1
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
3
|
Wang S, Riedstra CP, Zhang Y, Anandh S, Dudley AC. PTEN-restoration abrogates brain colonisation and perivascular niche invasion by melanoma cells. Br J Cancer 2024; 130:555-567. [PMID: 38148377 PMCID: PMC10876963 DOI: 10.1038/s41416-023-02530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options. Highly invasive melanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence. PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described. METHODS We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion. RESULTS We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion. CONCLUSIONS PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma cells to both survive and spread along the brain vasculature.
Collapse
Affiliation(s)
- Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline P Riedstra
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- The University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Yamamoto A, Toba M, Takahashi Y, Takakura Y. Pharmacokinetic Approach for the Elucidation of Elevated Plasma Small Extracellular Vesicle (sEV) Concentration in Cancer. J Pharm Sci 2023; 112:1967-1974. [PMID: 37001861 DOI: 10.1016/j.xphs.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The abundance of circulating plasma small extracellular vesicles (sEVs) has been reported to be elevated in cancer; however, the underlying mechanism remains unclear. In this study, a pharmacokinetic approach was used to determine the factors contributing to elevated plasma sEV levels during cancer in a tumor-bearing mouse model. Mouse plasma-derived sEVs (MP-sEVs) isolated from tumor-bearing mice showed increased protein concentrations and physicochemical characteristics comparable to MP-sEVs isolated from healthy mice. The steady-state concentration of sEVs is determined by the balance between the MP-sEV production and clearance. Thus, to determine whether tumorigenesis influences sEV clearance, isolated MP-sEVs were intravenously administered to either tumor-bearing or healthy mice. The results showed minimal differences in sEV clearance rates, suggesting that sEV production is the driving force of elevated MP-sEV concentrations. Lastly, CD63-gLuc stably expressing B16BL6-bearing mice were used to estimate the contribution of tumor cell-derived sEVs in the plasma. The gLuc activity of the MP-sEVs isolated was below the limit of detection, and it was estimated that the tumor cell-derived sEVs comprised at most 0.5% of the total MP-sEVs. Taken together, these results suggest that cells other than tumor cells contribute to elevated plasma sEV levels in cancer.
Collapse
Affiliation(s)
- Aki Yamamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mihiro Toba
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Patel S, Guo MK, Abdul Samad M, Howe KL. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Front Cardiovasc Med 2023; 10:1202187. [PMID: 37304965 PMCID: PMC10250645 DOI: 10.3389/fcvm.2023.1202187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-enclosed structures released by various cell types that play a critical role in intercellular communication. In atherosclerosis, EVs have been implicated in multiple pathophysiological processes, including endothelial dysfunction, inflammation, and thrombosis. This review provides an up-to-date overview of our current understanding of the roles of EVs in atherosclerosis, emphasizing their potential as diagnostic biomarkers and their roles in disease pathogenesis. We discuss the different types of EVs involved in atherosclerosis, the diverse cargoes they carry, their mechanisms of action, and the various methods employed for their isolation and analysis. Moreover, we underscore the importance of using relevant animal models and human samples to elucidate the role of EVs in disease pathogenesis. Overall, this review consolidates our current knowledge of EVs in atherosclerosis and highlights their potential as promising targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mandy Kunze Guo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Majed Abdul Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
7
|
EV-out or EV-in: Tackling cell-to-cell communication within the tumor microenvironment to enhance anti-tumor efficacy using extracellular vesicle-based therapeutic strategies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Wang L, Du DD, Zheng ZX, Shang PF, Yang XX, Sun C, Wang XY, Tang YJ, Guo XL. Circulating galectin-3 promotes tumor-endothelium-adhesion by upregulating ICAM-1 in endothelium-derived extracellular vesicles. Front Pharmacol 2022; 13:979474. [PMID: 36386163 PMCID: PMC9642840 DOI: 10.3389/fphar.2022.979474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
The adhesion of tumor cells to vascular endothelial cells is an important process of tumor metastasis. Studies have shown that tumor could educate vascular endothelial cells to promote tumor metastasis through many ways. However, the effect of tumor cells on the functions of vascular endothelial cells-derived extracellular vesicles (H-EVs) and the mechanisms underlying their effects in tumor-endothelium adhesion in metastasis remain mysterious. In this study, we found that H-EVs promoted the adhesion of triple negative breast cancer cell to endothelial cells and cirGal-3 enhanced the adhesion-promoting effects of H-EVs. The underlying mechanism was related to the upregulation of glycolysis in endothelial cells induced by cirGal-3 which led to the increase of the ICAM-1 expression and its transmission to MDA-MB-231 cells by H-EVs. Targeting of cirGal-3 or glycolysis of vascular endothelium in breast cancer therefore represents a promising therapeutic strategy to reduce metastasis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dan-Dan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zong-Xue Zheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng-Fei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Yan Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
10
|
Kim IJ, Xu Y, Nam KH. Spectroscopic Analysis of Fe Ion-Induced Fluorescence Quenching of the Green Fluorescent Protein ZsGreen. J Fluoresc 2021; 31:307-314. [PMID: 33411229 DOI: 10.1007/s10895-020-02656-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
The fluorescence of fluorescent proteins (FPs) is quenched when they are exposed to certain transition metals, which makes them promising receptor materials for metal biosensors. In this study, we report the spectroscopic analysis of metal-induced fluorescence quenching of the fluorescent protein ZsGreen from Zoanthus sp. The fluorescence of ZsGreen was reduced to 2%, 1%, and 20% of its original intensity by Fe2+, Fe3+, and Cu2+, respectively. Metal titration experiments indicated that the dissociation constants of Fe2+, Fe3+, and Cu2+ for ZsGreen were 11.5, 16.3, and 68.2 μM, respectively. The maximum binding capacities of ZsGreen for Fe2+, Fe3+, and Cu2+ were 103.3, 102.2, and 82.9, respectively. Reversibility experiments indicated that the fluorescence of ZsGreen, quenched by Fe2+ and Fe3+, could be recovered, but only to about 15% of its original intensity, even at a 50-fold molar excess of EDTA. In contrast, the fluorescence quenched by Cu2+ could be recovered up to 89.47% of its original intensity at a Cu2+: EDTA ratio of 1:5. The homology model of ZsGreen revealed that the protein does not share any metal-binding sites with previously reported FPs, suggesting that ZsGreen contains unprecedented binding sites for fluorescence quenching metal ions.
Collapse
Affiliation(s)
- In Jung Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, D-17487, Greifswald, Germany
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
11
|
Alves dos Santos K, Clemente dos Santos IC, Santos Silva C, Gomes Ribeiro H, de Farias Domingos I, Nogueira Silbiger V. Circulating Exosomal miRNAs as Biomarkers for the Diagnosis and Prognosis of Colorectal Cancer. Int J Mol Sci 2020; 22:ijms22010346. [PMID: 33396209 PMCID: PMC7795745 DOI: 10.3390/ijms22010346] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract. It is a multifactorial disease that involves environmental factors, genetic factors, and lifestyle factors. Due to the absence of specific and sensitive biomarkers, CRC patients are usually diagnosed at an advanced stage and consequently suffer from a low 5-year overall survival rate. Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis of patients with CRC remains unfavorable due to local and distant metastases. Several studies have shown that small noncoding RNAs, such as microRNAs packed in exosomes, are potential biomarkers in various types of cancers, including CRC, and that they can be detected in a stable form in both serum and plasma. In this review, we report the potential of circulating exosomal miRNAs to act as biomarkers for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Katiusse Alves dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Isabelle Cristina Clemente dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Carollyne Santos Silva
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Hériks Gomes Ribeiro
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Igor de Farias Domingos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
| | - Vivian Nogueira Silbiger
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
- Correspondence: ; Tel.: +55-84-99939-4224
| |
Collapse
|
12
|
Purification Methods and the Presence of RNA in Virus Particles and Extracellular Vesicles. Viruses 2020; 12:v12090917. [PMID: 32825599 PMCID: PMC7552034 DOI: 10.3390/v12090917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fields of extracellular vesicles (EV) and virus infections are marred in a debate on whether a particular mRNA or non-coding RNA (i.e., miRNA) is packaged into a virus particle or copurifying EV and similarly, whether a particular mRNA or non-coding RNA is contained in meaningful numbers within an EV. Key in settling this debate, is whether the purification methods are adequate to separate virus particles, EV and contaminant soluble RNA and RNA:protein complexes. Differential centrifugation/ultracentrifugation and precipitating agents like polyethylene glycol are widely utilized for both EV and virus purifications. EV are known to co-sediment with virions and other particulates, such as defective interfering particles and protein aggregates. Here, we discuss how encased RNAs from a heterogeneous mixture of particles can be distinguished by different purification methods. This is particularly important for subsequent interpretation of whether the RNA associated phenotype is contributed solely by virus or EV particles or a mixture of both. We also discuss the discrepancy of miRNA abundance in EV from different input material.
Collapse
|
13
|
McCann JV, Bischoff SR, Zhang Y, Cowley DO, Sanchez-Gonzalez V, Daaboul GD, Dudley AC. Reporter mice for isolating and auditing cell type-specific extracellular vesicles in vivo. Genesis 2020; 58:e23369. [PMID: 32543746 DOI: 10.1002/dvg.23369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are abundant, lipid-enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type-specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR-Cas9-mediated genome editing to generate mice bearing a CD63-emGFPloxP/stop/loxP knock-in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage-specific Cre recombinase driver mice. As proof-of-principle, we have crossed these mice with Cdh5-CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma-purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co-express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR-126, miR-30c, and miR-125b). This new mouse strain should be a useful genetic tool for generating cell type-specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.
Collapse
Affiliation(s)
- James V McCann
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven R Bischoff
- Animal Models Core, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,NovoHelix, Stow, Ohio, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, Virginia, USA
| | - Dale O Cowley
- Animal Models Core, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, Virginia, USA.,Emily Couric Cancer Center, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Qiu L, Wang J, Chen M, Chen F, Tu W. Exosomal microRNA‑146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2‑mediated PI3K/Akt axis. Int J Mol Med 2020; 46:609-620. [PMID: 32626953 PMCID: PMC7307828 DOI: 10.3892/ijmm.2020.4634] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The carrier role of exosomes from human umbilical cord mesenchymal stem cells (hUCMSCs) containing microRNAs (miRNAs) has been implicated in gene and drug therapy. The aim of the present study was to investigate the role of exosomal microRNA-146a (miR-146a) from hUCMSCs in ovarian cancer (OC). Following the generation of docetaxel (DTX)-resistant SKOV3 cells and taxane-resistant A2780 cells, exosomes were isolated from hUCMSCs and added to the chemoresistant cells. Microarray analysis revealed that miR-146a expression was upregulated in DTX/SKOV3 cells among 15 ectopically expressed miRNAs. Analysis using the StarBase and miRSearch databases demonstrated that miR-146a targeted laminin γ2 (LAMC2), which was further verified using dual-luciferase reporter assays. Subsequently, miR-146a inhibitor or LAMC2 overexpression vectors were transfected into hUCMSCs or OC cells, respectively, and their effects on growth and chemoresistance in OC cells were assessed. The hUCMSC-derived exosomes reduced cell growth and chemoresistance in OC. Furthermore, hUCMSC-derived exosomes with miR-146a expression knocked down increased OC cell growth and chemoresistance, which was mediated by the PI3K/Akt signaling pathway via LAMC2.
Collapse
Affiliation(s)
- Liya Qiu
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Jiakun Wang
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Mei Chen
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Fengyun Chen
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Wenluo Tu
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
15
|
Extracellular Vesicles and Cancer: A Focus on Metabolism, Cytokines, and Immunity. Cancers (Basel) 2020; 12:cancers12010171. [PMID: 32015297 PMCID: PMC7016590 DOI: 10.3390/cancers12010171] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
A better understanding of the mechanisms of cell communication between cancer cells and the tumor microenvironment is crucial to develop personalized therapies. It has been known for a while that cancer cells are metabolically distinct from other non-transformed cells. This metabolic phenotype is not peculiar to cancer cells but reflects the characteristics of the tumor microenvironment. Recently, it has been shown that extracellular vesicles are involved in the metabolic switch occurring in cancer and tumor-stroma cells. Moreover, in an immune system, the metabolic programs of different cell subsets are distinctly associated with their immunological function, and extracellular vesicles could be a key factor in the shift of cell fate modulating cancer immunity. Indeed, during tumor progression, tumor-associated immune cells and fibroblasts acquire a tumor-supportive and anti-inflammatory phenotype due to their interaction with tumor cells and several findings suggest a role of extracellular vesicles in this phenomenon. This review aims to collect all the available evidence so far obtained on the role of extracellular vesicles in the modulation of cell metabolism and immunity. Moreover, we discuss the possibility for extracellular vesicles of being involved in drug resistance mechanisms, cancer progression and metastasis by inducing immune-metabolic effects on surrounding cells.
Collapse
|