1
|
Liao MC, Lo CS, Pang YC, Yang WX, Su K, Zhao XP, Miyata KN, Peng J, Ingelfinger JR, Chan JSD, Zhang SL. Heterogeneous nuclear ribonucleoprotein F deficiency in mouse podocyte promotes podocytopathy mediated by methyltransferase-like 14 nuclear translocation resulting in Sirtuin 1 gene inhibition. Transl Res 2024; 267:1-9. [PMID: 38195017 DOI: 10.1016/j.trsl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein F (HnRNP F) is a key regulator for nucleic acid metabolism; however, whether HnRNP F expression is important in maintaining podocyte integrity is unclear. Nephroseq analysis from a registry of human kidney biopsies was performed. Age- and sex-matched podocyte-specific HnRNP F knockout (HnRNP FPOD KO) mice and control (HnRNP Ffl/fl) were studied. Podocytopathy was induced in male mice (more susceptible) either by adriamycin (ADR)- or low-dose streptozotocin treatment for 2 or 8 weeks. The mouse podocyte cell line (mPODs) was used in vitro. Nephroseq data in three human cohorts were varied greatly. Both sexes of HnRNP FPOD KO mice were fertile and appeared grossly normal. However, male 20-week-old HnRNP FPOD KO than HnRNP Ffl/fl mice had increased urinary albumin/creatinine ratio, and lower expression of podocyte markers. ADR- or diabetic- HnRNP FPOD KO (vs. HnRNP Ffl/fl) mice had more severe podocytopathy. Moreover, methyltransferase-like 14 (Mettl14) gene expression was increased in podocytes from HnRNP FPOD KO mice, further enhanced in ADR- or diabetic-treated HnRNP FPOD KO mice. Consequently, this elevated Mettl14 expression led to sirtuin1 (Sirt1) inhibition, associated with podocyte loss. In mPODs, knock-down of HnRNP F promoted Mettl14 nuclear translocation, which was associated with podocyte dysmorphology and Sirt1 inhibition-mediated podocyte loss. This process was more severe in ADR- or high glucose- treated mPODs. Conclusion: HnRNP F deficiency in podocytes promotes podocytopathy through activation of Mettl14 expression and its nuclear translocation to inhibit Sirt1 expression, underscoring the protective role of HnRNP F against podocyte injury.
Collapse
Affiliation(s)
- Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Yu-Chao Pang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Wen-Xia Yang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Ke Su
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada; Division of Nephrology, Department of Internal Medicine, Saint Louis University, 1008 Spring Ave. St Louis, MO 63110, USA
| | - Junzheng Peng
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Mass General Hospital for Children at Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| |
Collapse
|
2
|
Lee CT, Lin KD, Hsieh CF, Wang JY. SGLT2 Inhibitor Canagliflozin Alleviates High Glucose-Induced Inflammatory Toxicity in BV-2 Microglia. Biomedicines 2023; 12:36. [PMID: 38255143 PMCID: PMC10813070 DOI: 10.3390/biomedicines12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with diabetes mellitus can experience hyperglycemia, which affects brain function and produces cognitive impairment or neurodegeneration. Neuroinflammation is an important cause of cognitive dysfunction. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antihyperglycemic agents that reportedly possess anti-inflammatory properties and may produce beneficial cognitive effects. We hypothesized that SGLT2 inhibitors alleviate hyperglycemia-related inflammation in brain immune cells. Cultured BV-2 microglia were exposed to high glucose (HG) in the absence or presence of SGLT2 inhibitors including canagliflozin (Cana), dapagliflozin (Dapa), empagliflozin (Empa), and ertugliflozin (Ertu). Afterward, we evaluated the cytotoxic and inflammatory responses by specific biochemical assays. Treatments with non-toxic Cana or Dapa, but not Empa or Ertu, inhibited proliferation without cell death. Only Cana rescued BV-2 microglia from HG-induced cytotoxicity, including apoptosis or autophagic degradation. None of SGLT2 inhibitors affected the HG-stimulated induction of stress proteins HO-1 and HSP70. Also, compared to the other three SGLT2 inhibitors, Cana was better at inhibiting HG-induced oxidative/inflammatory stress, as evidenced by its ability to repress proinflammatory factors (e.g., oxygen free radicals, iNOS, NLRP3, IL-1β, and TNF-α) other than COX-2. Cana's action to alleviate HG insults was mediated not by altering SGLT2 protein expression, but by reducing HG-stimulated signaling activities of NFκB, JNK, p38, and PI3K/Akt pathways. Particularly, Cana imitated the effects of NFκB inhibitor on HG-induced iNOS and COX-2. Of the four SGLT2 inhibitors, Cana provided BV-2 microglia with the best protection against HG-induced inflammatory toxicity. Thus, Cana may help to reduce innate neuroimmune damage caused by hyperglycemia.
Collapse
Affiliation(s)
- Ching-Tien Lee
- Department of Medical and Healthcare Business, Hsin-Sheng College of Medical Care and Management, Taoyuan 32544, Taiwan;
| | | | - Cheng-Fang Hsieh
- Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jiz-Yuh Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
3
|
Su K, Zhao SL, Yang WX, Lo CS, Chenier I, Liao MC, Pang YC, Peng JZ, Miyata KN, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells. Antioxidants (Basel) 2023; 12:1715. [PMID: 37760019 PMCID: PMC10525648 DOI: 10.3390/antiox12091715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.
Collapse
Affiliation(s)
- Ke Su
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Shui-Ling Zhao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Wen-Xia Yang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Yu-Chao Pang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jun-Zheng Peng
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Kana N. Miyata
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Francois Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean Ethier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Baptiste Lattouf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pathologie et Biologie Cellulaire, Université de Montréal, 5415 Boul. de l’Assomption, Montréal, QC H1T 2M4, Canada;
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 709, Boston, MA 02114, USA;
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - John S. D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| |
Collapse
|
4
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Zhao XP, Chang SY, Pang Y, Liao MC, Peng J, Ingelfinger JR, Chan JSD, Zhang SL. Hedgehog interacting protein activates sodium-glucose cotransporter 2 expression and promotes renal tubular epithelial cell senescence in a mouse model of type 1 diabetes. Diabetologia 2023; 66:223-240. [PMID: 36260124 DOI: 10.1007/s00125-022-05810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Senescent renal tubular cells may be linked to diabetic kidney disease (DKD)-related tubulopathy. We studied mice with or without diabetes in which hedgehog interacting protein (HHIP) was present or specifically knocked out in renal tubules (HhipRT-KO), hypothesising that local deficiency of HHIP in the renal tubules would attenuate tubular cell senescence, thereby preventing DKD tubulopathy. METHODS Low-dose streptozotocin was employed to induce diabetes in both HhipRT-KO and control (Hhipfl/fl) mice. Transgenic mice overexpressing Hhip in renal proximal tubular cells (RPTC) (HhipRPTC-Tg) were used for validation, and primary RPTCs and human RPTCs (HK2) were used for in vitro studies. Kidney morphology/function, tubular senescence and the relevant molecular measurements were assessed. RESULTS Compared with Hhipfl/fl mice with diabetes, HhipRT-KO mice with diabetes displayed lower blood glucose levels, normalised GFR, ameliorated urinary albumin/creatinine ratio and less severe DKD, including tubulopathy. Sodium-glucose cotransporter 2 (SGLT2) expression was attenuated in RPTCs of HhipRT-KO mice with diabetes compared with Hhipfl/fl mice with diabetes. In parallel, an increased tubular senescence-associated secretory phenotype involving release of inflammatory cytokines (IL-1β, IL-6 and monocyte chemoattractant protein-1) and activation of senescence markers (p16, p21, p53) in Hhipfl/fl mice with diabetes was attenuated in HhipRT-KO mice with diabetes. In contrast, HhipRPTC-Tg mice had increased tubular senescence, which was inhibited by canagliflozin in primary RPTCs. In HK2 cells, HHIP overexpression or recombinant HHIP increased SGLT2 protein expression and promoted cellular senescence by targeting both ataxia-telangiectasia mutated and ataxia-telangiectasia and Rad3-related-mediated cell arrest. CONCLUSIONS/INTERPRETATION Tubular HHIP deficiency prevented DKD-related tubulopathy, possibly via the inhibition of SGLT2 expression and cellular senescence.
Collapse
Affiliation(s)
- Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Shiao-Ying Chang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yuchao Pang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Min-Chun Liao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Junzheng Peng
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - John S D Chan
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
7
|
Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J Immunol Res 2022; 2022:7990251. [PMID: 35059468 PMCID: PMC8764274 DOI: 10.1155/2022/7990251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, increased studies have shown the important regulatory role of circular RNA (circRNA) in cancer progression and development, including glioblastoma (GBM). However, the function of circRNAs in glioblastoma is still largely unclear. Here, we state that circFGFR1 is elevated in glioma cells, resulting in aggravated glioma aggravated malignancy. The upregulation of circFGFR1 also promotes glioma growth in mouse xenograft models. Furthermore, CXCR4 level in glioma cells is positively correlated with circFGFR1 level, and higher CXCR4 expression is found in circFGFR1 overexpression groups. The effect of circFGFR1 on glioma malignancy is abolished in CXCR4 knockout cells. Then, RIP, RNA pull-down, and luciferase reporter assay results showed that hsa-miR-224-5p directly binds to circFGFR1 and CXCR4 mRNA. The CXCR4 3′-untranslated region (UTR) activated luciferase activity was reduced with hsa-miR-224-5p transfection, while it is reversed when cotransfected with circFGFR1, indicating that circFGFR1 acts as a hsa-miR-244-5p sponge to increase CXCR4 expression. The hsa-miR-224-5p expression is negatively corrected with the glioma malignancy through inhibiting CXCR4 level. Besides, the circFGFR1-induced regulation in glioma malignancy is also abrogated in hsa-miR-224-5p knockout cells. Taken together, our findings suggest that circFGFR1 plays a critical role in the tumorigenic behaviors in glioma cells by upregulating CXCR4 expression via sponging to hsa-miR-224-5p. These findings provide a new perspective on circRNAs during GBM development.
Collapse
|
8
|
Miyata KN, Lo CS, Zhao S, Zhao XP, Chenier I, Yamashita M, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Deletion of heterogeneous nuclear ribonucleoprotein F in renal tubules downregulates SGLT2 expression and attenuates hyperfiltration and kidney injury in a mouse model of diabetes. Diabetologia 2021; 64:2589-2601. [PMID: 34370045 PMCID: PMC8992778 DOI: 10.1007/s00125-021-05538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
9
|
KDM1A Promotes Immunosuppression in Hepatocellular Carcinoma by Regulating PD-L1 through Demethylating MEF2D. J Immunol Res 2021; 2021:9965099. [PMID: 34307695 PMCID: PMC8270703 DOI: 10.1155/2021/9965099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background Immune checkpoint inhibitor therapy targeting antiprogrammed cell death-1 (anti-PD-1) or its ligand (anti-PD-L1) is effective in the treatment of some hepatocellular carcinomas (HCC). Hence, further identification of biological targets related to PD-L1 regulation in HCC is beneficial to improve the clinical efficacy of immunotherapy. Some HCC cells express lysine-specific demethylase 1A (KDM1A), which is implicated in the reduced survival time of patients. Here, we studied whether the level of PD-L1 and the immunosuppression are regulated by KDM1A and its miRNA in HCC cells. Methods In the present study, we studied clinical data from The Cancer Genome Atlas (TCGA) database. We performed qPCR and western blotting assays to measure the expression level of genes of interest. PD-L1 expression was also analyzed by FACS. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate gene knockout cells to investigate the relationships of genes of interest. We also developed a reporter gene assay (RGA) to explore the changes in T cell-induced antitumor immunity relative to PD-L1 expression in HCC cells. The binding between proteins and promoters or miRNAs and their target genes was explored by luciferase reporter assays. Results The results showed that PD-L1 and KDM1A were increased in HCC patients and cells, and KDM1A promoted the expression of PD-L1 in HCC cells. Our findings showed that the enhancement of PD-L1 expression was not attributed to mitochondrial dysfunction caused by increases in KDM1A in HCC cells. Furthermore, we observed a lower level of MEF2D methylation in HCC cells than in normal human liver cells. Demethylated MEF2D could bind to the promoter of PD-L1 and activate its expression, while KDM1A interacted with MEF2D and acted as a demethylase to reduce its methylation. Moreover, a new miRNA, miR-329-3p, targeting KDM1A was found to regulate the PD-L1 expression profile in HCC cells. In the xenograft model, the tumors treated with miR-329-3p showed growth inhibition. Conclusions Mechanistically, miR-329-3p inhibits tumor cellular immunosuppression and reinforces the response of tumor cells to T cell-induced cytotoxic effect by targeting KDM1A mRNA and downregulating its expression, which contributed to MEF2D demethylation and activation of PD-L1 expression.
Collapse
|
10
|
Zhao S, Lo CS, Miyata KN, Ghosh A, Zhao XP, Chenier I, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of Nrf2 in Renal Proximal Tubular Cells Stimulates Sodium-Glucose Cotransporter 2 Expression and Exacerbates Dysglycemia and Kidney Injury in Diabetic Mice. Diabetes 2021; 70:1388-1403. [PMID: 33820760 DOI: 10.2337/db20-1126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) overexpression in renal proximal tubular cells (RPTCs) on blood glucose, kidney injury, and sodium-glucose cotransporter 2 (Sglt2) expression in diabetic Akita Nrf2 -/-/Nrf2RPTC transgenic (Tg) mice. Immortalized human RPTCs (HK2) stably transfected with plasmid containing the SGLT2 promoter and human kidneys from patients with diabetes were also studied. Nrf2 overexpression was associated with increased blood glucose, glomerular filtration rate, urinary albumin-to-creatinine ratio, tubulointerstitial fibrosis, and Sglt2 expression in Akita Nrf2 -/-/Nrf2RPTC Tg mice compared with their Akita Nrf2 -/- littermates. In vitro, oltipraz or transfection of NRF2 cDNA stimulated SGLT2 expression and SGLT2 promoter activity in HK2, and these effects were inhibited by trigonelline or NRF2 siRNA. The deletion of the NRF2-responsive element (NRF2-RE) in the SGLT2 promoter abolished the stimulatory effect of oltipraz on SGLT2 promoter activity. NRF2 binding to the NRF2-RE of the SGLT2 promoter was confirmed by gel mobility shift assay and chromatin immunoprecipitation assays. Kidneys from patients with diabetes exhibited higher levels of NRF2 and SGLT2 in the RPTCs than kidneys from patients without diabetes. These results suggest a link by which NRF2 mediates hyperglycemia stimulation of SGLT2 expression and exacerbates blood glucose and kidney injury in diabetes.
Collapse
Affiliation(s)
- Shuiling Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Kana N Miyata
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Anindya Ghosh
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Chenier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Cailhier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Ethier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Janos G Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, and Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - John S D Chan
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
FOXO3a Protects against Kidney Injury in Type II Diabetic Nephropathy by Promoting Sirt6 Expression and Inhibiting Smad3 Acetylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5565761. [PMID: 34122724 PMCID: PMC8172321 DOI: 10.1155/2021/5565761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Although numerous reports have demonstrated a correlation between epithelial-mesenchymal transition (EMT) and renal fibrosis, how these processes lead to tubular dysfunction remains unclear. Here, we show that FOXO3a protects kidneys from injury in type II DN by increasing Sirt6 expression, which deacetylates Smad3 and inhibits its transcriptional activity. The results showed that progressive EMT in the kidneys from db/db mice is associated with Sirt6 downregulation and involved in tubular injury and dysfunction. The reduction of Sirt6 levels in db/db mice resulted in progressive kidney injury, indicating the protective role of Sirt6. Furthermore, Sirt6 was shown to directly bind to Smad3, a key downstream mediator of TGF-β, and could deacetylate it to inhibit its nuclear accumulation and transcriptional activity in HK2 cells. Besides, we demonstrate that FOXO3a activates Sirt6 expression by binding to its promoter. shRNA-induced FOXO3a knockdown in the kidneys of db/db mice exacerbated tubular injury and renal function loss. Mechanistically, FOXO3a protects against kidney injury in type II DN through the Sirt6/Smad3 axis. Thus, the pharmacological targeting of FOXO3a-mediated Sirt6/Smad3 signaling pathways may provide a novel strategy for treating type II DN.
Collapse
|
12
|
Wakisaka M, Nakamura K, Nakano T, Kitazono T. Roles of Sodium-Glucose Cotransporter 2 of Mesangial Cells in Diabetic Kidney Disease. J Endocr Soc 2021; 5:bvab083. [PMID: 34195526 PMCID: PMC8237847 DOI: 10.1210/jendso/bvab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
We have been studying the presence of sodium-glucose cotransporter 2 (SGLT2) in mesangial cells and pericytes since 1992. Recent large placebo-controlled studies of SGLT2 inhibitors in patients with type 2 diabetes mellitus have reported desirable effects of the inhibitors on the diabetic kidney and the diabetic heart. Most studies have indicated that these effects of SGLT2 inhibitors could be mediated by the tubuloglomerular feedback system. However, a recent study about urine sodium excretion in the presence of an SGLT2 inhibitor did not show any increases in urine sodium excretion. A very small dose of an SGLT2 inhibitor did not inhibit SGLT2 at the S1 segment of proximal tubules. Moreover, SGLT2 inhibition protects against progression in chronic kidney disease with and without type 2 diabetes. In these circumstances, the tubuloglomerular feedback hypothesis involves several theoretical concerns that must be clarified. The presence of SGLT2 in mesangial cells seems to be very important for diabetic nephropathy. We now propose a novel mechanism by which the desirable effects of SGLT2 inhibitors on diabetic nephropathy are derived from the direct effect on SGLT2 expressed in mesangial cells.
Collapse
Affiliation(s)
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| |
Collapse
|
13
|
Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (Lond) 2021; 135:943-961. [PMID: 33822013 DOI: 10.1042/cs20210094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.
Collapse
|
14
|
Miyata KN, Zhang SL, Chan JS. The Rationale and Evidence for SGLT2 Inhibitors as a Treatment for Nondiabetic Glomerular Disease. GLOMERULAR DISEASES 2021; 1:21-33. [PMID: 36751486 PMCID: PMC9677741 DOI: 10.1159/000513659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023]
Abstract
Background Recent studies show that sodium-glucose cotransporter 2 inhibitors (SGLT2i), originally approved for glycemic control in patients with type 2 diabetes, also exert renoprotective effects independently from effects on dysglycemia. Moreover, recent work indicates that SGLT2i treatment may be effective in patients with nondiabetic chronic kidney disease, including primary and secondary glomerular diseases. Summary SGLT2i lower blood glucose by blocking glucose resorption in the early renal proximal tubule through the glucose transporter, SGLT2, leading to enhanced urinary glucose excretion. Recent studies indicate that SGLT2i may have pleiotropic effects on cells other than proximal tubular cells. SGLT2i reduce the glomerular workload by decreasing the intraglomerular pressure, thus ameliorating hyperfiltration, if present, and may also decrease systemic blood pressure. SGLT2i may also act directly on endothelial cells, possibly via modulating the effects of adhesion molecules and reducing inflammatory cytokines and reactive oxygen species. SGLT2i may have direct anti-inflammatory and antifibrotic effects on renal tubules. Some reports suggest direct protective effects on podocytes and mesangial cells as well. Here, we provide a review of the potential mechanisms of renoprotection, therapeutic utility, and potential side effects of SGLT2i in patients with nondiabetic glomerular diseases, based on data from studies carried out in cells, experimental animals, and humans. Key Messages SGLT2i may be a promising addition to the glomerular disease treatment armamentarium. However, it is unclear at what point of the natural history of specific glomerular diseases (whether this is immune or nonimmune mediated) SGLT2i can be beneficial. Additionally, further studies are needed to assess the long-term efficacy and safety of SGLT2i in patients with nondiabetic glomerular diseases.
Collapse
Affiliation(s)
- Kana N. Miyata
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada,Division of Nephrology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Shao-Ling Zhang
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada
| | - John S.D. Chan
- Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada,*John S.D. Chan, Département de Médecine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Tour Viger-Pavillon R, 900 Saint Denis Street, Montreal, QC H2X 0A9 (Canada),
| |
Collapse
|
15
|
PKC Regulates YAP Expression through Alternative Splicing of YAP 3'UTR Pre-mRNA by hnRNP F. Int J Mol Sci 2021; 22:ijms22020694. [PMID: 33445676 PMCID: PMC7828143 DOI: 10.3390/ijms22020694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/14/2023] Open
Abstract
The Yes-associated protein (YAP) is a transcriptional co-activator that plays critical roles in organ development and tumorigenesis, and is verified to be inhibited by the Hippo signaling pathway. In the present study, we show that the YAP 3′UTR is alternatively spliced to generate a novel 950 bp 3′UTR mRNA from the full length 3′UTR region (3483 bp) in human cancer cells. The ratio of full length 3′UTR YAP mRNA to alternatively spliced 3′UTR YAP mRNA is up-regulated by exposure of the cells to PKC inhibitor chelerythrine chloride. Further study using luciferase reporter assay showed that the expression of the alternatively spliced 3′UTR mRNA is much lower compared with the full length 3′UTR mRNA, suggesting that alternatively spliced 3′UTR YAP mRNA may have a shorter half-life than full length 3′UTR mRNA. Interestingly, PKC represses YAP 3′UTR–mediated mRNA stability is dependent on a splicing factor, hnRNP F. Activation of PKC induces nuclear translocation of cytosolic hnRNP F. Ectopic expression of hnRNP F enhances YAP 3′UTR splicing. Our results suggest that hnRNP F regulates YAP 3′UTR-mediated mRNA stability in an alternative splicing-dependent manner, and PKC regulated YAP expression is dependent on nuclear translocation of hnRNP F in human cancer cell lines.
Collapse
|
16
|
Miyata KN, Zhao S, Wu CH, Lo CS, Ghosh A, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Comparison of the effects of insulin and SGLT2 inhibitor on the Renal Renin-Angiotensin system in type 1 diabetes mice. Diabetes Res Clin Pract 2020; 162:108107. [PMID: 32173417 DOI: 10.1016/j.diabres.2020.108107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023]
Abstract
AIMS SGLT2 inhibitors have been proposed as an adjunct to insulin therapy for glycemic control in type 1 diabetes (T1D) patients. However, concern has been raised due to an increase in renin-angiotensin-system (RAS) activity reported in a clinical trial in which an SGLT2 inhibitor was added while insulin dose was reduced in T1D patients. We previously reported that insulin inhibits intrarenal angiotensinogen (Agt) gene transcription and RAS activation. We hypothesized that insulin, rather than SGLT2 inhibition might regulate the intrarenal RAS. METHODS We compared RAS activity in non-diabetic wild type mice, Akita mice (T1D model) and Akita mice treated with insulin or the SGLT2 inhibitor canagliflozin. RESULTS Treatment of Akita mice with insulin or canagliflozin produced similar reductions in blood glucose, whereas insulin, but not canagliflozin, reduced elevated systolic blood pressure. Akita mice exhibited increased renal Agt mRNA/protein expression, which was attenuated by insulin, but not by canagliflozin. Furthermore, insulin was more effective than canagliflozin in lowering kidney weight and albuminuria. CONCLUSIONS Insulin, but not canagliflozin, lowers intrarenal RAS activity in Akita mice. Our findings can be of potential clinical importance, especially for T1D patients who are not on RAS inhibitors at the time of adding SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chin-Han Wu
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Anindya Ghosh
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, 5415 boul. l'Assomption, Montréal, Quebec H1T 2M4, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, 15 Parkman Street, WAC 709, Boston, MA 02114-3117, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| |
Collapse
|