplementation modulated the concentration of the antioxidant glutathione peroxidase and the Se-transporter selenoalbumin as well as the metal homeostasis, being influenced by microbiota disruption, which suggests an intertwined mechanism. Se also modulated microbiota diversity and richness and increased the relative abundance of some health-relevant taxa (e.g., families Christensenellaceae, Ruminococcaceae, and Lactobacillus genus). This study demonstrated the potential beneficial effects of Se on gut microbiota, especially after antibiotic-treatment and the first associations between specific bacteria and plasma selenoproteins.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research
Center of Natural Resources, Health and the Environment (RENSMA),
Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
| | - Marta Selma-Royo
- Department
of Biotechnology, Institute of Agrochemistry
and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, 46980 Valencia, Spain
| | - María Carmen Collado
- Department
of Biotechnology, Institute of Agrochemistry
and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, 46980 Valencia, Spain
| | - Nieves Abril
- Department
of Biochemistry and Molecular Biology, University
of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Tamara García-Barrera
- Research
Center of Natural Resources, Health and the Environment (RENSMA),
Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
- . Phone: +34 959219962
| |
Collapse
|
23
|
Kendig MD, Leigh SJ, Morris MJ. Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci Biobehav Rev 2021; 128:233-243. [PMID: 34153343 DOI: 10.1016/j.neubiorev.2021.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
The steady rise in the prevalence of obesity has been fostered by modern environments that reduce energy expenditure and encourage consumption of 'western'-style diets high in fat and sugar. Obesity has been consistently associated with impairments in executive function and episodic memory, while emerging evidence indicates that high-fat, high-sugar diets can impair aspects of cognition within days, even when provided intermittently. Here we review the detrimental effects of diet and obesity on cognition and the role of inflammatory and circulating factors, compromised blood-brain barrier integrity and gut microbiome changes. We next evaluate evidence for changing risk profiles across life stages (adolescence and ageing) and other populations at risk (e.g. through maternal obesity). Finally, interventions to ameliorate diet-induced cognitive deficits are discussed, including dietary shifts, exercise, and the emerging field of microbiome-targeted therapies. With evidence that poor diet and obesity impair cognition via multiple mechanisms across the human lifespan, the challenge for future research is to identify effective interventions, in addition to diet and exercise, to prevent and ameliorate adverse effects.
Collapse
|
24
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
25
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
26
|
Norr ME, Hect JL, Lenniger CJ, Van den Heuvel M, Thomason ME. An examination of maternal prenatal BMI and human fetal brain development. J Child Psychol Psychiatry 2021; 62:458-469. [PMID: 32779186 PMCID: PMC7875456 DOI: 10.1111/jcpp.13301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prenatal development is a time when the brain is acutely vulnerable to insult and alteration by environmental factors (e.g., toxins, maternal health). One important risk factor is maternal obesity (Body Mass Index > 30). Recent research indicates that high maternal BMI during pregnancy is associated with increased risk for numerous physical health, cognitive, and mental health problems in offspring across the lifespan. It is possible that heightened maternal prenatal BMI influences the developing brain even before birth. METHODS The present study examines this possibility at the level of macrocircuitry in the human fetal brain. Using a data-driven strategy for parcellating the brain into subnetworks, we test whether MRI functional connectivity within or between fetal neural subnetworks varies with maternal prenatal BMI in 109 fetuses between the ages of 26 and 39weeks. RESULTS We discovered that strength of connectivity between two subnetworks, left anterior insula/inferior frontal gyrus (aIN/IFG) and bilateral prefrontal cortex (PFC), varied with maternal BMI. At the level of individual aIN/IFG-PFC connections, we observed both increased and decreased between-network connectivity with a tendency for increased within-hemisphere connectivity and reduced cross-hemisphere connectivity in higher BMI pregnancies. Maternal BMI was not associated with global differences in network topography based on network-based statistical analyses. CONCLUSIONS Overall effects were localized in regions that will later support behavioral regulation and integrative processes, regions commonly associated with obesity-related deficits. By establishing onset in neural differences prior to birth, this study supports a model in which maternal BMI-related risk is associated with fetal connectome-level brain organization with implications for offspring long-term cognitive development and mental health.
Collapse
Affiliation(s)
- Megan E. Norr
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Jasmine L. Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Carly J. Lenniger
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Martijn Van den Heuvel
- Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
- Department of Population Health, New York Medical Center, New York University, New York, NY, USA
- Neuroscience Institute, New York Medical Center, New York University, New York, NY, USA
| |
Collapse
|
27
|
Agranyoni O, Meninger-Mordechay S, Uzan A, Ziv O, Salmon-Divon M, Rodin D, Raz O, Koman I, Koren O, Pinhasov A, Navon-Venezia S. Gut microbiota determines the social behavior of mice and induces metabolic and inflammatory changes in their adipose tissue. NPJ Biofilms Microbiomes 2021; 7:28. [PMID: 33741982 PMCID: PMC7979825 DOI: 10.1038/s41522-021-00193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The link between the gut microbiota and social behavior has been demonstrated, however the translational impact of a certain microbiota composition on stable behavioral patterns is yet to be elucidated. Here we employed an established social behavior mouse model of dominance (Dom) or submissiveness (Sub). A comprehensive 16S rRNA gene sequence analysis of Dom and Sub mice revealed a significantly different gut microbiota composition that clearly distinguishes between the two behavioral modes. Sub mice gut microbiota is significantly less diverse than that of Dom mice, and their taxa composition uniquely comprised the genera Mycoplasma and Anaeroplasma of the Tenericutes phylum, in addition to the Rikenellaceae and Clostridiaceae families. Conversely, the gut microbiota of Dom mice includes the genus Prevotella of the Bacteriodetes phylum, significantly less abundant in Sub mice. In addition, Sub mice show lower body weight from the age of 2 weeks and throughout their life span, accompanied with lower epididymis white adipose tissue (eWAT) mass and smaller adipocytes together with substantially elevated expression of inflammation and metabolic-related eWAT adipokines. Finally, fecal microbiota transplantation into germ-free mice show that Sub-transplanted mice acquired Sub microbiota and adopted their behavioral and physiological features, including depressive-like and anti-social behaviors alongside reduced eWAT mass, smaller adipocytes, and a Sub-like eWAT adipokine profile. Our findings demonstrate the critical role of the gut microbiome in determining dominance vs. submissiveness and suggest an association between gut microbiota, the eWAT metabolic and inflammatory profile, and the social behavior mode.
Collapse
Affiliation(s)
- Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | | | - Atara Uzan
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- The Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Dmitry Rodin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Olga Raz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Igor Koman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
- The Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - Shiri Navon-Venezia
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
- The Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
28
|
Sometti D, Ballan C, Wang H, Braun C, Enck P. Effects of the antibiotic rifaximin on cortical functional connectivity are mediated through insular cortex. Sci Rep 2021; 11:4479. [PMID: 33627763 PMCID: PMC7904800 DOI: 10.1038/s41598-021-83994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
It is well-known that antibiotics affect commensal gut bacteria; however, only recently evidence accumulated that gut microbiota (GM) can influence the central nervous system functions. Preclinical animal studies have repeatedly highlighted the effects of antibiotics on brain activity; however, translational studies in humans are still missing. Here, we present a randomized, double-blind, placebo-controlled study investigating the effects of 7 days intake of Rifaximin (non-absorbable antibiotic) on functional brain connectivity (fc) using magnetoencephalography. Sixteen healthy volunteers were tested before and after the treatment, during resting state (rs), and during a social stressor paradigm (Cyberball game—CBG), designed to elicit feelings of exclusion. Results confirm the hypothesis of an involvement of the insular cortex as a common node of different functional networks, thus suggesting its potential role as a central mediator of cortical fc alterations, following modifications of GM. Also, the Rifaximin group displayed lower connectivity in slow and fast beta bands (15 and 25 Hz) during rest, and higher connectivity in theta (7 Hz) during the inclusion condition of the CBG, compared with controls. Altogether these results indicate a modulation of Rifaximin on frequency-specific functional connectivity that could involve cognitive flexibility and memory processing.
Collapse
Affiliation(s)
- Davide Sometti
- MEG-Center, University of Tübingen, Tübingen, Germany. .,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Chiara Ballan
- MEG-Center, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Huiying Wang
- AAK, Department of Special Nutrition, AAK China Ltd, Shanghai, China
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DiPSCo, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,CIMeC, Center for Mind/Brain Research, University of Trento, Trento, Italy
| | - Paul Enck
- Department of Internal Medicine VI, University Hospital, Tübingen, Germany
| |
Collapse
|
29
|
Renson A, Kasselman LJ, Dowd JB, Waldron L, Jones HE, Herd P. Gut bacterial taxonomic abundances vary with cognition, personality, and mood in the Wisconsin Longitudinal Study. Brain Behav Immun Health 2020; 9:100155. [PMID: 34589897 PMCID: PMC8474555 DOI: 10.1016/j.bbih.2020.100155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 10/30/2022] Open
Abstract
Animal studies have shown that the gut microbiome can influence memory, social behavior, and anxiety-like behavior. Several human studies show similar results where variation in the gut microbiome is associated with dementia, depression, and personality traits, though most of these studies are limited by small sample size and other biases. Here, we analyzed fecal samples from 313 participants in the Wisconsin Longitudinal Study, a randomly selected population-based cohort of older adults, with measured psycho-cognitive dimensions (cognition, mood, and personality) and key confounders. 16s V4 sequencing showed that Megamonas is associated with all measured psycho-cognitive traits, Fusobacterium is associated with cognitive and personality traits, Pseudoramibacter_Eubacterium is associated with mood and personality traits, Butyvibrio is associated with cognitive traits, and Cloacibacillus is associated with mood traits. These findings are robust to sensitivity analyses and provide novel evidence of shared relationships between the gut microbiome and multiple psycho-cognitive traits in older adults, confirming some of the animal literature, while also providing new insights. While we addressed some of the weaknesses in prior studies, further studies are necessary to elucidate temporal and causal relationships between the gut microbiome and multiple psycho-cognitive traits in well-phenotyped, randomly-selected population-based samples.
Collapse
Affiliation(s)
- Audrey Renson
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, New York, NY, USA
| | - Lora J. Kasselman
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, New York, NY, USA
- NYU Long Island School of Medicine, Mineola, NY, USA
| | - Jennifer B. Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, New York, NY, USA
| | - Heidi E. Jones
- Department of Epidemiology and Biostatistics, CUNY School of Public Health, New York, NY, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
30
|
Gureev AP, Syromyatnikov MY, Ignatyeva DA, Valuyskikh VV, Solodskikh SA, Panevina AV, Gryaznova MV, Kokina AV, Popov VN. Effect of long-term methylene blue treatment on the composition of mouse gut microbiome and its relationship with the cognitive abilities of mice. PLoS One 2020; 15:e0241784. [PMID: 33206681 PMCID: PMC7673545 DOI: 10.1371/journal.pone.0241784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, methylene blue (MB) has attracted considerable interest as a potential drug for the treatment of methemoglobinemia and neurodegenerative diseases. MB is active against microorganisms from various taxonomic groups. However, no studies have yet been conducted on the effect of MB on the intestinal microbiome of model animals. The aim of this work was to study the effect of different concentrations of MB on the mouse gut microbiome and its relationship with the cognitive abilities of mice. We showed that a low MB concentration (15 mg/kg/day) did not cause significant changes in the microbiome composition. The Bacteroidetes/Firmicutes ratio decreased relative to the control on the 2nd and 3rd weeks. A slight decrease in the levels Actinobacteria was detected on the 3rd week of the experiment. Changes in the content of Delta, Gamma, and Epsilonproteobacteria have been also observed. We did not find significant alterations in the composition of intestinal microbiome, which could be an indication of the development of dysbiosis or other gut dysfunction. At the same time, a high concentration of MB (50 mg/kg/day) led to pronounced changes, primarily an increase in the levels of Delta, Gamma and Epsilonproteobacteria. Over 4 weeks of therapy, the treatment with high MB concentration has led to an increase in the median content of Proteobacteria to 7.49% vs. 1.61% in the control group. Finally, we found that MB at a concentration of 15 mg/kg/day improved the cognitive abilities of mice, while negative correlation between the content of Deferribacteres and cognitive parameters was revealed. Our data expand the understanding of the relationship between MB, cognitive abilities, and gut microbiome in respect to the antibacterial properties of MB.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Mikhail Yu. Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
- Laboratory of Innovative Recombinant Proteomics, All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, Voronezh, Russia
| | - Daria A. Ignatyeva
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Valeria V. Valuyskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Sergey A. Solodskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Anna V. Panevina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Maria V. Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Anastasia V. Kokina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
31
|
Wang M, Zhang Y, Miller D, Rehman NO, Cheng X, Yeo JY, Joe B, Hill JW. Microbial Reconstitution Reverses Early Female Puberty Induced by Maternal High-fat Diet During Lactation. Endocrinology 2020; 161:bqz041. [PMID: 31912132 PMCID: PMC7035910 DOI: 10.1210/endocr/bqz041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
Recent work shows that gut microbial dysbiosis contributes to the risk of obesity in children whose mothers consume a high-fat diet (HFD) during both gestation and lactation or during gestation alone. Obesity predisposes children to developing precocious puberty. However, to date, no study has examined how maternal HFD (MHFD) during lactation regulates the gut microbiota (GM), pubertal timing, and fertility of offspring. Here, we found that MHFD during lactation markedly altered the GM of offspring. The pups developed juvenile obesity, early puberty, irregular estrous cycles, and signs of disrupted glucose metabolism. Remarkably, permitting coprophagia between MHFD and maternal normal chow offspring successfully reversed the GM changes as well as early puberty and insulin insensitivity. Our data suggest that microbial reconstitution may prevent or treat early puberty associated with insulin resistance.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Youjie Zhang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - David Miller
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Naveen O Rehman
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Xi Cheng
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Ji-Youn Yeo
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Bina Joe
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, Ohio, US
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| |
Collapse
|
32
|
Vernice NA, Shah N, Lam E, Herd P, Reiss AB, Kasselman LJ. The gut microbiome and psycho-cognitive traits. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:123-140. [PMID: 33814113 DOI: 10.1016/bs.pmbts.2020.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The idea that trillions of bacteria inhabit our gut is somewhat unnerving, yet these bacteria may have a greater influence on our behavior than previously thought. Accumulating data strongly suggest that these gut commensal organisms have a strong inter-relationship with our brain and behavior, including cognitive function, mood, and personality. In this chapter, we discuss the role of the gut microbiome in the development of human personality, mood and mood disorders, and cognition, with a particular emphasis on the current consensus and controversies in the literature surrounding the behavioral effects of bioactive metabolites, microbial ratio shifts, and neurotransmitter synthesis facilitated by the microbiome.
Collapse
Affiliation(s)
| | - Neal Shah
- NYU Winthrop Hospital, Mineola, NY, United States
| | - Eric Lam
- Nassau University Medical Center, East Meadow, NY, United States
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, United States
| | - Allison B Reiss
- NYU Winthrop Hospital, Mineola, NY, United States; NYU Long Island School of Medicine, Mineola, NY, United States
| | | |
Collapse
|
33
|
Iozzo P, Guzzardi MA. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocr Connect 2019; 8:R169-R183. [PMID: 31590145 PMCID: PMC6865363 DOI: 10.1530/ec-19-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The prevalence of obesity has reached epidemic proportions and keeps growing. Obesity seems implicated in the pathogenesis of cognitive dysfunction, Alzheimer's disease and dementia, and vice versa. Growing scientific efforts are being devoted to the identification of central mechanisms underlying the frequent association between obesity and cognitive dysfunction. Glucose brain handling undergoes dynamic changes during the life-course, suggesting that its alterations might precede and contribute to degenerative changes or signaling abnormalities. Imaging of the glucose analog 18F-labeled fluorodeoxyglucose (18FDG) by positron emission tomography (PET) is the gold-standard for the assessment of cerebral glucose metabolism in vivo. This review summarizes the current literature addressing brain glucose uptake measured by PET imaging, and the effect of insulin on brain metabolism, trying to embrace a life-course vision in the identification of patterns that may explain (and contribute to) the frequent association between obesity and cognitive dysfunction. The current evidence supports that brain hypermetabolism and brain insulin resistance occur in selected high-risk conditions as a transient phenomenon, eventually evolving toward normal or low values during life or disease progression. Associative studies suggest that brain hypermetabolism predicts low BDNF levels, hepatic and whole body insulin resistance, food desire and an unfavorable balance between anticipated reward from food and cognitive inhibitory control. Emerging mechanistic links involve the microbiota and the metabolome, which correlate with brain metabolism and cognition, deserving attention as potential future prevention targets.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Correspondence should be addressed to P Iozzo:
| | | |
Collapse
|