1
|
Sun PZ. Quasi-steady-state (QUASS) reconstruction enhances T 1 normalization in apparent exchange-dependent relaxation (AREX) analysis: A reevaluation of T 1 correction in quantitative CEST MRI of rodent brain tumor models. Magn Reson Med 2024; 92:236-245. [PMID: 38380727 PMCID: PMC11055669 DOI: 10.1002/mrm.30056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE The apparent exchange-dependent relaxation (AREX) analysis has been proposed as an effective means to correct T1 contribution in CEST quantification. However, it has been recognized that AREX T1 correction is not straightforward if CEST scans are not performed under the equilibrium condition. Our study aimed to test if quasi-steady-state (QUASS) reconstruction could boost the accuracy of the AREX metric under common non-equilibrium scan conditions. THEORY AND METHODS Numerical simulation and in vivo scans were performed to assess the AREX metric accuracy. The CEST signal was simulated under different relaxation delays, RF saturation amplitudes, and durations. The AREX was evaluated as a function of the bulk water T1 and labile proton concentration using the multiple linear regression model. AREX MRI was also assessed in brain tumor rodent models, with both apparent CEST scans and QUASS reconstruction. RESULTS Simulation showed that the AREX calculation from apparent CEST scans, under non-equilibrium conditions, had significant dependence on labile proton fraction ratio, RF saturation time, and T1. In comparison, QUASS-boosted AREX depended on the labile proton fraction ratio without significant dependence on T1 and RF saturation time. Whereas the apparent (2.7 ± 0.8%) and QUASS MTR asymmetry (2.8 ± 0.8%) contrast between normal and tumor regions of interest (ROIs) were significant, the difference was small. In comparison, AREX contrast between normal and tumor ROIs calculated from the apparent CEST scan and QUASS reconstruction was 3.8 ± 1.1%/s and 4.4 ± 1.2%/s, respectively, statistically different from each other. CONCLUSIONS AREX analysis benefits from the QUASS-reconstructed equilibrium CEST effect for improved T1 correction and quantitative CEST analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
2
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
3
|
Tantawy MN, McIntyre JO, Yull F, Calcutt MW, Koktysh DS, Wilson AJ, Zu Z, Nyman J, Rhoades J, Peterson TE, Colvin D, McCawley LJ, Rook JM, Fingleton B, Crispens MA, Alvarez RD, Gore JC. Tumor therapy by targeting extracellular hydroxyapatite using novel drugs: A paradigm shift. Cancer Med 2024; 13:e6812. [PMID: 38239047 PMCID: PMC11025459 DOI: 10.1002/cam4.6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS Within 24 h of adding the small concentration of 1X of NSPS (~7 μM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.
Collapse
Affiliation(s)
- Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - J. Oliver McIntyre
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Fiona Yull
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - M. Wade Calcutt
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Mass Spectrometry Research Center of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Dmitry S. Koktysh
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Institute of Nanoscale Science and EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Andrew J. Wilson
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Jeff Nyman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Orthopaedic SurgeryVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Julie Rhoades
- Orthopaedic SurgeryVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Daniel Colvin
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lisa J. McCawley
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Jerri. M. Rook
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Barbara Fingleton
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Marta Ann Crispens
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Division of Gynecologic OncologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Ronald D. Alvarez
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
4
|
Potok P, Kola A, Valensin D, Capdevila M, Potocki S. Copper Forms a PPII Helix-Like Structure with the Catalytic Domains of Bacterial Zinc Metalloproteases. Inorg Chem 2023; 62:18425-18439. [PMID: 37909295 PMCID: PMC10647932 DOI: 10.1021/acs.inorgchem.3c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
The rapid spread of antibiotic-resistant bacteria continuously raises concerns about the future ineffectiveness of current antimicrobial treatments against infectious diseases. To address this problem, new therapeutic strategies and antimicrobial drugs with unique modes of action are urgently needed. Inhibition of metalloproteases, bacterial virulence factors, is a promising target for the development of antibacterial treatments. In this study, the interaction among Zn(II), Cu(II), and the metal-binding domains of two metalloproteases, AprA (Pseudomonas aureginosa) and CpaA (Acinetobacter baumanii), was investigated. The objective was to determine the coordination sphere of Zn(II) with a peptide model of two zinc-dependent metalloproteases. Additionally, the study explored the formation of Cu(II) complexes with the domains, as Cu(II) has been shown to inhibit metalloproteases. The third aim was to understand the role of nonbinding amino acids in stabilizing the metal complexes formed by these proteases. This work identified specific coordination patterns (HExxHxxxxxH) for both Zn(II) and Cu(II) complexes, with AprA and CpaA exhibiting a higher affinity for Cu(II) compared to Zn(II). The study also found that the CpaA domain has greater stability for both Zn(II) and Cu(II) complexes compared to AprA. The nonbinding amino acids of CpaA surrounding the metal ion contribute to the increased thermodynamic stability of the metal-peptide complex through various intramolecular interactions. These interactions can also influence the secondary structures of the peptides. The presence of certain amino acids, such as tyrosine, arginine, and glutamic acid, and their interactions contribute to the stability and, only in the case of Cu(II) complexes, the formation of a rare protein structure called a left-handed polyproline II helix (PPII), which is known to play a role in the stability and function of various proteins. These findings provide valuable insights into the coordination chemistry of bacterial metalloproteases and expand our understanding of potential mechanisms for inhibiting these enzymes.
Collapse
Affiliation(s)
- Paulina Potok
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Arian Kola
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Merce Capdevila
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Sławomir Potocki
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Harding SV, Barnes KB, Hawser S, Bentley CE, Vente A. In Vitro Activity of Finafloxacin against Panels of Respiratory Pathogens. Antibiotics (Basel) 2023; 12:1096. [PMID: 37508192 PMCID: PMC10376497 DOI: 10.3390/antibiotics12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study determined the in vitro activity of finafloxacin against panels of bacterial strains, representative of those associated with infection in cystic fibrosis patients and predominately isolated from clinical cases of respiratory disease. Many of these isolates were resistant to various antimicrobials evaluated including the aminoglycosides, cephalosporins, carbapenems and fluoroquinolones. Broth microdilution assays were performed at neutral and acidic pH, to determine antimicrobial activity. Finafloxacin demonstrated superior activity at reduced pH for all of the bacterial species investigated, highlighting the requirement to determine the activity of antimicrobials in host-relevant conditions.
Collapse
Affiliation(s)
- Sarah V Harding
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | | | | |
Collapse
|
6
|
Sun PZ. Generalization of quasi-steady-state reconstruction to CEST MRI with two-tiered RF saturation and gradient-echo readout-Synergistic nuclear Overhauser enhancement contribution to brain tumor amide proton transfer-weighted MRI. Magn Reson Med 2023; 89:2014-2023. [PMID: 36579767 DOI: 10.1002/mrm.29570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE While amide proton transfer-weighted (APTw) MRI has been adopted in tumor imaging, there are concurrent APT, magnetization transfer, and nuclear Overhauser enhancement changes. Also, the APTw image is confounded by relaxation changes, particularly when the relaxation delay and saturation time are not sufficiently long. Our study aimed to extend a quasi-steady-state (QUASS) solution to determine the contribution of the multipool CEST signals to the observed tumor APTw contrast. METHODS Our study derived the QUASS solution for a multislice CEST-MRI sequence with an interleaved RF saturation and gradient-echo readout between signal averaging. Multiparametric MRI scans were obtained in rat brain tumor models, including T1 , T2 , diffusion, and CEST scans. Finally, we performed spinlock model-based multipool fitting to determine multiple concurrent CEST signal changes in the tumor. RESULTS The QUASS APTw MRI showed small but significant differences in normal and tumor tissues and their contrast from the acquired asymmetry calculation. The spinlock model-based fitting showed significant differences in semisolid magnetization transfer, amide, and nuclear Overhauser enhancement effects between the apparent and QUASS CEST MRI. In addition, we determined that the tumor APTw contrast is due to synergistic APT increase (+3.5 ppm) and NOE decrease (-3.5 ppm), with their relative contribution being about one third and two thirds under a moderate B1 of 0.75 μT at 4.7 T. CONCLUSION Our study generalized QUASS analysis to gradient-echo image readout and quantified the underlying tumor CEST signal changes, providing an improved elucidation of the commonly used APTw MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Emory Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Xiao P, Huang J, Han X, Cheu JWS, Liu Y, Law LH, Lai JHC, Li J, Park SW, Wong CCL, Lam RHW, Chan KWY. Monitor Tumor pHe and Response Longitudinally during Treatment Using CEST MRI-Detectable Alginate Microbeads. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54401-54410. [PMID: 36448714 PMCID: PMC9756293 DOI: 10.1021/acsami.2c10493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Imaging pHe of the tumor microenvironment has paramount importance for characterizing aggressive, invasive tumors, as well as therapeutic responses. Here, a robust approach to image pH changes in the tumor microenvironment longitudinally and during sodium bicarbonate treatment was reported. The pH-sensing microbeads were designed and prepared based on materials approved for clinical use, i.e., alginate microbead-containing computed tomography (CT) contrast-agent (iopamidol)-loaded liposomes (Iop-lipobeads). This Iop-lipobead prepared using a customized microfluidic device generated a CEST contrast of 10.6% at 4.2 ppm at pH 7.0, which was stable for 20 days in vitro. The CEST contrast decreased by 11.8% when the pH decreased from 7.0 to 6.5 in vitro. Optimized Iop-lipobeads next to tumors showed a significant increase of 19.7 ± 6.1% (p < 0.01) in CEST contrast at 4.2 ppm during the first 3 days of treatment and decreased to 15.2 ± 4.8% when treatment stopped. Notably, percentage changes in Iop-lipobeads were higher than that of amide CEST (11.7% and 9.1%) in tumors during and after treatment. These findings demonstrated that the Iop-lipobead could provide an independent and sensitive assessment of the pHe changes for a noninvasive and longitudinal monitoring of the treatment effects using multiple CEST contrast.
Collapse
Affiliation(s)
- Peng Xiao
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jacinth W. S. Cheu
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Lok Hin Law
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Joseph H. C. Lai
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jiyu Li
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Se Weon Park
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Carmen C. L. Wong
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
- State
Key Laboratory of Liver Research, The University
of Hong Kong, Hong Kong, China
| | - Raymond H. W. Lam
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Kannie W. Y. Chan
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Tung
Biomedical
Sciences Centre, City University of Hong
Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
8
|
Radiometal-Based PET/MRI Contrast Agents for Sensing Tumor Extracellular pH. BIOSENSORS 2022; 12:bios12020134. [PMID: 35200394 PMCID: PMC8870419 DOI: 10.3390/bios12020134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/03/2023]
Abstract
Acidosis is a useful biomarker for tumor diagnoses and for evaluating early response to anti-cancer treatments. Despite these useful applications, there are few methods for non-invasively measuring tumor extracellular pH, and none are routinely used in clinics. Responsive MRI contrast agents have been developed, and they undergo a change in MRI signal with pH. However, these signal changes are concentration-dependent, and it is difficult to accurately measure the concentration of an MRI contrast agent in vivo. PET/MRI provides a unique opportunity to overcome this concentration dependence issue by using the PET component to report on the concentration of the pH-responsive MRI agent. Herein, we synthesized PET/MRI co-agents based on the design of a pH-dependent MRI agent, and we have correlated pH with the r1 relaxivity of the MRI co-agent. We have also developed a procedure that uses PET radioactivity measurements and MRI R1 relaxation rate measurements to determine the r1 relaxivity of the MRI co-agent, which can then be used to estimate pH. This simultaneous PET/MRI procedure accurately measured pH in solution, with a precision that depended on the concentration of the MRI co-agent. We used our procedure to measure extracellular pH in a subcutaneous flank model of MIA PaCa-2 pancreatic cancer. Although the PET co-agents were stable in serum, post-imaging studies showed evidence that the PET co-agents were degraded in vivo. These results showed that tumor acidosis can be evaluated with simultaneous PET/MRI, although improvements are needed to more precisely measure MRI R1 relaxation rates, and ensure the in vivo stability of the agents.
Collapse
|
9
|
Kombala CJ, Kotrotsou A, Schuler FW, de la Cerda J, Ma JC, Zhang S, Pagel MD. Development of a Nanoscale Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent That Measures pH. ACS NANO 2021; 15:20678-20688. [PMID: 34870957 DOI: 10.1021/acsnano.1c10107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AcidoCEST MRI can measure the extracellular pH (pHe) of the tumor microenvironment in mouse models of human cancers and in patients who have cancer. However, chemical exchange saturation transfer (CEST) is an insensitive magnetic resonance imaging (MRI) contrast mechanism, requiring a high concentration of small-molecule agent to be delivered to the tumor. Herein, we developed a nanoscale CEST agent that can measure pH using acidoCEST MRI, which may decrease the requirement for high delivery concentrations of agent. We also developed a monomer agent for comparison to the polymer. After optimizing CEST experimental conditions, we determined that the polymer agent could be used during acidoCEST MRI studies at 125-fold and 488-fold lower concentration than the monomer agent and iopamidol, respectively. We also determined that both agents can measure pH with negligible dependence on temperature. However, pH measurements with both agents were dependent on concentration, which may be due to concentration-dependent changes in hydrogen bonding and/or steric hindrance. We performed in vivo acidoCEST MRI studies using the three agents to study a xenograft MDA-MB-231 model of mammary carcinoma. The tumor pHe measurements were 6.33 ± 0.12, 6.70 ± 0.15, and 6.85 ± 0.15 units with iopamidol, the monomer agent, and polymer agent, respectively. The higher pHe measurements with the monomer and polymer agents were attributed to the concentration dependence of these agents. This study demonstrated that nanoscale agents have merit for CEST MRI studies, but consideration should be given to the dependence of CEST contrast on the concentration of these agents.
Collapse
Affiliation(s)
- Chathuri J Kombala
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Aikaterini Kotrotsou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - F William Schuler
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jacqueline C Ma
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Shu Zhang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
10
|
Kombala CJ, Lokugama SD, Kotrotsou A, Li T, Pollard AC, Pagel MD. Simultaneous Evaluations of pH and Enzyme Activity with a CEST MRI Contrast Agent. ACS Sens 2021; 6:4535-4544. [PMID: 34856102 DOI: 10.1021/acssensors.1c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular tumor microenvironment of many solid tumors has high acidosis and high protease activity. Simultaneously assessing both characteristics may improve diagnostic evaluations of aggressive tumors and the effects of anticancer treatments. Noninvasive imaging methods have previously been developed that measure extracellular pH or can detect enzyme activity using chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). Herein, we developed a single-hybrid CEST agent that can simultaneously measure pH and evaluate protease activity using a combination of dual-power acidoCEST MRI and catalyCEST MRI. Our agent showed CEST signals at 9.2 ppm from a salicylic acid moiety and at 5.0 ppm from an aryl amide. The CEST signal at 9.2 ppm could be measured after selective saturation was applied at 1 and 4 μT, and these measurements could be used with a ratiometric analysis to determine pH. The CEST signal at 5.0 ppm from the aryl amide disappeared after the agent was treated with cathepsin B, while the CEST signal at 9.2 ppm remained, indicating that the agent could detect protease activity through the amide bond cleavage. Michaelis-Menten kinetics studies with catalyCEST MRI demonstrated that the binding affinity (as shown with the Michaelis constant KM), the catalytic turnover rate (kcat), and catalytic efficiency (kcat/KM) were each higher for cathepsin B at lower pH. The kcat rates measured with catalyCEST MRI were lower than the comparable rates measured with liquid chromatography-mass spectrometry (LC-MS), which reflected a limitation of inherently noisy and relatively insensitive CEST MRI analyses. Although this level of precision limited catalyCEST MRI to semiquantitative evaluations, these semiquantitative assessments of high and low protease activity still had value by demonstrating that high acidosis and high protease activity can be used as synergistic, multiparametric biomarkers.
Collapse
Affiliation(s)
- Chathuri J. Kombala
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sanjaya D. Lokugama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Aikaterini Kotrotsou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Tianzhe Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Alyssa C. Pollard
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
11
|
Sardarabadi P, Kojabad AA, Jafari D, Liu CH. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). BIOSENSORS 2021; 11:394. [PMID: 34677350 PMCID: PMC8533977 DOI: 10.3390/bios11100394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. Despite advancements in chemotherapy and targeted therapies, the 5-year survival rate has remained at 16% for the past forty years. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assess earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally, biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, extracellular vesicles (EVs) and whole cells. Here, we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Davod Jafari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
12
|
Hao L, Rohani N, Zhao RT, Pulver EM, Mak H, Kelada OJ, Ko H, Fleming HE, Gertler FB, Bhatia SN. Microenvironment-triggered multimodal precision diagnostics. NATURE MATERIALS 2021; 20:1440-1448. [PMID: 34267368 DOI: 10.1038/s41563-021-01042-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/26/2021] [Indexed: 05/24/2023]
Abstract
Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization and the opportunity to monitor response to therapy. Here, we report a multimodal nanosensor engineered to target tumours through acidosis, respond to proteases in the microenvironment to release urinary reporters and (optionally) carry positron emission tomography probes to enable localization of primary and metastatic cancers in mouse models of colorectal cancer. We present a paradigm wherein this multimodal sensor can be employed longitudinally to assess burden of disease non-invasively, including tumour progression and response to chemotherapy. Specifically, we showed that acidosis-mediated tumour insertion enhanced on-target release of matrix metalloproteinase-responsive reporters in urine. Subsequent on-demand loading of the radiotracer 64Cu allowed pH-dependent tumour visualization, enabling enriched microenvironmental characterization when compared with the conventional metabolic tracer 18F-fluorodeoxyglucose. Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumour types.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nazanin Rohani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renee T Zhao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emilia M Pulver
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Howard Mak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Henry Ko
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Ludwig Center at Massachusetts Institute of Technology's Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
13
|
Hampton DG, Goldman-Yassen AE, Sun PZ, Hu R. Metabolic Magnetic Resonance Imaging in Neuroimaging: Magnetic Resonance Spectroscopy, Sodium Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer. Semin Ultrasound CT MR 2021; 42:452-462. [PMID: 34537114 DOI: 10.1053/j.sult.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance (MR) is a powerful and versatile technique that offers much more beyond conventional anatomic imaging and has the potential of probing in vivo metabolism. Although MR spectroscopy (MRS) predates clinical MR imaging (MRI), its clinical application has been limited by technical and practical challenges. Other MR techniques actively being developed for in vivo metabolic imaging include sodium concentration imaging and chemical exchange saturation transfer. This article will review some of the practical aspects of MRS in neuroimaging, introduce sodium MRI and chemical exchange saturation transfer MRI, and highlight some of their emerging clinical applications.
Collapse
Affiliation(s)
- Daniel G Hampton
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| | - Adam E Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
14
|
Lee J, Kim B, Park B, Won Y, Kim SY, Lee S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci Rep 2021; 11:16864. [PMID: 34413447 PMCID: PMC8376886 DOI: 10.1038/s41598-021-96531-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
A biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.
Collapse
Affiliation(s)
- Jooran Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
- Intek-Medi, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
15
|
Sun PZ. Quasi-steady-state chemical exchange saturation transfer (QUASS CEST) MRI analysis enables T 1 normalized CEST quantification - Insight into T 1 contribution to CEST measurement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107022. [PMID: 34144360 PMCID: PMC8316384 DOI: 10.1016/j.jmr.2021.107022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 05/26/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI depends not only on the labile proton concentration and exchange rate but also on relaxation rates, particularly T1 relaxation time. However, T1 normalization has shown to be not straightforward under non-steady-state conditions and in the presence of radiofrequency spillover effect. Our study aimed to test if the combined use of the new quasi-steady-state (QUASS) analysis and inverse CEST calculation facilitates T1 normalization for improved CEST quantification. The CEST signal was simulated with Bloch-McConnell equations, and the apparent CEST, QUASS CEST, and the inverse CEST effects were calculated. T1-normalized CEST effects were tested for their specificity to the underlying CEST system (i.e., labile proton ratio and exchange rate). CEST experiments were performed from a 9-vial phantom of independently varied concentrations of creatine (20, 40, and 60 mM) and manganese chloride (20, 30, and 40 µM) under a range of RF saturation amplitudes (0.5-4 µT) and durations (1-4 s). The simulation showed that while T1 normalization of the apparent CEST effect was subject to noticeable T1 contamination, the T1-normalized inverse QUASS CEST effect had little T1 dependence. The experimental data were analyzed using a multiple linear regression model, showing that T1-normalized inverse QUASS analysis significantly depended on creatine concentration and saturation power (P < 0.05), not on manganese chloride concentration and saturation duration, advantageous over other CEST indices. The QUASS CEST algorithm reconstructs the steady-state CEST effect, enabling T1-normalized inverse CEST effect calculation for improved quantification of the underlying CEST system.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA, United States.
| |
Collapse
|
16
|
Vanherp L, Govaerts K, Riva M, Poelmans J, Coosemans A, Lagrou K, Gsell W, Vande Velde G, Himmelreich U. CryptoCEST: A promising tool for spatially resolved identification of fungal brain lesions and their differentiation from brain tumors with MRI. NEUROIMAGE-CLINICAL 2021; 31:102737. [PMID: 34225021 PMCID: PMC8261661 DOI: 10.1016/j.nicl.2021.102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 06/19/2021] [Indexed: 02/01/2023]
Abstract
The fungal disaccharide trehalose generates a concentration-dependent CEST MRI contrast. CEST MRI can detect endogenous trehalose in Cryptococcus neoformans and C. gattii cells. This enables spatially resolved identification of fungal lesions in the mouse brain. The CryptoCEST contrast can differentiate cryptococcal brain lesions from gliomas. CryptoCEST holds potential for non-invasive differential diagnosis of cryptococcomas.
Infectious brain lesions caused by the pathogenic fungi Cryptococcus neoformans and C. gattii, also referred to as cryptococcomas, could be diagnosed incorrectly as cystic brain tumors if only based on conventional magnetic resonance (MR) images. Previous MR spectroscopy (MRS) studies showed high local concentrations of the fungal disaccharide trehalose in cryptococcomas. The aim of this study was to detect and localize fungal brain lesions caused by Cryptococcus species based on Chemical Exchange Saturation Transfer (CEST) MR imaging of endogenous trehalose, and hereby to distinguish cryptococcomas from gliomas. In phantoms, trehalose and cryptococcal cells generated a concentration-dependent CEST contrast in the 0.2 – 2 ppm chemical shift range, similar to glucose, but approximately twice as strong. In vivo single voxel MRS of a murine cryptococcoma model confirmed the presence of trehalose in cryptococcomas, but mainly for lesions that were large enough compared to the size of the MRS voxel. With CEST MRI, combining the more specific CEST signal at 0.7 ppm with the higher signal-to-noise ratio signal at 4 ppm in the CryptoCEST contrast enabled localization and distinction of cryptococcomas from the normal brain and from gliomas, even for lesions smaller than 1 mm3. Thanks to the high endogenous concentration of the fungal biomarker trehalose in cryptococcal cells, the CryptoCEST contrast allowed identification of cryptococcomas with high spatial resolution and differentiation from gliomas in mice. Furthermore, the CryptoCEST contrast was tested to follow up antifungal treatment of cryptococcomas. Translation of this non-invasive method to the clinic holds potential for improving the differential diagnosis and follow-up of cryptococcal infections in the brain.
Collapse
Affiliation(s)
- Liesbeth Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Neurosurgery, Mont-Godinne Hospital, UCL Namur, Yvoir, Belgium
| | - Jennifer Poelmans
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; National Reference Centre for Mycosis, Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
18
|
Doroudian M, O' Neill A, Mac Loughlin R, Prina-Mello A, Volkov Y, Donnelly SC. Nanotechnology in pulmonary medicine. Curr Opin Pharmacol 2020; 56:85-92. [PMID: 33341460 PMCID: PMC7746087 DOI: 10.1016/j.coph.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Abstract
Nanotechnology in medicine—nanomedicine—is extensively employed to diagnose, treat, and prevent pulmonary diseases. Over the last few years, this brave new world has made remarkable progress, offering opportunities to address historical clinical challenges in pulmonary diseases including multidrug resistance, adverse side effects of conventional therapeutic agents, novel imaging, and earlier disease detection. Nanomedicine is also being applied to tackle the new emerging infectious diseases, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), influenza A virus subtype H1N1 (A/H1N1), and more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review we provide both a historical overview of the application of nanomedicine to respiratory diseases and more recent cutting-edge approaches such as nanoparticle-mediated combination therapies, novel double-targeted nondrug delivery system for targeting, stimuli-responsive nanoparticles, and theranostic imaging in the diagnosis and treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland; Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Andrew O' Neill
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| | - Ronan Mac Loughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland; Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland; Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Department of Histology, Cytology and Embryology, First Moscow State Sechenov Medical University, Moscow, Russian Federation
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland.
| |
Collapse
|
19
|
Abstract
Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. PET enables dynamic assessment of infectious processes within the same subject with high temporal and spatial resolution and obviates the need for invasive tissue sampling, which is difficult in patients and generally limited to a single time point, even in animal models. This review presents current state-of-the-art concepts on the application of molecular imaging for infectious diseases and details how PET imaging can facilitate novel insights into infectious processes, ongoing development of pathogen-specific imaging, and simultaneous in situ measurements of intralesional antimicrobial pharmacokinetics in multiple compartments, including privileged sites. Finally, the potential clinical applications of this promising technology are also discussed.
Collapse
|