1
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Pessoa Rodrigues C, Collins JM, Yang S, Martinez C, Kim JW, Lama C, Nam AS, Alt C, Lin C, Zon LI. Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells. Science 2024; 385:eadn1629. [PMID: 39264994 DOI: 10.1126/science.adn1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024]
Abstract
Macrophages maintain hematopoietic stem cell (HSC) quality by assessing cell surface Calreticulin (Calr), an "eat-me" signal induced by reactive oxygen species (ROS). Using zebrafish genetics, we identified Beta-2-microglobulin (B2m) as a crucial "don't eat-me" signal on blood stem cells. A chemical screen revealed inducers of surface Calr that promoted HSC proliferation without triggering ROS or macrophage clearance. Whole-genome CRISPR-Cas9 screening showed that Toll-like receptor 3 (Tlr3) signaling regulated b2m expression. Targeting b2m or tlr3 reduced the HSC clonality. Elevated B2m levels correlated with high expression of repetitive element (RE) transcripts. Overall, our data suggest that RE-associated double-stranded RNA could interact with TLR3 to stimulate surface expression of B2m on hematopoietic stem and progenitor cells. These findings suggest that the balance of Calr and B2m regulates macrophage-HSC interactions and defines hematopoietic clonality.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Joseph M Collins
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Song Yang
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
| | - Catherine Martinez
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Ji Wook Kim
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Chhiring Lama
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Alt
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
| | - Charles Lin
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Rutkowska E, Kwiecień I, Raniszewska A, Sokołowski R, Bednarek J, Jahnz-Różyk K, Chciałowski A, Rzepecki P. New Neutrophil Parameters in Diseases with Various Inflammatory Processes. Biomedicines 2024; 12:2016. [PMID: 39335529 PMCID: PMC11429323 DOI: 10.3390/biomedicines12092016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The neutrophils evaluation seems interesting in the initial qualifications of patients with various inflammatory processes. In this study, we presented analysis of neutrophils and new parameters of the complexity (NEUT-GI, NE-WX), maturation (IG), size (NE-FSC, NE-WZ), and neutrophil activities (NEUT-RI, NE-WY) in coronavirus disease 2019 (COVID-19), lung cancer (LC), sarcoidosis (SA), and healthy controls (HCs). Peripheral blood (PB) was collected. The new parameters were examined by the Sysmex XN-1500. The mean absolute value for the IG parameter was the highest in the LC group. The differences in NEUT-RI value between COVID-19 and the HC group were observed. No significant differences were noticed between groups in the NEUT-GI granularity parameter. Neutrophil size assessed by NE-FSC parameter was reduced in all groups compared to HCs. The values of complexity (NE-WX), fluorescence (NE-WY), and size (NE-WZ) were the lowest in the HCs, whereas the highest median proportions of NE-WX, NE-WY, and NE-WZ were in LC patients. Patients from the SA group differed significantly from the HC group only for the NE-WZ parameter. We showed the usefulness of neutrophil parameters and their reactivity, morphology, and exhaustion. A more detailed analysis of blood counts may reveal trends that indicate a disease-specific immune response.
Collapse
Affiliation(s)
- Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (I.K.); (A.R.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (I.K.); (A.R.)
| | - Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (I.K.); (A.R.)
| | - Rafał Sokołowski
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Joanna Bednarek
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Andrzej Chciałowski
- Department of Internal Medicine, Infectious Diseases and Allergology, 04-141 Warsaw, Poland;
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland;
| |
Collapse
|
4
|
Pietruszewska M, Biesiada G, Czepiel J, Birczyńska-Zych M, Moskal P, Garlicki A, Wesełucha-Birczyńska A. Raman spectroscopy of lymphocytes from patients with the Epstein-Barr virus infection. Sci Rep 2024; 14:6417. [PMID: 38494496 PMCID: PMC10944829 DOI: 10.1038/s41598-024-56864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, Raman spectroscopy is applied to trace lymphocytes activation following contact with the Epstein-Barr virus (EBV) of the herpesvirus family. The biomarker of cell activation is found to be the 520 cm-1 band, indicating formation of immunoglobulins. The blood samples are obtained from patients diagnosed with infectious mononucleosis and treated at the University Hospital in Kraków. The lymphocytes' Raman spectra are collected using a mapping technique, exciting samples with a 514.5 nm line of Ar + laser. Measurements are performed on the 1st, 4th, 6th, 12th and 30th day of hospitalization, until the patient has recovered. The highest intensity of the immunoglobulin marker is observed on the 4th day of hospitalization, while the results of the blood count of patients show the greatest increase in the number of lymphocytes at the beginning of hospitalization. No activated lymphocytes were observed in the blood of healthy volunteers. Some information is provided by the evaluation of B-cell activation by estimating the activated areas in the cells, which are determined by the presence of the Ig marker. The 900 cm-1 band and band around 1450 cm-1 are also analyzed as markers of the presence of the latent membrane protein, LMP2A (and 2B), of the EBV viral protein. The anomalous degree of depolarization observed in B-cells in the course of EBV infection appears to be due to the influence of a virus protein, disrupting BCR signal transduction.
Collapse
Affiliation(s)
| | - Grażyna Biesiada
- Department of Infectious Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Jacek Czepiel
- Department of Infectious Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Malwina Birczyńska-Zych
- Department of Infectious Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Paulina Moskal
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Aleksander Garlicki
- Department of Infectious Diseases, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688, Kraków, Poland
- The University Hospital in Kraków, Jakubowskiego 2, 30-688, Kraków, Poland
| | | |
Collapse
|
5
|
Bobba S, Howard NC, Das S, Ahmed M, Khan N, Marchante I, Barreiro LB, Sanz J, Divangahi M, Khader SA. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun 2023; 91:e0020123. [PMID: 37754680 PMCID: PMC10580947 DOI: 10.1128/iai.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole C. Howard
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Ignacio Marchante
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Luis B. Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, Illinois, USA
| | - Joaquin Sanz
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
8
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Kawashima M, Higuchi H, Kotani A. Significance of trogocytosis and exosome-mediated transport in establishing and maintaining the tumor microenvironment in lymphoid malignancies. J Clin Exp Hematop 2021; 61:192-201. [PMID: 34193756 PMCID: PMC8808107 DOI: 10.3960/jslrt.21005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
It is widely accepted that the tumor microenvironment plays an important role in the progression of lymphoid malignancies. Interaction between the tumor and its surrounding immune cells is considered a potential therapeutic target. For example, anti-programmed cell death 1 (PD-1) antibody stimulates the surrounding exhausted immune cells to release PD-1/PD-L1, thereby leading to the regression of PD-L1-positive tumors. Recently, biological phenomena, such as trogocytosis and exosome-mediated transport were demonstrated to be involved in establishing and maintaining the tumor microenvironment. We found that trogocytosis-mediated PD-L1/L2 transfer from tumor cells to monocytes/macrophages is involved in immune dysfunction in classic Hodgkin lymphoma. Exosomes derived from Epstein-Barr virus (EBV)-associated lymphoma cells induce lymphoma tumorigenesis by transferring the EBV-coding microRNAs from the infected cells to macrophages. In this review, we summarized these biological phenomena based on our findings.
Collapse
|
10
|
Kwiecień I, Rutkowska E, Kulik K, Kłos K, Plewka K, Raniszewska A, Rzepecki P, Chciałowski A. Neutrophil Maturation, Reactivity and Granularity Research Parameters to Characterize and Differentiate Convalescent Patients from Active SARS-CoV-2 Infection. Cells 2021; 10:cells10092332. [PMID: 34571981 PMCID: PMC8472477 DOI: 10.3390/cells10092332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Studying the dynamics changes of neutrophils during innate immune response in coronavirus 2019 (COVID-19) can help understand the pathogenesis of this disease. The aim of the study was to assess the usefulness of new neutrophil activation parameters: Immature Granulocyte (IG), Neutrophil Reactivity Intensity (NEUT-RI), Neutrophil Granularity Intensity (NEUT-GI), and data relating to granularity, activity, and neutrophil volume (NE-WX, NE-WY, NE-WZ) available in hematology analyzers to distinguish convalescent patients from patients with active SARS-CoV-2 infection and healthy controls (HC). The study group consisted of 79 patients with a confirmed positive RT-PCR test for SARS-CoV2 infection, 71 convalescent patients, and 20 HC. We observed leukopenia with neutrophilia in patients with active infection compared to convalescents and HC. The IG median absolute count was higher in convalescent patients than in COVID-19 and HC (respectively, 0.08 vs. 0.03 vs. 0.02, p < 0.0001). The value of the NEUT-RI parameter was the highest in HC and the lowest in convalescents (48.3 vs. 43.7, p < 0.0001). We observed the highest proportion of NE-WX, NE-WY, and NE-WZ parameters in HC, without differences between the COVID-19 and convalescent groups. New neutrophil parameters can be useful tools to assess neutrophils’ activity and functionalities in the immune response during infection and recovery from COVID-19 disease.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (K.K.); (A.R.)
- Correspondence:
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (K.K.); (A.R.)
| | - Katarzyna Kulik
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (K.K.); (A.R.)
| | - Krzysztof Kłos
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (K.K.); (K.P.); (A.C.)
| | - Katarzyna Plewka
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (K.K.); (K.P.); (A.C.)
| | - Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (K.K.); (A.R.)
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland;
| | - Andrzej Chciałowski
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (K.K.); (K.P.); (A.C.)
| |
Collapse
|
11
|
Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C, Solary E, Fontenay M, André F, Maeurer M, Ippolito G, Piacentini M, Wang FS, Ginhoux F, Marabelle A, Kroemer G, Derosa L, Zitvogel L. Immune responses during COVID-19 infection. Oncoimmunology 2020; 9:1807836. [PMID: 32939324 PMCID: PMC7480812 DOI: 10.1080/2162402x.2020.1807836] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.
Collapse
Affiliation(s)
- Cléa Melenotte
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- Infectious Diseases, IHU-Méditerranée Infection, Marseille, France
| | | | - Anne-Gaëlle Goubet
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Imran Lahmar
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Agathe Dubuisson
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Didier Raoult
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Mansouria Merad
- Service de Urgences et de Permanence des Soins, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | | | - Eric Solary
- Immunology, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Centre National Recherche Scientifique (CNRS) UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Markus Maeurer
- Immunosurgery, Immunotherapy Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Med Clinic, University of Mainz, Mayence, Germany
| | - Giuseppe Ippolito
- Dipartimento di Epidemiologia Ricerca Pre-Clinica e Diagnostica Avanzata, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Department, National Institute for Infectious Disease IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Aurélien Marabelle
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie,Pathologie – PUI – Hygiène, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Laurence Zitvogel
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|