1
|
Guerrero-Becerra L, Morimoto S, Arrellano-Ordoñez E, Morales-Miranda A, Guevara-Gonzalez RG, Feregrino-Pérez AA, Lomas-Soria C. Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential. Pharmaceuticals (Basel) 2025; 18:69. [PMID: 39861134 PMCID: PMC11768933 DOI: 10.3390/ph18010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications. Other natural alternatives for DM treatment have been studied as adjunct therapies that could reduce or eliminate the need for antidiabetic medications. Several natural supplements may offer an alternative way to improve the quality of life for patients with DM, and they may have other nutraceutical applications. Due to their phenolic compound content, some leguminous substances have been proposed as these alternatives. Phenolic compounds, with their high antioxidant activity, have shown promising potential in insulin synthesis, secretion, and the functionality of the endocrine pancreas. This review provides valuable information on various leguminous plants with anti-diabetic properties, including antioxidant, hypoglycemic, anti-fat-induced damage, and anti-apoptotic properties in vitro and in vivo, attributed to the high content of phenolic compounds in their seeds. Natural products with antidiabetic and pharmacological treatment potential improve diabetes management by offering more effective and complementary alternatives. To integrate these herbal remedies into modern medicine, further research on phenolic compound type, doses, efficacy, and safety in the human population is needed.
Collapse
Affiliation(s)
- Lucia Guerrero-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Estefania Arrellano-Ordoñez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Angélica Morales-Miranda
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| | - Ramón G. Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazacala-Chichimequillas km 1.0, El Marqués, Querétaro 76265, Mexico; (L.G.-B.); (E.A.-O.); (R.G.G.-G.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués, Querétaro 76265, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (S.M.); (A.M.-M.)
| |
Collapse
|
2
|
Mondal NK, Mondal B, Koley R, Koley A, Balachandran S. Efficacy of two different forms of selenium towards reduction of arsenic toxicity and accumulation in Cicer arietinum L. J Trace Elem Med Biol 2024; 86:127541. [PMID: 39383660 DOI: 10.1016/j.jtemb.2024.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Arsenic migration from soil to crop plants and subsequently human consumption of contaminated foodstuffs is a serious threat for society. In the present study, two oxidation states of selenium [Se(0) and Se(VI)] were used to check their efficacy towards amelioration of arsenic toxicity in chickpeas (Cicer arietinum L.). Three different concentrations (1, 5, and 10 mg/L) of both oxidation states of selenium were applied separately and in combination against a fixed dose (10 mg/L) of arsenic [(As(V)] treatment on chickpea seedlings. Further, seed germination and seedling growth attributes, oxidative stress, and antioxidant defense under different treatments were analyzed. The changes in anatomical structures and arsenic accumulation in different parts of seedlings were also studied. Results revealed that increased generation of oxidative stress affected physiobiochemical parameters of seedlings and diminished plant growth and deformation in vascular bundles under arsenic stress. However, the combined application of Se with As showed overall improvement in seedling growth, reduced oxidative stress, and organized vascular bundles of chickpea seedlings as compared to arsenic stress alone. The arsenic uptake and accumulation in chickpea seedlings were also reduced upon supplementation of Se. The highest reduction of arsenic accumulation by 42 and 56 % in roots, while 47 and 58 % in shoots were recorded by the application of 10 mg/L of Se(0) and Se (VI) under As stress, respectively. Overall, Se(VI) showed much better performance towards the minimization of arsenic-induced phytotoxicity and arsenic accumulation as compared to Se(0). Therefore, this study explored the efficacy of different forms of selenium towards the mitigation of arsenic toxicity in plants.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.
| | - Barnali Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Rajesh Koley
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Apurba Koley
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| |
Collapse
|
3
|
Di Stefano E, Hüttmann N, Dekker P, Tomassen MMM, Oliviero T, Fogliano V, Udenigwe CC. Solid-state fermentation of green lentils by Lactiplantibacillus plantarum leads to formation of distinct peptides that are absorbable and enhances DPP-IV inhibitory activity in an intestinal Caco-2 cell model. Food Funct 2024; 15:11220-11235. [PMID: 39450545 DOI: 10.1039/d4fo03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Food-derived bioactive compounds mimicking the effects of incretin therapies offer promising opportunities for combination therapies with functional foods, where food matrix interactions, gastrointestinal enzyme activity, and in situ bioactivity should be key considerations. In this study, green lentils were solid-state fermented with Lactiplantibacillus plantarum ATCC8014, in vitro digested and exposed to brush border enzymes of a Caco-2 cell monolayer. Intestinal absorption of peptides and DPP-IV inhibitory activity were then investigated. LC-MS/MS profiles showed that peptides mainly originated from parental proteins of the vicilin, convicilin and legumin families. Fermentation led to the formation of more hydrophobic peptides when compared to the unfermented flour and up to 33.6% of them were transported to the basolateral side of a Caco-2 cell monolayer. Peptides with more than 22 amino acids and with a mass greater than 2000 Da were minimally transported. 73 peptides were uniquely identified in the basolateral fraction suggesting that they resulted from the activity of the brush border enzymes. The DPP-IV activity of Caco-2 cells grown as a polarized monolayer was decreased by 37.3% when exposed to in vitro digested 72 h-fermented lentil flour and 10% when exposed to the unfermented one. Inhibition of DPP-IV in the basolateral fluids was improved in a dose-dependent manner and reached 7.9% when 500 mg mL-1 of in vitro digested 72 h fermented lentil flour was used. Glucose absorption and uptake were minimally affected, suggesting that the previously observed hypoglycemic properties of lentils are likely due to activity on DPP-IV rather than on the inhibition of glucose absorption.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 5E3, Canada
| |
Collapse
|
4
|
Madhavi BGK, Wijethunga AM, Okagu OD, Sun X. Defatted Wheat Germ Protein-Derived Peptides Showed Multiple Biological Activities from the Stomach to Small Intestine: In Silico and In Vitro Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20527-20536. [PMID: 39231371 DOI: 10.1021/acs.jafc.4c06539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This study aimed to test the hypothesis that bioactive peptides can exert multiple bioactivities at different sites in the gastrointestinal tract. Our previous research identified 33 gastric-resistant peptides derived from wheat germ with potential antiadhesive activity against Helicobacter pylori in the stomach. In this work, in silico digestion of these peptides with trypsin, thermolysin, and chymotrypsin produced 67 peptide fragments. Molecular docking was conducted to predict their ACE and DPP-IV inhibitory activities in the small intestine. Three peptides (VPIPNPSGDR, VPY, and AR) were selected and synthesized for in vitro validation. Their generation in the gastrointestinal tract was verified via in vitro digestion, followed by mass spectrometry analysis. The IC50 values for ACE inhibition were 199.5 μM (VPIPNPSGDR), 316.3 μM (VPY), and 446.7 μM (AR). For DPP-IV inhibition, their IC50 values were 0.5, 1.6, and 4.0 mM, respectively. This research pioneers new directions in the emerging field of multifunctional peptides, providing scientific evidence to support the utilization of wheat germ as value-added food ingredients.
Collapse
Affiliation(s)
- Bolappa Gamage Kaushalya Madhavi
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Anushi Madushani Wijethunga
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Ogadimma D Okagu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xiaohong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| |
Collapse
|
5
|
Ghallab DS, Ghareeb DA, Goda DA. Integrative metabolomics and chemometrics depict the metabolic alterations of differently processed red kidney beans (Phaseolus vulgaris L.) and in relation to in-vitro anti-diabetic efficacy. Food Res Int 2024; 192:114786. [PMID: 39147477 DOI: 10.1016/j.foodres.2024.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Red kidney beans (RKB) serve as a powerhouse packed with a plethora of largely unexplored extraordinary chemical entities with potential significance. However, their nutraceutical applications as a functional hypoglycemic food still lag behind and warrant further investigation. With a scope to optimize chemical and biological traits of RKB, green modification approaches (processing methods) seem inevitable. Accordingly, the current study offered the first integrative workflow to scrutinize dynamic changes in chemical profiles of differently processed RKB and their potential entanglements on diabetes mitigation using Ultra Performance Liquid Chromatography-mass spectrometry (UPLC-MS/MS) coupled with chemometrics. Different physical and biological processing treatments namely germination, fermentation, cooking and dehulling were preliminarily implemented on RKB. Complementarily, the concomitant metabolite alterations among differently processed RKB were monitored and interpreted. Next, an in-vitro α-amylase and α-glycosidase inhibitory testing of the differently processed samples was conducted and integrated with orthogonal projection to latent structures (OPLS) analysis to pinpoint the possible efficacy compounds. A total of 72 compounds spanning fatty acids and their glycerides, flavonoids, phenolic acids, amino acids, dipeptides, phytosterols and betaxanthins were profiled. Given this analysis and compared with raw unprocessed samples, it was found that flavonoids experienced notable accumulation during germination while both fermentation and dehulling approaches sharply intensified the content of amino acids and dipeptides. Comparably, Fatty acids, phytosterols and betaxanthins were unevenly distributed among the comparable samples. Admittedly, OPLS-DA revealed an evident discrimination among the processed samples assuring their quite compositional discrepancies. In a more targeted approach, kaempferol-O-sophoroside, quercetin, carlinoside and betavulgarin emerged as focal discriminators of sprouted samples while citrulline, linoleic acid, linolenoyl-glycerol and stigmasterol were the determining metabolites in cooked samples. Our efficacy experimental findings emphasized that the different RKB samples exerted profound inhibitory actions against both α-amylase and α-glycosidase enzymes with the most promising observations in the case of sprouted and cooked samples. Coincidently, OPLS analysis revealed selective enhancement of possible efficacy constituents primarily citrulline, formononetin, gamabufotalin, kaempferol-O-sophoroside, carlinoside, oleic acid and ergosterol in sprouted and cooked samples rationalizing their noteworthy α-amylase and α-glucosidase inhibitory activities. Taken together, this integrated work provides insightful perspectives beyond the positive impact of different processing protocols on bioactives accumulation and pharmacological traits of RKB expanding their utilization as functional hypoglycemic food to rectify diabetes.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Alexandria, Egypt; Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Post 21934, Alexandria, Egypt
| |
Collapse
|
6
|
Ngoc Toan V, Son Hai D, Thi Kim Van H, Minh Tri N, Ngoc Toan D, Thi Thanh Mai N, Dinh Thanh N. Design, synthesis, inhibitory activity, and molecular simulations study for d-glucose-conjugated thioureas containing pyrimidine ring as multitarget inhibitors against α-amylase, α-glucosidase, DDP-4, and PTP1B in Type 2 diabetes mellitus. RSC Med Chem 2024:d4md00334a. [PMID: 39185455 PMCID: PMC11342126 DOI: 10.1039/d4md00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
A series of tetra-O-acetyl-α-d-glucopyranosyl thioureas 8a-l of substituted 2-aminopyrimidines 4a-l have been designed and synthesized. The latter were prepared from corresponding chalcones 3a-l of p-bromoacetophenone and appropriate substituted benzaldehydes by their reaction with guanidine. The target thiourea compounds 8a-l exhibited significant inhibitory activity in vitro against enzymes that were related to type 2 diabetes mellitus, including α-amylase, α-glucosidase, DPP-4, and PTP1B. Amongst these thioureas, compound 8k with an ortho-methoxy group was the most potential enzyme inhibitor against α-amylase with an IC50 value of 9.72 ± 0.34 μM. Its meta-isomer 8j was the strongest inhibitor against α-glucosidase with IC50 = 9.73 ± 0.72 μM. In the inhibition against DPP-4, compound 8f with a para-bromo substituent exhibited the strongest activity with an IC50 value of 2.53 ± 0.03 nM. In the inhibition against PTP1B, compound 8h with a para-isopropyl substituent had the strongest inhibitory activity with an IC50 value of 2.74 ± 0.03 μM. The enzyme kinetics of the most active compounds, including 8j, 8f and 8h against α-glucosidase, DPP-4, and PTP1B, respectively, were studied. The obtained results showed that 8j was a competitive α-glucosidase inhibitor with an inhibitory constant K I value of 9.31 μM. Compound 8f was a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.57 μM. Compound 8h was also a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.41 μM. The cytotoxicity of the most active compounds, including 8f and 8k (against α-amylase), 8i and 8j (against α-glucosidase), 8a, 8f, and 8g (against DPP-4), and 8d, 8f, and 8h (against PTP1B) was screened. The obtained cytotoxicity showed that all tested inhibitors were noncytotoxic to human normal cell line 3T3. Induced fit docking simulations of all synthesized compounds 8a-l were performed on four enzymes 4W93 (for α-amylase), 3TOP (for α-glucosidase), 3W2T (for DPP-4), and 1NNY (for PTP1B). Key interactions of each of these ligands with residues in the active pocket of each studied enzyme have been shown.
Collapse
Affiliation(s)
- Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Academy of Military Science and Technology, Ministry of Defence, Institute of New Technology 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Ministry of Public Security of Vietnam, Institute of Science and Technology 47 Pham Van Dong, Cau Giay Hanoi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien, Lam Thao Phu Tho Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Academy of Military Science and Technology, Ministry of Defence, Institute of New Technology 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Vietnam
| | - Nguyen Thi Thanh Mai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemical Technology, Ha Noi University of Industry 298 Cau Dien Road, North Tu Liem Hanoi Vietnam
| | - Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| |
Collapse
|
7
|
Agustia FC, Supriyadi, Murdiati A, Indrati R. Formation of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from Jack Bean ( Canavalia ensiformis (L.) DC.) sprout in simulated digestion. Food Sci Biotechnol 2024; 33:645-655. [PMID: 38274189 PMCID: PMC10805686 DOI: 10.1007/s10068-023-01343-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 01/27/2024] Open
Abstract
Bean sprouts are potential plant proteins that produce DPP-IV inhibitory peptides. These peptides must be stable and active in the brush border membrane of the small intestine to inhibit DPP-IV. The purpose of this research is to evaluate the DPP-IV inhibitory activity of jack bean sprouts using pepsin-pancreatin during simulated digestion, as well as the absorption of these peptides through the everted gut sac method. The results showed that after 180 min of digestion simulation, the Mw < 1 kDa peptide fraction of jack bean hydrolysate, which germinated for 60 h (HG60), had the highest inhibitory activity. The duodenum absorbs most of the peptides with inhibitory activity of 61.77%, which is slightly lower than activity after digestion (62.19%). These outcomes suggest that the DPP-IV inhibitory activity of HG60 can be maintained after digestion and absorption. Two novel peptides KAVGDPI and QGVVLRP identified after absorption contain crucial amino acids confirming as DPP-IV inhibitor. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01343-9.
Collapse
Affiliation(s)
- Friska Citra Agustia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
- Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, 53122 Indonesia
| | - Supriyadi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Retno Indrati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| |
Collapse
|
8
|
Chandrasekaran S, Gonzalez de Mejia E. Germinated chickpea protein ficin hydrolysate and its peptides inhibited glucose uptake and affected the bitter receptor signaling pathway in vitro. Food Funct 2023; 14:8467-8486. [PMID: 37646191 DOI: 10.1039/d3fo01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The objective of this study was to evaluate germinated chickpea protein hydrolysate (GCPH) in vitro for its effect on markers of type 2 diabetes (T2D) and bitter taste receptor expression in intestinal epithelial cells. Protein hydrolysate was obtained using ficin, and the resulting peptides were sequenced using LC-ESI-MS/MS. Caco-2 cells were used to determine glucose uptake and extra-oral bitter receptor activation. Three peptides, VVFW, GEAGR, and FDLPAL, were identified in legumin. FDLPAL was the most potent peptide in molecular docking studies with a DPP-IV energy of affinity of -9.8 kcal mol-1. GCPH significantly inhibited DPP-IV production by Caco-2 cells (IC50 = 2.1 mM). Glucose uptake was inhibited in a dose-dependent manner (IC25 = 2.0 mM). A negative correlation was found between glucose uptake and PLCβ2 expression in Caco-2 cells (R value, -0.62). Thus, GCPH has the potential to be commercialized as a functional ingredient.
Collapse
Affiliation(s)
- Subhiksha Chandrasekaran
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023; 28:5431. [PMID: 37513301 PMCID: PMC10383711 DOI: 10.3390/molecules28145431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
10
|
Okomo Aloo S, Park S, Oh DH. Impacts of germination and lactic acid bacteria fermentation on anti-nutrients, bioactive compounds, and selected functional properties of industrial hempseed (Cannabis sativa L.). Food Chem 2023; 428:136722. [PMID: 37429240 DOI: 10.1016/j.foodchem.2023.136722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
The impact of fermentation and germination on the metabolite profile and bioactive of 'Cheongsam' hempseed was investigated. The seeds were germinated for 3 days at 26 °C and fermented for 48 h at 37 °C using Pediococcus acidilactici (SRCM201591). The raw (R), fermented seed (RF), sprouts (S), and fermented sprouts (SF) extracts were assessed for anti-nutrients, metabolite profile, and selected bioactivities. Germination and fermentation significantly altered anti-nutrient levels (tannins, saponins, phytic acid, and trypsin inhibitors). They increased total polyphenols, flavonoid contents, and individual polyphenols and cannabinoids. SF demonstrated the highest ABTS (IC50, 291.65 µg/mL) and DPPH (IC50, 345.30 µg/mL) scavenging capacities. However, S (IC50, 73.295 µg/mL) was the most potent anti-inflammatory ingredient. SF (IC50, 74.07 µg/mL) exhibited the most potent alpha-glucosidase inhibition for enzyme inhibitions, while RF (IC50, 63.31 µg/mL) showed the best lipase inhibition potential. The findings demonstrate that germination and fermentation could improve the functional properties of hempseed.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
11
|
Newton A, Majumder K. Germination and Simulated Gastrointestinal Digestion of Chickpea ( Cicer arietinum L.) in Exhibiting In Vitro Antioxidant Activity in Gastrointestinal Epithelial Cells. Antioxidants (Basel) 2023; 12:antiox12051114. [PMID: 37237980 DOI: 10.3390/antiox12051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based proteins, in particular pulse proteins, have grown in popularity worldwide. Germination, or sprouting, is an effective method to release peptides and other dietary compounds. However, the combination of germination and gastrointestinal digestion in enhancing the release of dietary compounds with potential health-beneficial biological activity has yet to be entirely elucidated. The present study illustrates the impact of germination and gastrointestinal digestion on the release of dietary compounds with antioxidant activity from chickpeas (Cicer arietinum L.). Germination up to 3 days (D0 to D3) increased the peptide content by denaturing chickpea storage proteins and increased the degree of hydrolysis (DH) in the gastric phase. The antioxidant activity was measured at three different dosages (10, 50, and 100 μg/mL) and compared between D0 and D3 on human colorectal adenocarcinoma cells (HT-29). A significant increase in antioxidant activity was observed in the D3 germinated samples in all three tested dosages. Further analysis identified 10 peptides and 7 phytochemicals differentially expressed between the D0 and D3 germinated samples. Among the differentially expressed compounds, 3 phytochemicals (2',4'-dihydroxy-3,4-dimethoxychalcone, isoliquiritigenin 4-methyl ether, and 3-methoxy-4,2',5'-trihydroxychalcone) and 1 peptide (His-Ala-Lys) were identified only in the D3 samples, indicating their potential contribution towards the observed antioxidant activity.
Collapse
Affiliation(s)
- Ashley Newton
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Kaustav Majumder
- 256 Food Innovation Center, Nebraska Innovation Campus, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| |
Collapse
|
12
|
Hussain Zaki U, Fryganas C, Trijsburg L, Feskens E, Capuano E. Influence of different processing method on lignan content of selected Malaysian plant-based foods. Food Chem 2023; 404:134607. [DOI: 10.1016/j.foodchem.2022.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
13
|
Aimvijarn P, Payuhakrit W, Charoenchon N, Okada S, Suwannalert P. Riceberry Rice Germination and UVB Radiation Enhance Protocatechuic Acid and Vanillic Acid to Reduce Cellular Oxidative Stress and Suppress B16F10 Melanogenesis Relating to F-Actin Rearrangement. PLANTS (BASEL, SWITZERLAND) 2023; 12:484. [PMID: 36771569 PMCID: PMC9920603 DOI: 10.3390/plants12030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet type B (UVB) radiation plays an important role in hyperpigmentation disorder, which induces cellular oxidative stress and causes abnormal melanin production and secretion. The stress condition plays an essential role in actin polymerization relating to F-actin rearrangement and forms dendrite to send melanin pigment to the uppermost layer of the skin. Phenolic compounds are secondary metabolites that mainly synthesize under stress conditions to protect plants from harmful environments and have been reported as effective agents in anti-oxidant and anti-melanogenesis. However, the influence of phenolic compounds on F-actin rearrangement-associated dendrite formation has not been studied so far. Hence, this study aimed to investigate the enhancing phytophenolic targets in riceberry rice (Oryza sativa L.) germination and UVB radiation (RR-GR) to suppress melanogenesis relating to F-rearrangement. As a result, the RR-GR had the potential to enhance phenolic acids such as protocatechuic and vanillic acid, which have been proven to possess anti-oxidant activity and anti-tyrosinase properties. Riceberry rice's modification showed the potential to reduce cellular oxidative stress and suppress B16F10 melanogenesis relating to F-actin rearrangement that is associated with dendrite formation.
Collapse
Affiliation(s)
- Parichaya Aimvijarn
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nisamanee Charoenchon
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Ali SA, Saeed SMG, Ejaz U, Baloch MN, Sohail M. A novel approach to improve the nutritional value of black gram (Vigna mungo L.) by the combined effect of pre-gelatinization and fermentation by Lactobacillus sp. E14 and Saccharomyces cerevisiae MK-157: Impact on morphological, thermal, and chemical structural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Martineau-Côté D, Achouri A, Wanasundara J, Karboune S, L’Hocine L. Health Beneficial Bioactivities of Faba Bean Gastrointestinal (In Vitro) Digestate in Comparison to Soybean and Pea. Int J Mol Sci 2022; 23:9210. [PMID: 36012479 PMCID: PMC9409335 DOI: 10.3390/ijms23169210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Faba beans are a promising emerging plant-based protein source to be used as a quality alternative to peas and soy. In this study, the potential health beneficial activities of three Canadian faba bean varieties (Fabelle, Malik and Snowbird) were investigated after in vitro gastrointestinal digestion and compared to two commonly used legumes (peas and soy). The results revealed that the faba beans had a higher antioxidant activity than peas when assessed with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, except for the Fabelle variety. In the oxygen radical absorbance capacity (ORAC) and the iron chelating assays, the faba beans had a lower antioxidant activity than soy. Interestingly, Fabelle and Snowbird showed a higher antioxidant effect than the peas and soy at the cellular level. The antihypertensive properties of Fabelle and Malik varieties were significantly higher than peas but lower than soy. The in vitro antidiabetic activity was higher for soy, but no differences were found at the cellular level. The faba bean peptides were further fractionated and sequenced by mass spectrometry. Eleven peptides with in silico predicted bioactivities were successfully identified in the faba bean digestate and support validating the health-promoting properties of peptides. The results demonstrate the bioactive potential of faba beans as a health-promoting food ingredient against non-communicable diseases.
Collapse
Affiliation(s)
- Delphine Martineau-Côté
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Allaoua Achouri
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Janitha Wanasundara
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lamia L’Hocine
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
16
|
Ohanenye IC, Ekezie FGC, Sarteshnizi RA, Boachie RT, Emenike CU, Sun X, Nwachukwu ID, Udenigwe CC. Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods 2022; 11:foods11152299. [PMID: 35954065 PMCID: PMC9368013 DOI: 10.3390/foods11152299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The increased consumption of legume seeds as a strategy for enhancing food security, reducing malnutrition, and improving health outcomes on a global scale remains an ongoing subject of profound research interest. Legume seed proteins are rich in their dietary protein contents. However, coexisting with these proteins in the seed matrix are other components that inhibit protein digestibility. Thus, improving access to legume proteins often depends on the neutralisation of these inhibitors, which are collectively described as antinutrients or antinutritional factors. The determination of protein quality, which typically involves evaluating protein digestibility and essential amino acid content, is assessed using various methods, such as in vitro simulated gastrointestinal digestibility, protein digestibility-corrected amino acid score (IV-PDCAAS), and digestible indispensable amino acid score (DIAAS). Since most edible legumes are mainly available in their processed forms, an interrogation of these processing methods, which could be traditional (e.g., cooking, milling, extrusion, germination, and fermentation) or based on emerging technologies (e.g., high-pressure processing (HPP), ultrasound, irradiation, pulsed electric field (PEF), and microwave), is not only critical but also necessary given the capacity of processing methods to influence protein digestibility. Therefore, this timely and important review discusses how each of these processing methods affects legume seed digestibility, examines the potential for improvements, highlights the challenges posed by antinutritional factors, and suggests areas of focus for future research.
Collapse
Affiliation(s)
- Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Flora-Glad C. Ekezie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Roghayeh A. Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14115-336, Iran
| | - Ruth T. Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
| | - Chijioke U. Emenike
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Natural and Applied Sciences, Faculty of Science, Hezekiah University, Umudi, Nkwerre 471115, Nigeria
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ifeanyi D. Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: (I.D.N.); (C.C.U.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (I.C.O.); (F.-G.C.E.); (R.A.S.); (R.T.B.); (C.U.E.); (X.S.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (I.D.N.); (C.C.U.)
| |
Collapse
|
17
|
Rastogi YR, Thakur R, Thakur P, Mittal A, Chakrabarti S, Siwal SS, Thakur VK, Saini RV, Saini AK. Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. Int J Food Microbiol 2022; 371:109666. [DOI: 10.1016/j.ijfoodmicro.2022.109666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
|
18
|
del Rosario Moguel Concha D, Martínez JEB, Velázquez TGG, Martínez CJ, Ruiz JCR. Impact of germination time on protein solubility and anti-inflammatory properties of Pisum sativum L grains. Food Chem X 2022; 13:100219. [PMID: 35499010 PMCID: PMC9039925 DOI: 10.1016/j.fochx.2022.100219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Germination has an evident impact on the amount of soluble protein in sprouts. The amount of soluble protein can be correlated with the presence of biopeptides. In vitro assays indicate that sprouts soluble protein act as anti-inflammatory agents. Pisum sativum sprouts may constitute a minimally processed functional food. Proteins and peptides isolated from sprouts could be used as nutraceutical ingredients.
During germination processes take place that modify the major components of the grain, such is the case of proteins that are hydrolyzed to generate peptides that can lead to the generation of bioactivity. The objective of the present work was to germinate grains of Pisum sativum to evaluate the effect on the soluble protein content and the anti-inflammatory activity. The grains were subjected to 10 days of germination at 24 °C and relative humidity of 75%. Sprouts were lyophilized, milled, and phenolic compounds were extracted to avoid interferences. Soluble protein content varied significantly during the 10 days of germination. In vitro assays indicate that sprouts protein inhibits thermal denaturation of proteins, protease activity, and stabilize cell membranes. The IC50 values indicate that after germination the bioactivity increased between 1.4 and 3.5 times, with respect to the ungerminated grains. Results indicated that Pisum sativum sprouts may constitute promising health-promoting foods.
Collapse
|
19
|
You H, Wu T, Wang W, Li Y, Liu X, Ding L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res Int 2022; 156:111176. [DOI: 10.1016/j.foodres.2022.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
20
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
21
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
22
|
Byanju B, Hojilla-Evangelista MP, Lamsal BP. Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5792-5806. [PMID: 33792043 DOI: 10.1002/jsfa.11229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Significant amounts of nutrients, including dietary fibers, proteins, minerals, and vitamins are present in legumes, but the presence of anti-nutritional factors (ANFs) like phytic acid, tannins, and enzyme inhibitors impact the consumption of legumes and nutrient availability. In this research, the effect of a physical process (sonication or precooking) and fermentation with Lactobacillus plantarum and Pediococcus acidilactici on the ANFs of some legumes was evaluated. RESULTS Total phenolic content was significantly (P < 0.05) reduced for modified and fermented substrates compared with non-fermented controls. Trypsin inhibitory activity (TIA) was reduced significantly for all substrates except for unsonicated soybean and lentils fermented with L. plantarum and P. acidilactici. When physical processing was done, there was a decrease in TIA for all the substrate. Phytic acid content decreased for physically modified soybean and lentil but not significantly for green pea. Even though there was a decrease in ANFs, there was no significant change in in vitro protein digestibility for all substrates except for unsonicated L. plantarum fermented soybean flour and precooked L. plantarum fermented lentil. Similarly, there was a change in amino acid content when physically modified and fermented. CONCLUSION Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume and pulse flours influenced the non-nutritive compounds, thereby potentially improving nutritional quality and usage. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bibek Byanju
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | | | - Buddhi P Lamsal
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. FRONTIERS IN PLANT SCIENCE 2021; 12:754287. [PMID: 34759946 PMCID: PMC8575454 DOI: 10.3389/fpls.2021.754287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
24
|
Boachie RT, Commandeur MMB, Abioye RO, Capuano E, Oliviero T, Fogliano V, Udenigwe CC. β-Glucan Interaction with Lentil ( Lens culinaris) and Yellow Pea ( Pisum sativum) Proteins Suppresses Their In Vitro Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10630-10637. [PMID: 34473491 DOI: 10.1021/acs.jafc.1c03022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, β-glucan interaction with lentil and yellow pea proteins and the effect on in vitro protein digestibility were investigated. Proteins were mixed with β-glucan at mass ratios of 1:0.5, 1:1, and 1:2. The interaction between β-glucan and the proteins was demonstrated by the decrease in transmittance and surface charge and the increase in particle size of the complexes. Bright-field microscopy showed the formation of aggregates between the biopolymers, although increased molecular size was not observed by discontinuous native polyacrylamide gel electrophoresis. Fluorescence microscopy indicated that β-glucan formed aggregates with lentil proteins, while the interaction with yellow pea proteins appeared as distinct phases of protein within the β-glucan network. The in vitro protein digestibility of lentil and pea protein decreased by 27.3 and 34.5%, respectively, in the presence of a β-glucan mass ratio of 1:2. The findings confirm the possibility to modulate protein digestibility by changing the physical characteristics of a food matrix.
Collapse
Affiliation(s)
- Ruth T Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Mieke M B Commandeur
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Raliat O Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
25
|
Acevedo Martínez KA, Gonzalezde Mejia E. Comparison of five chickpea varieties, optimization of hydrolysates production and evaluation of biomarkers for type 2 diabetes. Food Res Int 2021; 147:110572. [PMID: 34399545 DOI: 10.1016/j.foodres.2021.110572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
The objective was to compare five varieties of chickpea (Cicer arietinum), sequence the peptides obtained with pepsin-pancreatin digestion, and evaluate their potential as modulators of biochemical markers for type-2 diabetes. In addition, to produce a functional ingredient, by the optimization in the production of hydrolysates using bromelain. Proteins of ground raw, precooked and cooked chickpea, were extracted, isolated, and characterized using SDS-PAGE gel electrophoresis. Hydrolysates were obtained by simulated digestion with pepsin-pancreatin, and resulting peptides were sequenced with LC-MSMS. Response surface methodology was used to optimize the production of hydrolysates with dipeptidyl peptidase IV (DPPIV) inhibition using bromelain. Protein profiles showed fractions of convicilin (>70 kDa), 7S vicilin (43-53 kDa), 11S legumin (35 kDa) and lectins (30-32 kDa) in raw varieties. Albumin fractions 2S (20-26 kDa) were still present in most varieties after 2 h of heat treatment. DPPIV IC50 values from digestive enzymes were better (0.17-2.21 mg/mL) in raw chickpea than in cooked chickpea. α-Glucosidase inhibition at 10 mg protein/mL was highest (32-66%) in precooked chickpea hydrolysates. Hydrolysis with bromelain showed a DPPIV inhibition of 94% for Sierra variety cooked for 15 min with 1:10 E/S ratio and hydrolysis time of 60 min. Peptides with DPPIV inhibition were present from albumin fractions (EVLSEVSF) with 908.44 Da and high hydrophobicity; and from legumin (VVFW, FDLPAL) with 549.29 and 674.36 Da, respectively. In conclusion, high DDPIV inhibition can be obtained from chickpea bromelain hydrolysates, with potential as ingredients in different food applications.
Collapse
Affiliation(s)
- Karla A Acevedo Martínez
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elvira Gonzalezde Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Acevedo-Martinez KA, Gonzalez de Mejia E. Fortification of Maize Tortilla with an Optimized Chickpea Hydrolysate and Its Effect on DPPIV Inhibition Capacity and Physicochemical Characteristics. Foods 2021; 10:foods10081835. [PMID: 34441612 PMCID: PMC8392616 DOI: 10.3390/foods10081835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Chickpea hydrolysates have shown bioactivity towards type 2 diabetes by inhibiting dipeptidyl peptidase (DPPIV) activity. The objective was to compare the effect of adding different levels of an optimized bromelain hydrolysate from chickpea isolated protein on DPPIV inhibition capacity and physicochemical properties of maize tortilla. White and blue maize tortillas, with no added chickpea hydrolysates were compared with fortified tortillas at the levels of 5%, 10%, and 15% w/w. Changes in color (L* a* b*, hue angle, and ΔE), texture (hardness, cohesiveness, and puncture force), and moisture were tested. Soluble protein determination and SDS-PAGE electrophoresis were used to characterize the protein profiles, and LC-MS-MS was used to sequence the peptides. DPPIV inhibition was evaluated before and after simulated gastrointestinal digestion. Peptides in the hydrolysates had high hydrophobicity (7.97–27.05 kcal * mol −1) and pI (5.18–11.13). Molecular docking of peptides showed interaction with DPPIV with an energy of affinity of –5.8 kcal/mol for FDLPAL in comparison with vildagliptin (−6.2 kcal/mol). The lowest fortification level increased soluble protein in 105% (8 g/100 g tortilla). DPPIV inhibition of white maize tortilla increased from 11% (fresh control) to 91% (15% fortification), and for blue tortilla from 26% to 95%. After simulated digestion, there was not a difference between blue or maize tortillas for DPPIV inhibition. Fortification of maize tortilla with chickpea hydrolysate inhibits DPPIV and can potentially be used in the prevention and management of type 2 diabetes. However, due to observed physicochemical changes of the fortified tortilla, sensory properties and consumer acceptance need to be evaluated.
Collapse
|
27
|
Acevedo Martinez KA, Yang MM, Gonzalez de Mejia E. Technological properties of chickpea (Cicer arietinum): Production of snacks and health benefits related to type-2 diabetes. Compr Rev Food Sci Food Saf 2021; 20:3762-3787. [PMID: 33998131 DOI: 10.1111/1541-4337.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023]
Abstract
Chickpea (Cicer arietinum) is one of the most consumed pulses worldwide (over 2.3 million tons enter the world market annually). Some chickpea components have shown, in preclinical and clinical studies, several health benefits, including antioxidant capacity, and antifungal, antibacterial, analgesic, anticancer, antiinflammatory, and hypocholesterolemic properties, as well as angiotensin I-converting enzyme inhibition. In the United States, chickpea is consumed mostly in the form of hummus. However, the development of new products with value-added bioactivity is creating new opportunities for research and food applications. Information about bioactive compounds and functional properties of chickpea ingredients in the development of new products is needed. The objective of this review was to summarize available scientific information, from the last 15 years, on chickpea production, consumption trends, applications in the food industry in the elaboration of plant-based snacks, and on its bioactive compounds related to type 2 diabetes (T2D). Areas of opportunity for future research and new applications of specific bioactive compounds as novel food ingredients are highlighted. Research is key to overcome the main processing obstacles and sensory challenges for the application of chickpea as ingredient in snack preparations. The use of chickpea bioactive compounds as ingredient in food products is also a promising area for accessibility of their health benefits, such as the management of T2D.
Collapse
Affiliation(s)
- Karla A Acevedo Martinez
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Mary M Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| |
Collapse
|
28
|
Nicolás-García M, Perucini-Avendaño M, Jiménez-Martínez C, Perea-Flores MDJ, Gómez-Patiño MB, Arrieta-Báez D, Dávila-Ortiz G. Bean phenolic compound changes during processing: Chemical interactions and identification. J Food Sci 2021; 86:643-655. [PMID: 33586793 DOI: 10.1111/1750-3841.15632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/08/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022]
Abstract
The common bean (Phaseolus vulgaris L.) represents one of the main crops for human consumption, due to its nutritional and functional qualities. Phenolic compounds have beneficial health effects, and beans are an essential source of these molecules, being found mainly in the seed coat and its color depends on the concentration and type of phenolic compounds present. The bean during storage and processing, such as cooking, germination, extrusion, and fermentation, undergoes physical, chemical, and structural changes that affect the bioavailability of its nutrients; these changes are related to the interactions between phenolic compounds and other components of the food matrix. This review provides information about the identification and quantification of phenolic compounds present in beans and the changes they undergo during processing. It also includes information on the interactions between the phenolic compounds and the components of the bean's cell wall and the analytical methods used to identify the interactions of phenolic compounds with macromolecules.
Collapse
Affiliation(s)
- Mayra Nicolás-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Madeleine Perucini-Avendaño
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Mayra Beatriz Gómez-Patiño
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Daniel Arrieta-Báez
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| |
Collapse
|
29
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Frias J, Rico D, Jiménez-Pulido I, Martínez-Villaluenga C. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. FRONTIERS IN PLANT SCIENCE 2021; 12:790898. [PMID: 35003179 PMCID: PMC8740022 DOI: 10.3389/fpls.2021.790898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/13/2023]
Abstract
To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Belén Martín-Diana
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Elena Peñas
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juana Frias
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Rico
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Cristina Martínez-Villaluenga
| |
Collapse
|
30
|
Sun X, Ohanenye IC, Ahmed T, Udenigwe CC. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chem 2020; 329:127196. [DOI: 10.1016/j.foodchem.2020.127196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 05/29/2020] [Indexed: 01/28/2023]
|
31
|
Shah KH, Oza MJ. Comprehensive Review of Bioactive and Molecular Aspects of Moringa Oleifera Lam. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1813755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaushal H. Shah
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
32
|
Ohanenye IC, Tsopmo A, Ejike CE, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods 2020; 9:foods9030330. [PMID: 32178261 PMCID: PMC7143261 DOI: 10.3390/foods9030330] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a multifunctional antioxidant neurohormone found in plant foods such as lentil sprouts. We aim to evaluate the effect of lentil sprout intake on the plasmatic levels of melatonin and metabolically related compounds (plasmatic serotonin and urinary 6-sulfatoxymelatonin), total phenolic compounds, and plasmatic antioxidant status, and compare it with synthetic melatonin. The germination of lentils increases the content of melatonin. However, the phenolic content diminished due to the loss of phenolic acids and flavan-3-ols. The flavonol content remained unaltered, being the main phenolic family in lentil sprouts, primarily composed of kaempferol glycosides. Sprague Dawley rats were used to investigate the pharmacokinetic profile of melatonin after oral administration of a lentil sprout extract and to evaluate plasma and urine melatonin and related biomarkers and antioxidant capacity. Melatonin showed maximum concentration (45.4 pg/mL) 90 min after lentil sprout administration. The plasmatic melatonin levels increased after lentil sprout intake (70%, p < 0.05) with respect to the control, 1.2-fold more than after synthetic melatonin ingestion. These increments correlated with urinary 6-sulfatoxymelatonin content (p < 0.05), a key biomarker of plasmatic melatonin. Nonetheless, the phenolic compound content did not exhibit any significant variation. Plasmatic antioxidant status increased in the antioxidant capacity upon both lentil sprout and synthetic melatonin administration. For the first time, we investigated the bioavailability of melatonin from lentil sprouts and its role in plasmatic antioxidant status. We concluded that their intake could increase melatonin plasmatic concentration and attenuate plasmatic oxidative stress.
Collapse
|