1
|
Aloy NM, Coughlan C, Graner MW, Witt SN. Possible regulation of the immune modulator tetraspanin CD81 by alpha-synuclein in melanoma. Biochem Biophys Res Commun 2024; 734:150631. [PMID: 39222576 DOI: 10.1016/j.bbrc.2024.150631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
We probed the mechanism by which the Parkinson's disease-associated protein α-synuclein (α-syn)/SNCA promotes the pathogenesis and progression of melanoma. We found that the human melanoma cell line SK-MEL-28 in which SNCA is knocked out (SNCA-KO) has low levels of tetraspanin CD81, which is a cell-surface protein that promotes invasion, migration, and immune suppression. Analyzing data from the Cancer Genome Atlas, we show that SNCA and CD81 mRNA levels are positively correlated in melanoma; melanoma survival is inversely related to the levels of SNCA and CD81; and SNCA/CD81 are inversely related to the expression of key cytokine genes (IL12A, IL12B, IFN, IFNG, PRF1 and GZMB) for immune activation and immune cell-mediated killing of melanoma cells. We propose that high levels of α-syn and CD81 in melanoma and in immune cells drive invasion and migration and in parallel cause an immunosuppressive microenvironment; these contributing factors lead to aggressive melanomas.
Collapse
Affiliation(s)
- Nirjhar M Aloy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | | | | | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA.
| |
Collapse
|
2
|
Gurrieri E, Carradori G, Roccuzzo M, Pancher M, Peroni D, Belli R, Trevisan C, Notarangelo M, Huang WQ, Carreira ASA, Quattrone A, Jenster G, Hagen TLMT, D'Agostino VG. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells. J Biomed Sci 2024; 31:92. [PMID: 39402557 PMCID: PMC11475557 DOI: 10.1186/s12929-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.
Collapse
Affiliation(s)
- Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Carradori
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michael Pancher
- High Throughput Screening and High Content Analysis Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Daniele Peroni
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Romina Belli
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Caterina Trevisan
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Notarangelo
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Wen-Qiu Huang
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Agata S A Carreira
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
3
|
Mani B, Kaur I, Dhingra Y, Saxena V, Krishna GK, Kumar R, Chinnusamy V, Agarwal M, Katiyar-Agarwal S. Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39356169 DOI: 10.1111/pbi.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored. We focused on OsTET5, which is differentially expressed under various abiotic stresses and localizes to both plasma membrane and endoplasmic reticulum. Using overexpression and underexpression transgenic lines we demonstrate that OsTET5 contributes to salinity and drought stress tolerance in rice. OsTET5 can interact with itself in yeast, suggesting homomer formation. Immunoblotting of native PAGE of microsomal fraction enriched from OsTET5-Myc transgenic rice lines revealed multimeric complexes containing OsTET5, suggesting the potential formation of TEM complexes. Transcriptome analysis, coupled with quantitative PCR-based validation, of OsTET5-altered transgenic lines unveiled the differential expression patterns of several stress-responsive genes, as well as those coding for transporters under salt stress. Notably, OsTET5 plays a crucial role in maintaining the ionic equilibrium during salinity stress, particularly by preserving an elevated potassium-to-sodium (K+/Na+) ratio. OsTET5 also regulates reactive oxygen species homeostasis, primarily by modulating the gene expression and activities of antioxidant pathway enzymes and proline accumulation. Our comprehensive investigation underscores the multifaceted role of OsTET5 in rice, accentuating its significance in developmental processes and abiotic stress tolerance. These findings open new avenues for potential strategies aimed at enhancing stress resilience and making valuable contributions to global food security.
Collapse
Affiliation(s)
- Balaji Mani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Inderjit Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vidisha Saxena
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - G K Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, India
| | | |
Collapse
|
4
|
Wang C, Zhang Y, Guan F, He YZ, Wu Y. Genome-wide identification and phylogenetic analysis of the tetraspanin gene family in lepidopteran insects and expression profiling analysis in Helicoverpa armigera. INSECT SCIENCE 2024. [PMID: 38880966 DOI: 10.1111/1744-7917.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
The tetraspanin gene family encodes cell-surface proteins that span the membrane 4 times and play critical roles in a wide range of biological processes across numerous organisms. Recent findings highlight the involvement of a tetraspanin of the lepidopteran pest Helicoverpa armigera in resistance to Bacillus thuringiensis Cry insecticidal proteins, which are extensively used in transgenic crops. Thus, a better understanding of lepidopteran tetraspanins is urgently needed. In the current study, genome scanning in 10 lepidopteran species identified a total of 283 sequences encoding potential tetraspanins. Based on conserved cysteine patterns in the large extracellular loop and their phylogenetic relationships, these tetraspanins were classified into 8 subfamilies (TspA to TspH). Six ancestral introns were identified within lepidopteran tetraspanin genes. Tetraspanins in TspA, TspB, TspC, and TspD subfamilies exhibit highly similar gene organization, while tetraspanins in the remaining 4 subfamilies exhibited variation in intron loss and/or gain during evolution. Analysis of chromosomal distribution revealed a lepidopteran-specific cluster of 10 to 11 tetraspanins, likely formed by tandem duplication events. Selective pressure analysis indicated negative selection across all orthologous groups, with ω values ranging between 0.004 and 0.362. However, positive selection was identified at 18 sites within TspB5, TspC5, TspE3, and TspF10. Furthermore, spatiotemporal expression analysis of H. armigera tetraspanins demonstrated variable expression levels across different developmental stages and tissues, suggesting diverse functions of tetraspanin members in this globally important insect pest. Our findings establish a solid foundation for subsequent functional investigations of tetraspanins in lepidopteran species.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinuo Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Zhou He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Screening of EWI-2-Derived Peptides for Targeting Tetraspanin CD81 and Their Effect on Cancer Cell Migration. Biomolecules 2023; 13:biom13030510. [PMID: 36979448 PMCID: PMC10046862 DOI: 10.3390/biom13030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
CD81, a transmembrane protein belonging to the tetraspanin family, has recently been suggested as a therapeutic target for cancers. Here, we screened peptides that bind to the tetraspanin CD81 protein, and evaluated their inhibitory activity in cancer cell migration. To screen for CD81-binding peptides (CD81-BP), a peptide array membrane was prepared from the amino acid sequence of the EWI-2 protein, a major partner of CD81, before binding to fluorescently labeled CD81. As a result, four candidate CD81-BPs were identified and characterized. In particular, the CFMKRLRK peptide (called P152 in this study) was found to be the best candidate that preferentially binds to the extracellular loop of CD81, with an estimated dissociation constant of 0.91 µM. Since CD81 was reported to promote cancer cell migration, an initial step in metastasis, the Boyden chamber assay, was next performed to assess the effect of CD81-BP candidates on the migration of MDA-MB-231 human breast cancer cells. Interestingly, our result indicated that P152 could suppress MDA-MB-231 cell migration at the level comparable to that of an anti-human CD81 antibody (5A6). Thus, we propose these CD81-BPs with the anti-migration property against cancer cells for the development of novel therapeutic strategies.
Collapse
|
7
|
Lee H, Han JH, Kang YJ, Hwangbo H, Yoon A, Kim HS, Lee D, Lee SY, Choi BH, Kim JJ, Kim SR, Choi YH, Hur J. CD82 attenuates TGF-β1-mediated epithelial-mesenchymal transition by blocking smad-dependent signaling in ARPE-19 cells. Front Pharmacol 2022; 13:991056. [PMID: 36386228 PMCID: PMC9640495 DOI: 10.3389/fphar.2022.991056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
In retinal pigment epithelial (RPE) cells, transforming growth factor-beta (TGF-β) plays a critical role in epithelial-mesenchymal transition (EMT), which contributes to various fibrotic retinal disorders. In the present study, we investigated the effect of recombinant human cluster of differentiation 82 (rhCD82), a tumor metastasis suppressor, on TGF-β-induced EMT in the human RPE cell line APRE-19. The results show that TGF-β1 significantly enhanced cell migration, invasion and the expression of EMT-mediate factors in ARPE-19 cells. However, rhCD82 markedly inhibited cell mobility and the expression of epithelial marker, zonula occludens-1, as well as increased the expression of mesenchymal markers, such as vimentin and α-smooth muscle actin in TGF-β1-treated APRE-19 cells. In addition, TGF-β1 upregulated the phosphorylation of Smad, extracellular signal regulated kinase (ERK) and glycogen synthase kinase-3β (GSK-3β), but only phosphorylation of Smad was suppressed by rhCD82. Noteworthy, rhCD82 greatly suppressed the expression of TGF-β receptor I (TGFRI), TGFRII and integrins in TGF-β1-treated APRE-19 cells. In particular, the result of molecular docking analysis and structural modeling show that rhCD82 partially interacts with the TGF-β1 binding sites of TGFRI, TGFRII, integrin β1 and integrin αv. Taken together, this finding suggested that rhCD82 suppressed TGF-β1-induced EMT of RPE by blocking of Smad-dependent pathway, which is caused by rhCD82 interaction with TGFRs and integrins, suggesting new insight into CD82 as a potential therapeutic strategy in fibrotic retinal disorders.
Collapse
Affiliation(s)
- Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, South Korea
| | - Yun Jeong Kang
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hyun Hwangbo
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, South Korea
| | - Aeseon Yoon
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Soo Yong Lee
- Division of Cardiology, Department of Internal Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Byung Hyun Choi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae-Joon Kim
- Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo Rin Kim
- Department of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, South Korea
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, South Korea
- *Correspondence: Yung Hyun Choi, ; Jin Hur,
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Yung Hyun Choi, ; Jin Hur,
| |
Collapse
|
8
|
Hendricks EL, Smith IR, Prates B, Barmaleki F, Liebl FLW. The CD63 homologs, Tsp42Ee and Tsp42Eg, restrict endocytosis and promote neurotransmission through differential regulation of synaptic vesicle pools. Front Cell Neurosci 2022; 16:957232. [PMID: 36072568 PMCID: PMC9441712 DOI: 10.3389/fncel.2022.957232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The Tetraspanin (Tsp), CD63, is a transmembrane component of late endosomes and facilitates vesicular trafficking through endosomal pathways. Despite being widely expressed in the human brain and localized to late endosomes, CD63's role in regulating endo- and exocytic cycling at the synapse has not been investigated. Synaptic vesicle pools are highly dynamic and disruptions in the mobilization and replenishment of these vesicle pools have adverse neuronal effects. We find that the CD63 homologs, Tsp42Ee and Tsp42Eg, are expressed at the Drosophila neuromuscular junction to regulate synaptic vesicle pools through both shared and unique mechanisms. Tsp42Ee and Tsp42Eg negatively regulate endocytosis and positively regulate neurotransmitter release. Both tsp mutants show impaired locomotion, reduced miniature endplate junctional current frequencies, and increased endocytosis. Expression of human CD63 in Drosophila neurons leads to impaired endocytosis suggesting the role of Tsps in endocytosis is conserved. We further show that Tsps influence the synaptic cytoskeleton and membrane composition by regulating Futsch loop formation and synaptic levels of SCAR and PI(4,5)P2. Finally, Tsp42Ee and Tsp42Eg influence the synaptic localization of several vesicle-associated proteins including Synapsin, Synaptotagmin, and Cysteine String Protein. Together, our results present a novel function for Tsps in the regulation of vesicle pools and provide insight into the molecular mechanisms of Tsp-related synaptic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
9
|
Reppert N, Lang T. A conserved sequence in the small intracellular loop of tetraspanins forms an M-shaped inter-helix turn. Sci Rep 2022; 12:4494. [PMID: 35296690 PMCID: PMC8927573 DOI: 10.1038/s41598-022-07243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Tetraspanins are a family of small proteins with four transmembrane segments (TMSs) playing multiple roles in human physiology. Nevertheless, we know little about the factors determining their structure. In the study at hand, we focus on the small intracellular loop (SIL) between TMS2 and TMS3. There we have identified a conserved five amino acid core region with three charged residues forming an M-shaped backbone, which we call M-motif. The M´s plane runs parallel to the membrane surface and the central amino acid constitutes the inter-helix turning point. At the second position of the M-motif, in tetraspanin crystal structures we identified a glutamate oriented towards a lysine in the juxtamembrane region of TMS1. Using Tspan17 as example, we find that by mutating either the glutamate or juxtamembrane-lysine, but not upon glutamate/lysine swapping, expression level, maturation and ER-exit are reduced. We conclude that the SIL is more than a short linking segment but propose it is involved in shaping the tertiary structure of tetraspanins.
Collapse
Affiliation(s)
- Nikolas Reppert
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
10
|
Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane. Biochem J 2021; 478:3643-3654. [PMID: 34524408 DOI: 10.1042/bcj20210459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14 700 ± 1100 Tspan8/µm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.
Collapse
|
11
|
Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Biosystems 2021; 209:104505. [PMID: 34403719 DOI: 10.1016/j.biosystems.2021.104505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.
Collapse
|
12
|
Harrison N, Koo CZ, Tomlinson MG. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22136707. [PMID: 34201472 PMCID: PMC8268256 DOI: 10.3390/ijms22136707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitously expressed transmembrane protein a disintegrin and metalloproteinase 10 (ADAM10) functions as a “molecular scissor”, by cleaving the extracellular regions from its membrane protein substrates in a process termed ectodomain shedding. ADAM10 is known to have over 100 substrates including Notch, amyloid precursor protein, cadherins, and growth factors, and is important in health and implicated in diseases such as cancer and Alzheimer’s. The tetraspanins are a superfamily of membrane proteins that interact with specific partner proteins to regulate their intracellular trafficking, lateral mobility, and clustering at the cell surface. We and others have shown that ADAM10 interacts with a subgroup of six tetraspanins, termed the TspanC8 subgroup, which are closely related by protein sequence and comprise Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. Recent evidence suggests that different TspanC8/ADAM10 complexes have distinct substrates and that ADAM10 should not be regarded as a single scissor, but as six different TspanC8/ADAM10 scissor complexes. This review discusses the published evidence for this “six scissor” hypothesis and the therapeutic potential this offers.
Collapse
Affiliation(s)
- Neale Harrison
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
- Correspondence: ; Tel.: +44-(0)121-414-2507
| |
Collapse
|
13
|
Abstract
Lang and Hochheimer introduce the physiological and pathological functions of tetraspanins.
Collapse
Affiliation(s)
- Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| | - Nikolas Hochheimer
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
14
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
15
|
Kummer D, Steinbacher T, Schwietzer MF, Thölmann S, Ebnet K. Tetraspanins: integrating cell surface receptors to functional microdomains in homeostasis and disease. Med Microbiol Immunol 2020; 209:397-405. [PMID: 32274581 PMCID: PMC7395057 DOI: 10.1007/s00430-020-00673-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
Abstract
Tetraspanins comprise a family of proteins embedded in the membrane through four transmembrane domains. One of the most distinctive features of tetraspanins is their ability to interact with other proteins in the membrane using their extracellular, transmembrane and cytoplasmic domains, allowing them to incorporate several proteins into clusters called tetraspanin-enriched microdomains. The spatial proximity of signaling proteins and their regulators enables a rapid functional cross-talk between these proteins, which is required for a rapid translation of extracellular signals into intracellular signaling cascades. In this article, we highlight a few examples that illustrate how tetraspanin-mediated interactions between cell surface proteins allow their functional cross-talk to regulate intracellular signaling.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany.
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany.
- Institute of Medical Biochemistry, ZMBE, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| |
Collapse
|
16
|
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol 2020; 209:531-543. [PMID: 32507938 PMCID: PMC7395004 DOI: 10.1007/s00430-020-00679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.
Collapse
Affiliation(s)
- Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.
| | - Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Balise VD, Saito-Reis CA, Gillette JM. Tetraspanin Scaffold Proteins Function as Key Regulators of Hematopoietic Stem Cells. Front Cell Dev Biol 2020; 8:598. [PMID: 32754593 PMCID: PMC7381308 DOI: 10.3389/fcell.2020.00598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for the development, maintenance, and regeneration of all the blood forming cells in the body, and as such, are critical for a number of patient therapies. For successful HSPC transplantation, stem cells must traffic through the blood and home to the bone marrow (BM) microenvironment or “niche,” which is composed of soluble factors, matrix proteins, and supportive cells. HSPC adhesion to, and signaling with, cellular and extracellular components of the niche provide instructional cues to balance stem cell self-renewal and differentiation. In this review, we will explore the regulation of these stem cell properties with a focus on the tetraspanin family of membrane proteins. Tetraspanins are molecular scaffolds that uniquely function to distribute proteins into highly organized microdomains comprising adhesion, signaling, and adaptor proteins. As such, tetraspanins contribute to many aspects of cell physiology as mediators of cell adhesion, trafficking, and signaling. We will summarize the many reports that identify tetraspanins as markers of specific HSPC populations. Moreover, we will discuss the various studies establishing the functional importance of tetraspanins in the regulation of essential HSPC processes including quiescence, migration, and niche adhesion. When taken together, studies outlined in this review suggest that several tetraspanins may serve as potential targets to modulate HSPC interactions with the BM niche, ultimately impacting future HSPC therapies.
Collapse
Affiliation(s)
- Victoria D Balise
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Chelsea A Saito-Reis
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|