1
|
Sainatham C, Yadav D, Dilli Babu A, Tallapalli JR, Kanagala SG, Filippov E, Murillo Chavez F, Ahmed N, Lutfi F. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front Med (Lausanne) 2024; 11:1462307. [PMID: 39697210 PMCID: PMC11652178 DOI: 10.3389/fmed.2024.1462307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based therapies, represent a transformative approach to cancer treatment, harnessing the immune system to target and eradicate malignant cells. CAR-T cell therapy, the most established among these, involves engineering T cells to express CARs specific to cancer cell antigens, showing remarkable efficacy in hematologic malignancies like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified therapies, which reprogram T cells to recognize intracellular tumor antigens presented by major histocompatibility complex (MHC) molecules, offer promise for a range of solid tumors. NK-cell therapies leverage NK cells' innate cytotoxicity, providing an allogeneic approach that avoids some of the immune-related complications associated with T-cell-based therapies. Macrophage-based therapies, still in early stages of the development, focus on reprogramming macrophages to stimulate an immune response against cancer cells in the tumor microenvironment. Despite their promise, socioeconomic and regulatory challenges hinder the accessibility and scalability of immune cell effector therapies. These treatments are costly, with CAR-T therapies currently exceeding $400,000 per patient, creating significant disparities in access based on socioeconomic status and geographic location. The high manufacturing costs stem from the personalized, labor-intensive processes of harvesting, modifying, and expanding patients' cells. Moreover, complex logistics for manufacturing and delivering these therapies limit their reach, particularly in low-resource settings. Regulatory pathways further complicate the landscape. In the United States., the Food and Drug Administrations' (FDA) accelerated approval processes for cell-based therapies facilitate innovation but do not address cost-related barriers. In Europe, the European Medicines Agency (EMA) offers adaptive pathways, yet decentralized reimbursement systems create uneven access across member states. Additionally, differing regulatory standards for manufacturing and quality control worldwide pose hurdles for global harmonization and access. To expand the reach of immune effector cell therapies, a multipronged approach is needed-streamlined regulatory frameworks, policies to reduce treatment costs, and international collaborations to standardize manufacturing. Addressing these socioeconomic and regulatory obstacles is essential to make these life-saving therapies accessible to a broader patient population worldwide. We present a literature review on the current landscape of immune effector cell therapies and barriers of access to currently approved standard of care therapy at various levels.
Collapse
Affiliation(s)
- Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Aravind Dilli Babu
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Jayanth Reddy Tallapalli
- Division of Infectious Diseases, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sai Gautham Kanagala
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, New York, NY, United States
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Franco Murillo Chavez
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Nausheen Ahmed
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Forat Lutfi
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
3
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Ding Y, Zhou R, Shi G, Jiang Y, Li Z, Xu X, Ma J, Huang J, Fu C, Zhou H, Wang H, Li J, Dong Z, Yu Q, Jiang K, An Y, Liu Y, Li Y, Yu L, Li Z, Zhang X, Wang J. Cadherin 17 Nanobody-Mediated Near-Infrared-II Fluorescence Imaging-Guided Surgery and Immunotoxin Delivery for Colorectal Cancer. Biomater Res 2024; 28:0041. [PMID: 38911825 PMCID: PMC11192146 DOI: 10.34133/bmr.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Surgery and targeted therapy are of equal importance for colorectal cancer (CRC) treatment. However, complete CRC tumor resection remains challenging, and new targeted agents are also needed for efficient CRC treatment. Cadherin 17 (CDH17) is a membrane protein that is highly expressed in CRC and, therefore, is an ideal target for imaging-guided surgery and therapeutics. This study utilizes CDH17 nanobody (E8-Nb) with the near-infrared (NIR) fluorescent dye IRDye800CW to construct a NIR-II fluorescent probe, E8-Nb-IR800CW, and a Pseudomonas exotoxin (PE)-based immunotoxin, E8-Nb-PE38, to evaluate their performance for CRC imaging, imaging-guided precise tumor excision, and antitumor effects. Our results show that E8-Nb-IR800CW efficiently recognizes CDH17 in CRC cells and tumor tissues, produces high-quality NIR-II images for CRC tumors, and enables precise tumor removal guided by NIR-II imaging. Additionally, fluorescent imaging confirms the targeting ability and specificity of the immunotoxin toward CDH17-positive tumors, providing the direct visible evidence for immunotoxin therapy. E8-Nb-PE38 immunotoxin markedly delays the growth of CRC through the induction of apoptosis and immunogenic cell death (ICD) in multiple CRC tumor models. Furthermore, E8-Nb-PE38 combined with 5-FU exerts synergistically antitumor effects and extends survival. This study highlights CDH17 as a promising target for CRC imaging, imaging-guided surgery, and drug delivery. Nanobodies targeting CDH17 hold great potential to construct NIR-II fluorescent probes for surgery navigation, and PE-based toxins fused with CDH17 nanobodies represent a novel therapeutic strategy for CRC treatment. Further investigation is warranted to validate these findings for potential clinical translation.
Collapse
Affiliation(s)
- Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Runhua Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Guangwei Shi
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Pingcheng District, Datong, Shanxi Province 037009, P. R. China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingnan Huang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Hongchao Zhou
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Huifang Wang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jiexuan Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhiyu Dong
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Qingling Yu
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Kexin Jiang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Yehai An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Yawei Liu
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Le Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Jigang Wang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy,
Henan University, Kaifeng 475004, Henan, P. R. China
- Department of Oncology,
the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
5
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
6
|
Patra A, Kandasamy T, Ghosh SS, Saini GK. In vitro anticancer effects of recombinant anisoplin through activation of SAPK/JNK and downregulation of NFκB. Toxicol In Vitro 2024; 94:105737. [PMID: 37984481 DOI: 10.1016/j.tiv.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Emerging chemotherapeutic resistance is considered as one of the major obstacles in breast cancer therapy. Fungal ribotoxins possess promising therapeutic potential against cancer owing to their ribosome-targeted protein synthesis inhibitory action. Though the entomopathogenic ribotoxin anisoplin was characterized in the earlier study, its therapeutic efficacy against cancer cells remained unexplored. In the current study, recombinant anisoplin has been successfully produced in Escherichia coli BL21(DE3) expression system and further purified and validated by in silico, biophysical and functional characterizations. Recombinant anisoplin significantly reduced the viability of MCF-7 breast cancer cells in a dose-dependent manner. It exhibited an IC50 value of 4 μM with concurrent 3.5 fold elevation in the intracellular reactive oxygen species. Anisoplin also resulted in depolarization of the mitochondrial membrane and subsequently induced apoptosis, as evident from flow cytometric analyses. In addition, MCF-7 cells significantly lost their self-renewal capability for clonal expansion and regeneration upon treatment. Immunoblotting experiments further confirmed activation of downstream JNK-dependent MAP kinase signaling pathway due to ribotoxic stress response generated by anisoplin through upregulation of phospho-SAPK/JNK expression. This upregulation was further correlated with the NFκB expression profile, leading to cell death, highlighting therapeutic potential of the recombinant anisoplin.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India.
| |
Collapse
|
7
|
García-Montoya C, García-Linares S, Heras-Márquez D, Majnik M, Laxalde-Fernández D, Amigot-Sánchez R, Martínez-Del-Pozo Á, Palacios-Ortega J. The interaction of the ribotoxin α-sarcin with complex model lipid vesicles. Arch Biochem Biophys 2024; 751:109836. [PMID: 38000493 DOI: 10.1016/j.abb.2023.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal β-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell membranes. The results confirm that α-sarcin is particularly sensitive to charge density on the vesicle surface. Its ability to induce vesicle aggregation is strongly influenced by both the lipid headgroup and the degree of saturation of the fatty acid chains. Acyl chain length is indeed particularly important for lipid mixing. Finally, cholesterol plays an important role in diluting the concentration of available negative charges and modulates the ability of α-sarcin to cross the membrane.
Collapse
Affiliation(s)
- Carmen García-Montoya
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Manca Majnik
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Rafael Amigot-Sánchez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
8
|
Kronig MN, Wehrli M, Salas-Benito D, Maus MV. "Hurdles race for CAR T-cell therapy in digestive tract cancer". Immunol Rev 2023; 320:100-119. [PMID: 37694970 PMCID: PMC10846098 DOI: 10.1111/imr.13273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Digestive tract cancers (DTC) belong to the most investigated family of tumors. The incidence, prevalence, and mortality rate of DTC remain high, especially for patients with pancreatic cancer. Even though immunotherapy such as immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid cancer types, ICI are still restricted to a very small group of patients and seem to be more efficacious in combination with chemotherapy. Cellular immunotherapy such as CAR T-cell therapy has entered clinical routine in hematological malignancies with outstanding results. There is growing interest on translating this kind of immunotherapy and success into patients with solid malignancies, such as DTC. This review attempts to describe the major advances in preclinical and clinical research with CAR T cells in DTC, considering the most relevant hurdles in each subtype of DTC.
Collapse
Affiliation(s)
- Marie-Noelle Kronig
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
| | - Marc Wehrli
- Department of Medical Oncology, Inselspital, Bern
University Hospital, University of Bern, Switzerland
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Marcela V. Maus
- Cancer Center, Massachusetts General Hospital, Harvard
Medical School, Boston, MA, U.S.A
- Cellular Immunotherapy Program, Cancer Center,
Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
9
|
Firut A, Scurtu S, Schenker M, Gadea N, Patrascu AM, Padureanu V, Patrascu S, Surlin V. Carcinoembryonic Antigen CEA - Prognostic Value in Immediate Post-Operative Mortality in Colorectal Cancer. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:579-583. [PMID: 38559837 PMCID: PMC10976198 DOI: 10.12865/chsj.49.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/18/2023] [Indexed: 04/04/2024]
Abstract
INTRODUCTION This study investigates the prognostic significance of carcinoembryonic antigen (CEA) levels in predicting early postoperative mortality in patients who have undergone colorectal cancer surgery. METHODS Between 2017 and 2022, total of 325 patients were enrolled in the study, and their preoperative serum CEA levels were measured. Relevant clinical and operative data were extracted and correlations between CEA levels and postoperative mortality was analysed. RESULTS Among the surgical cases, 180 patients (55.3%) exhibited elevated CEA levels. Within the early postoperative period of 30 days, 14 patients (4.3%) succumbed, comprising 8 cases (2.4%) of colon cancer and 6 cases (1.8%) of rectal cancer. Notably, only 3 cases (0.9%), consisting of 1 (0.3%) colon cancer and 2 (0.6%) rectal cancer cases, were associated with an elevated CEA level. However, no statistically significant correlations were observed between CEA levels and early postoperative mortality. CONCLUSIONS Our findings indicate that increased CEA levels may not serve as a reliable non-invasive marker for identifying patients at high risk of early mortality in the context of colo-rectal cancer surgery.
Collapse
Affiliation(s)
- Andreea Firut
- PhD student, University of Medicine and Pharmacy of Craiova, Romania
| | - Sorin Scurtu
- Department of Surgery, Clinical Hospital of Filiasi, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Nicoleta Gadea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ana Maria Patrascu
- Department of Haematology, University of Medicine and Pharmacy of Craiova, Romania
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Stefan Patrascu
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - Valeriu Surlin
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
10
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
11
|
Naemi AA, Salmanian AH, Noormohammadi Z, Amani J. A novel EGFR-specific recombinant ricin-panitumumab (scFv) immunotoxin against breast and colorectal cancer cell lines; in silico and in vitro analyses. Eur J Pharmacol 2023; 955:175894. [PMID: 37429519 DOI: 10.1016/j.ejphar.2023.175894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) has been of high importance as it is over expressed in a wide diversity of epithelial cancers, promoting cell proliferation and survival pathways. Recombinant immunotoxins (ITs) have emerged as a promising targeted therapy for cancer treatment. In this study, we aimed to investigate the antitumor activity of a novel recombinant immunotoxin designed against EGFR. Using an in silico approach, we confirmed the stability of the RTA-scFv fusion protein. The immunotoxin was successfully cloned and expressed in the pET32a vector, and the purified protein was analyzed by electrophoresis and western blotting. In vitro evaluations were conducted to assess the biological activities of the recombinant proteins (RTA-scFv, RTA, scFv). The novel immunotoxin demonstrated significant anti-proliferative and pro-apoptotic effects against cancer cell lines. The MTT cytotoxicity assay revealed a decrease in cell viability in the treated cancer cell lines. Additionally, Annexin V/Propidium iodide staining followed by flow cytometry analysis showed a significant induction of apoptosis in the cancer cell lines, with half maximal inhibitory concentration (IC50) values of 81.71 nM for MDA-MB-468 and 145.2 nM for HCT116 cells (P < 0.05). Furthermore, the EGFR-specific immunotoxin exhibited non-allergenic properties. The recombinant protein demonstrated high affinity binding to EGFR. Overall, this study presents a promising strategy for the development of recombinant immunotoxins as potential candidates for the treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Azam Almolok Naemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Jafar Amani
- Department of Molecular Biology, Green Gene Company, Tehran, Iran.
| |
Collapse
|
12
|
Narbona J, Hernández-Baraza L, Gordo RG, Sanz L, Lacadena J. Nanobody-Based EGFR-Targeting Immunotoxins for Colorectal Cancer Treatment. Biomolecules 2023; 13:1042. [PMID: 37509078 PMCID: PMC10377705 DOI: 10.3390/biom13071042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotoxins (ITXs) are chimeric molecules that combine the specificity of a targeting domain, usually derived from an antibody, and the cytotoxic potency of a toxin, leading to the selective death of tumor cells. However, several issues must be addressed and optimized in order to use ITXs as therapeutic tools, such as the selection of a suitable tumor-associated antigen (TAA), high tumor penetration and retention, low kidney elimination, or low immunogenicity of foreign proteins. To this end, we produced and characterized several ITX designs, using a nanobody against EGFR (VHH 7D12) as the targeting domain. First, we generated a nanoITX, combining VHH 7D12 and the fungal ribotoxin α-sarcin (αS) as the toxic moiety (VHHEGFRαS). Then, we incorporated a trimerization domain (TIEXVIII) into the construct, obtaining a trimeric nanoITX (TriVHHEGFRαS). Finally, we designed and characterized a bispecific ITX, combining the VHH 7D12 and the scFv against GPA33 as targeting domains, and a deimmunized (DI) variant of α-sarcin (BsITXαSDI). The results confirm the therapeutic potential of α-sarcin-based nanoITXs. The incorporation of nanobodies as target domains improves their therapeutic use due to their lower molecular size and binding features. The enhanced avidity and toxic load in the trimeric nanoITX and the combination of two different target domains in the bispecific nanoITX allow for increased antitumor effectiveness.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Luisa Hernández-Baraza
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- University Institute of Biomedical and Health Research (IUIBS), Las Palmas University, 35016 Las Palmas de Gran Canaria, Spain
| | - Rubén G Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
13
|
Jang J, Nguyen MQ, Park S, Ryu D, Park H, Lee G, Kim CJ, Jang YJ, Choe H. Crotamine-based recombinant immunotoxin targeting HER2 for enhanced cancer cell specificity and cytotoxicity. Toxicon 2023; 230:107157. [PMID: 37196787 DOI: 10.1016/j.toxicon.2023.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Crotamine, one of the major toxins present in the venom of the South American rattlesnake Crotalus durissus terrificus, exhibits potent cytotoxic properties and has been suggested for cancer therapy applications. However, its selectivity for cancer cells needs to be improved. This study designed and produced a novel recombinant immunotoxin, HER2(scFv)-CRT, composed of crotamine and single-chain Fv (scFv) derived from trastuzumab targeting human epidermal growth factor receptor 2 (HER2). The recombinant immunotoxin was expressed in Escherichia coli and purified using various chromatographic techniques. The cytotoxicity of HER2(scFv)-CRT was assessed in three breast cancer cell lines, demonstrating enhanced specificity and toxicity in HER2-expressing cells. These findings suggest that the crotamine-based recombinant immunotoxin has the potential to expand the repertoire of recombinant immunotoxin applications in cancer therapy.
Collapse
Affiliation(s)
- Jaepyeong Jang
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Minh Quan Nguyen
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Sangsu Park
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Dayoung Ryu
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Hyeseon Park
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Gunsup Lee
- R&D Center, Fatiabgen Co. Ltd., Seoul, 05855, South Korea
| | - Chong Jai Kim
- Department of Pathology, Asan-Minnesota Institute for Innovating Transplantation, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Jin Jang
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Han Choe
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
14
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Varghese P. Inchakalody
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- grid.467063.00000 0004 0397 4222Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- grid.413548.f0000 0004 0571 546XDepartment of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar ,grid.412603.20000 0004 0634 1084College of Medicine, Qatar University, Doha, Qatar ,grid.5386.8000000041936877XDepartment of Dermatology, Weill Cornell Medicine, New York, USA
| | - Francesco M. Marincola
- grid.418227.a0000 0004 0402 1634Global Head of Research, Kite Pharma, Santa Monica, California USA
| | - Said Dermime
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar ,grid.452146.00000 0004 1789 3191College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
15
|
|
16
|
How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol 2022; 86:976-989. [PMID: 33737109 DOI: 10.1016/j.semcancer.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Shin Low
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
17
|
Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Far BF, Malik AA, Gupta AK, Sadhu S, Dohare S, Gupta PK. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro 2022; 83:105417. [PMID: 35718257 DOI: 10.1016/j.tiv.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Noura Al-Dayan
- Department of Medical Lab Sciences, Prince Sattam bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ashish Kumar Gupta
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Soumi Sadhu
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Sushil Dohare
- Department of Epidemiology, Faculty of Public Health & Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India; Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
18
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
19
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
20
|
Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11078-11091. [PMID: 35196008 PMCID: PMC9007418 DOI: 10.1021/acsami.1c21655] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 05/10/2023]
Abstract
Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.
Collapse
Affiliation(s)
- Arindam Pramanik
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Zexi Xu
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shazana H. Shamsuddin
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department
of Pathology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Yazan S. Khaled
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Nicola Ingram
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas Maisey
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Darren Tomlinson
- Biomedical
Health Research Centre, BioScreening Technology Group, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - David Jayne
- Leeds Institute
of Medical Research, St James’s University
Hospital, Leeds LS9 7TF, United Kingdom
| | - Thomas A. Hughes
- School
of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Arwen I. I. Tyler
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paul A. Millner
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
21
|
Prognostic Significance of Preoperative Serum Carcinoembryonic Antigen Varies with Lymph Node Metastasis Status in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2021:4487988. [PMID: 34987578 PMCID: PMC8723854 DOI: 10.1155/2021/4487988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Background Preoperative serum level of carcinoembryonic antigen (pCEA) is generally recognized as a prognostic factor for colorectal cancer (CRC), but the stage-specific role of pCEA in colorectal cancer remains unclear. Objective We investigated the prognostic significance of pCEA levels in different tumor stages of nonmetastatic CRC patients. Methods Six hundred and fifteen CRC patients at stage I–III were retrospectively analyzed. All of them received curative tumor resection. The X-tile program was used to generate stage-specific cutoff values of pCEA for all patients and two subpopulations (lymph node-positive or -negative). The prognostic significance of pCEA was assessed using Kaplan–Meier analysis and Cox proportional hazards regression analysis. A nomogram model that combined pCEA score and clinical feature indexes was established and evaluated. Results Two cutoff values were identified in the study population. At a cutoff value of 4.9 ng/mL, a significantly higher 5-year overall survival (OS) rate (82.16%) was observed in the pCEA-low group (<4.9 ng/mL) compared with 65.52% in the pCEA-high group (≥4.9 ng/mL). Furthermore, at the second cutoff value of 27.2 ng/mL, 5-year OS was found to be only 40.9%. Stratification analysis revealed that preoperative serum level of pCEA was an independent prognostic factor (OR = 1.991, P < 0.01) in the subpopulation of lymph node metastasis (stage III) patients, and the relative survival rates in the pCEA-low (≤4.9 ng/mL), pCEA-medium (4.9–27.2 ng/mL), and pCEA-high (≥27.2 ng/mL) groups were 73.4%, 60.5%, and 24.8%, respectively (P < 0.05). However, no such effect was observed in the lymph node nonmetastasis (stage I and II) subgroup. The established nomogram showed acceptable predictive power of the 5-year OS rate (C-index: 0.612) in lymph node-positive CRC patients, with an area under the curve value of 0.772, as assessed by ROC curve analysis. Conclusions Pretreatment serum CEA levels had different prognostic significance based on the lymph node metastasis status. Among stage III CRC patients, pCEA was an independent prognostic factor. Five-year OS rates could be predicted according to the individual pCEA level at the different cutoff values.
Collapse
|
22
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
23
|
Ghani S, Deravi N, Pirzadeh M, Rafiee B, Gatabi ZR, Bandehpour M, Yarian F. Antibody fragment and targeted colorectal cancer therapy: A global systematic review. Curr Pharm Biotechnol 2021; 23:1061-1071. [PMID: 34375187 DOI: 10.2174/1389201022666210810104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Antibody-based therapeutics have been evidenced promising for the treatment of colorectal cancer patients. However, the size and long circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment. METHOD A systematic literature search in web of sciences, PubMed, Scopus, Google scholar and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full text search included articles published in English during 1990-2021. RESULTS Most the 53 included studies were conducted in vitro and in most conducted studies single-chain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanisms of tumor growth by enhancing NK-cell killing. CONCLUSION Antibody-based therapy was demonstrated to be of a great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of innate and specific immune system to eradicate tumor cells.
Collapse
Affiliation(s)
- Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, Iran
| |
Collapse
|
24
|
Assessment of the Efficacy and Clinical Utility of Different Circulating Tumor Cell (CTC) Detection Assays in Patients with Chemotherapy-Naïve Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2021; 22:ijms22020925. [PMID: 33477700 PMCID: PMC7831933 DOI: 10.3390/ijms22020925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/22/2023] Open
Abstract
We herein investigated the detection frequency and clinical relevance of circulating tumor cells (CTCs) in chemotherapy-naïve stage IIIB/IV non-small cell lung cancer (NSCLC), by using the CellSearch and real-time CEACAM5mRNA assays. Blood samples from 43 patients were obtained at different time points during first-line chemotherapy. CellSearch revealed the detection of ≥1 CTCs in 41.9%, 40.9%, and 16.7% of patients at baseline, post-1st, and post-2nd treatment cycle, respectively, and of ≥5 CTCs in 11.6%, 9.1%, and 5.6%, respectively. CEACAM5mRNA+ CTCs were detected in 29.3% and 16% of patients pre- and post-treatment, respectively. The positivity concordance between the two assays was 2.2%. CTC-detection by CellSearch (≥5 CTCs: p = 0.004), CEACAM5mRNA (p = 0.010), or by any assay (p = 0.000) was associated with disease progression. Reduced survival was demonstrated for patients harboring ≥5 CTCs (progression-free survival; PFS: p = 0.000; overall survival; OS: p = 0.009), CEACAM5mRNA+ CTCs (PFS: p = 0.043; OS: p = 0.039), and CTCs by any assay (PFS: p = 0.005; OS: p = 0.006, respectively). CTC-detection by any assay independently predicted for increased risk of relapse (hazard ratio; HR: 3.496; p = 0.001) and death (HR: 2.866; p = 0.008). CellSearch-positivity either pre-, post-1st, or post-2nd cycle, was predictive for shorter PFS (p = 0.036) compared to negativity in all time points. Persistent CEACAM5mRNA-positivity pre- and post-treatment was associated with reduced PFS (p = 0.036) and OS (p = 0.026). In conclusion, CTC detection and monitoring using the CellSearch and CEACAM5mRNA assays provides valuable and complementary clinical information for chemo-naïve advanced or metastatic NSCLC.
Collapse
|
25
|
Lee C, Choi M, MacKay JA. Live long and active: Polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev 2020; 167:1-18. [PMID: 33129938 DOI: 10.1016/j.addr.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Antibodies possess multiple biologically relevant features that have been engineered into new therapeutic formats. Two examples include the adaptable specificity of their variable (Fv) region and the extension of plasma circulation times through their crystallizable (Fc) region. Since the invention of the single chain variable fragment (scFv) in 1988, antibody variable regions have been re-engineered into a wide variety of multifunctional nanostructures. Among these strategies, peptide-mediated self-assembly of variable regions through heterologous expression has become a powerful method to produce homogenous, functional biomaterials. This manuscript reviews recent reports of antibody fragments assembled through fusion with peptides and proteins, including elastin-like polypeptides (ELPs), collagen-like polypeptides (CLPs), albumin, transmembrane proteins, leucine zippers, silk protein, and viruses. This review further discusses the current clinical status of engineered antibody fragments and challenges to overcome.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
26
|
Johdi NA, Sukor NF. Colorectal Cancer Immunotherapy: Options and Strategies. Front Immunol 2020; 11:1624. [PMID: 33042104 PMCID: PMC7530194 DOI: 10.3389/fimmu.2020.01624] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer in the world with increasing incidence and mortality rates globally. Standard treatments for colorectal cancer have always been surgery, chemotherapy and radiotherapy which may be used in combination to treat patients. However, these treatments have many side effects due to their non-specificity and cytotoxicity toward any cells including normal cells that are growing and dividing. Furthermore, many patients succumb to relapse even after a series of treatments. Thus, it is crucial to have more alternative and effective treatments to treat CRC patients. Immunotherapy is one of the new alternatives in cancer treatment. The strategy is to utilize patients' own immune systems in combating the cancer cells. Cancer immunotherapy overcomes the issue of specificity which is the major problem in chemotherapy and radiotherapy. The normal cells with no cancer antigens are not affected. The outcomes of some cancer immunotherapy have been astonishing in some cases, but some which rely on the status of patients' own immune systems are not. Those patients who responded well to cancer immunotherapy have a better prognostic and better quality of life.
Collapse
Affiliation(s)
- Nor Adzimah Johdi
- UKM Medical Molecular Biology Institute (UMBI), National University of Malaysia, Bangi, Malaysia
| | | |
Collapse
|
27
|
Zhang C, Xiong J, Lan Y, Wu J, Wang C, Huang Z, Lin J, Xie J. Novel cucurmosin-based immunotoxin targeting programmed cell death 1-ligand 1 with high potency against human tumor in vitro and in vivo. Cancer Sci 2020; 111:3184-3194. [PMID: 32589330 PMCID: PMC7469839 DOI: 10.1111/cas.14549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotoxins are Ab‐cytotoxin chimeric molecules with mighty cytotoxicity. Programmed cell death 1‐ligand 1 (PD‐L1), is a transmembrane protein expressed mainly in inflammatory tumor tissues and plays a pivotal role in immune escape and tumor progression. Although PD‐L1 immune checkpoint therapy has been successful in some cases, many patients have not benefited enough due to primary/secondary resistance. In order to optimize the therapeutic efficacy of anti‐PD‐L1 mAb, we used durvalumab as the payload and CUS245C, a type I ribosome‐inactivating protein isolated from Cucurbita moschata, as the toxin moiety, to construct PD‐L1‐specific immunotoxin (named D‐CUS245C) through the engineered cysteine residue. In vitro, D‐CUS245C selectively killed PD‐L1+ tumor cells. In vivo studies also showed that D‐CUS245C had obvious antitumor effect on PD‐L1+ human xenograft tumors in nude mice. In conclusion, in the combination of the toxin with mAb, this study developed a new immunotoxin targeting PD‐L1, emphasizing a novel and promising treatment strategy and providing a valuable way to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Caiyun Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jiani Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.,Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yinxiang Lan
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jingyu Wu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Meidcal University, Fuzhou, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jieming Xie
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Lázaro-Gorines R, López-Rodríguez JC, Benedé S, González M, Mayorga C, Vogel L, Martínez-Del-Pozo Á, Lacadena J, Villalba M. Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Sci Rep 2020; 10:12255. [PMID: 32703972 PMCID: PMC7378242 DOI: 10.1038/s41598-020-69166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022] Open
Abstract
Immunotoxins appear as promising therapeutic molecules, alternative to allergen-specific-immunotherapy. In this work, we achieved the development of a protein chimera able to promote specific cell death on effector cells involved in the allergic reaction. Der p 1 allergen was chosen as cell-targeting domain and the powerful ribotoxin α-sarcin as the toxic moiety. The resultant construction, named proDerp1αS, was produced and purified from the yeast Pichia pastoris. Der p 1-protease activity and α-sarcin ribonucleolytic action were effectively conserved in proDerp1αS. Immunotoxin impact was assayed by using effector cells sensitized with house dust mite-allergic sera. Cell degranulation and death, triggered by proDerp1αS, was exclusively observed on Der p 1 sera sensitized-humRBL-2H3 cells, but not when treated with non-allergic sera. Most notably, equivalent IgE-binding and degranulation were observed with both proDerp1αS construct and native Der p 1 when using purified basophils from sensitized patients. However, proDerp1αS did not cause any cytotoxic effect on these cells, apparently due to its lack of internalization after their surface IgE-binding, showing the complex in vivo panorama governing allergic reactions. In conclusion, herein we present proDerp1αS as a proof of concept for a potential and alternative new designs of therapeutic tools for allergies. Development of new, and more specific, second-generation of immunotoxins following proDerp1αS, is further discussed.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Sara Benedé
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Miguel González
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain.,U.G.C. Allergy, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Álvaro Martínez-Del-Pozo
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Javier Lacadena
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| | - Mayte Villalba
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
30
|
Ruiz-de-la-Herrán J, Tomé-Amat J, Lázaro-Gorines R, Gavilanes JG, Lacadena J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins. Toxins (Basel) 2019; 11:E593. [PMID: 31614771 PMCID: PMC6832446 DOI: 10.3390/toxins11100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.
Collapse
Affiliation(s)
- Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Rodrigo Lázaro-Gorines
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|