1
|
Zhang Y, Zhou H, Wang X, Mu G, Qian F. Effect of cold plasma synergistic acid induction on the quality characteristics of casein gel. Food Chem 2025; 468:142401. [PMID: 39667237 DOI: 10.1016/j.foodchem.2024.142401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Dielectric barrier discharge cold plasma (DBD-CP) technology was used to modify casein acid-gel. The effect of DBD-CP on gel was evaluated in terms of gel quality, texture, antibacterial activity and structure. The results showed that the water holding capacity (WHC) and electrical conductivity of the gel were significantly increased after DBD-CP treatment, and WHC was increased from 66.97 % to 90.68 % (p < 0.05). The springiness of the gel is low frequency dependent, the α-helix decreases (22.12-14.01 %), the β-angle increases (19.98-32.16 %), and hydrophobic and disulfide bonds become the main chemical forces. WHC is positively correlated with conductivity and hardness, and negatively correlated with springiness. DBD-CP promoted protein aggregation and modified the properties of acid-gel, and the gel quality of indirect processing (IP) group was better than that of direct processing (DP) group. The best casein acid-gel was obtained under the conditions of 50 V for 60 s.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hongchi Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Artamonov MY, Pyatakovich FA, Minenko IA. Synergistic Antioxidant Effects of Molecular Hydrogen and Cold Atmospheric Plasma in Enhancing Mesenchymal Stem Cell Therapy. Antioxidants (Basel) 2024; 13:1584. [PMID: 39765910 PMCID: PMC11673711 DOI: 10.3390/antiox13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
In regenerative medicine, mesenchymal stem cells (MSCs) have shown their importance and potential in tissue reconstruction and immune system modification. However, such cells' potential is often diminished by factors such as oxidative stress, immune rejection, and inadequate engraftment. This review highlights the role of molecular hydrogen (H2) and cold atmospheric plasma (CAP) as adjunct therapies to improve the effectiveness of MSC therapy. H2 has strong antioxidative and anti-inflammatory actions as it quenches reactive oxygen species and positively stimulates the Nrf2 pathway that promotes MSC survival and life. CAP, being a modulated source of ROS and RNS, also assists MSCs by altering the cellular redox balance, thus facilitating cellular adaptation, migration, and differentiation. H2 and CAP in conjunction with each other assist in establishing an ambience favorable for promoting MSCs' survival and growth abilities, and reduce the healing time in various pathways such as wound, neuroprotection, and ischemia. Besides these concerns, this review also covers the best administration routes and doses of H2 and CAP together with MSCs in therapy. This study informs on a novel dual method aimed at improving the outcome of MSC therapy while adding several molecular targets and relevant clinical uses concerning these therapies. Research of the future has to deal with bettering these protocols so that the therapeutic benefits can be maximized without long-term implications for clinical applications.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Department of Physical Medicine and Rehabilitation, Penn Medicine Princeton Health, Plainsboro, NJ 08536, USA
| | - Felix A. Pyatakovich
- Department of Internal Medicine, Belgorod State University, 308015 Belgorod, Russia;
| | - Inessa A. Minenko
- Department of Rehabilitation, Sechenov Medical University, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Espona-Noguera A, Živanić M, Smits E, Bogaerts A, Privat-Maldonado A, Canal C. Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma-Derived Oxidants in an In Ovo Cancer Model. Macromol Biosci 2024; 24:e2400213. [PMID: 38899954 DOI: 10.1002/mabi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP-treated hydrogels (PTHs) are being explored for the local administration of CAP-derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time- and cost-effective tool for developing hydrogel-based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP-treated Alg-HA condition. Moreover, the CAP-treated Alg-HA formulation alters the extracellular matrix composition, which may help combat drug-resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg-based PTHs containing HA and CAP-derived RONS for cancer treatment.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
| | - Milica Živanić
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, 2610, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Cristina Canal
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos II, Barcelona, 28029, Spain
| |
Collapse
|
4
|
Sabrin S, Hong SH, Karmokar DK, Habibullah H, Fitridge R, Short RD, Szili EJ. Healing wounds with plasma-activated hydrogel therapy. Trends Biotechnol 2024:S0167-7799(24)00190-2. [PMID: 39209604 DOI: 10.1016/j.tibtech.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wound infections are a silent pandemic in danger of becoming a global healthcare crisis. Innovations to control infections and improve healing are required. In the context of this challenge, researchers are exploiting plasma-activated hydrogel therapy (PAHT) for use either alone or in combination with other antimicrobial strategies. PAHT involves the cold atmospheric pressure plasma activation of hydrogels with reactive oxygen and nitrogen species to decontaminate infections and promote healing. This opinion article describes PAHT for wound treatment and provides an overview of current research and outstanding challenges in translating the technology for medical use. A 'blueprint' of an autonomous PAHT is presented in the final section that can move the management and treatment of wounds from the clinical setting to the community.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Robert Fitridge
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK.
| | - Endre J Szili
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
5
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
6
|
Biazar E, Aavani F, Zeinali R, Kheilnezhad B, Taheri K, Yahyaei Z. Delivery Systems for Plasma-reactive Species and their Applications in the Field of Biomedicine. Curr Drug Deliv 2024; 21:1497-1514. [PMID: 38251691 DOI: 10.2174/0115672018268207231124014915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 01/23/2024]
Abstract
Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Reza Zeinali
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universität Politècnica de Catalunya, Rambla Sant Nebridi, 22, Terrassa 08222, Spain
| | - Bahareh Kheilnezhad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Kiana Taheri
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Zahra Yahyaei
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
7
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
8
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
9
|
Gaur N, Patenall BL, Ghimire B, Thet NT, Gardiner JE, Le Doare KE, Ramage G, Short B, Heylen RA, Williams C, Short RD, Jenkins TA. Cold Atmospheric Plasma-Activated Composite Hydrogel for an Enhanced and On-Demand Delivery of Antimicrobials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19989-19996. [PMID: 37040527 PMCID: PMC10141252 DOI: 10.1021/acsami.3c01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the concept of a versatile drug-loaded composite hydrogel that can be activated using an argon-based cold atmospheric plasma (CAP) jet to deliver both a drug and CAP-generated molecules, concomitantly, in a tissue target. To demonstrate this concept, we utilized the antibiotic gentamicin that is encapsulated in sodium polyacrylate (PAA) particles, which are dispersed within a poly(vinyl alcohol) (PVA) hydrogel matrix. The final product is a gentamicin-PAA-PVA composite hydrogel suitable for an on-demand triggered release using CAP. We show that by activating using CAP, we can effectively release gentamicin from the hydrogel and also eradicate the bacteria effectively, both in the planktonic state and within a biofilm. Besides gentamicin, we also successfully demonstrate the applicability of the CAP-activated composite hydrogel loaded with other antimicrobial agents such as cetrimide and silver. This concept of a composite hydrogel is potentially adaptable to a range of therapeutics (such as antimicrobials, anticancer agents, and nanoparticles) and activatable using any dielectric barrier discharge CAP device.
Collapse
Affiliation(s)
- Nishtha Gaur
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| | | | - Bhagirath Ghimire
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Naing T. Thet
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | | | | | - Gordon Ramage
- Glasgow
Dental School, School of Medicine, University
of Glasgow, Glasgow G12 8TA, U.K.
| | - Bryn Short
- Glasgow
Dental School, School of Medicine, University
of Glasgow, Glasgow G12 8TA, U.K.
| | | | - Craig Williams
- Microbiology
Department, Lancaster Royal Infirmary, University
of Lancaster, Lancaster LA1 4YW, U.K.
| | - Robert D. Short
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Toby A. Jenkins
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
10
|
Živanić M, Espona‐Noguera A, Lin A, Canal C. Current State of Cold Atmospheric Plasma and Cancer-Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205803. [PMID: 36670068 PMCID: PMC10015903 DOI: 10.1002/advs.202205803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Indexed: 05/19/2023]
Abstract
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.
Collapse
Affiliation(s)
- Milica Živanić
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Albert Espona‐Noguera
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
- Center for Oncological Research (CORE)Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Cristina Canal
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| |
Collapse
|
11
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
12
|
Mistry H, Thakor R, Bariya H. Biogenesis and characterization of proficient silver nanoparticles employing marine procured fungi Hamigera pallida and assessment of their antioxidative, antimicrobial and anticancer potency. Biotechnol Lett 2022; 44:1097-1107. [PMID: 35922647 DOI: 10.1007/s10529-022-03287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the anticancer potential of biosynthesized silver nanoparticles using marine derived fungi Hamigera pallida with their antibacterial and antioxidant activities. RESULTS The biosynthesis of silver nanoparticles (AgNPs) was assessed by the change in color from bright yellow to dark brown. UV-Visible spectroscopy revealed its stability at 429 nm; ATR-FTIR spectroscopy revealed the functional group responsible for its production; X-Ray Diffraction revealed its crystalline FCC structure resembling the peaks in the XRD pattern, corresponding to (110), (111), (200), and (311) planes; TEM imaging revealed its spherical morphology with an average particle size of 5.85 ± 0.84 nm ranging from 3.69 to 16.11 nm and Tauc's plot analysis revealed a band gap energy of 2.22 eV, revealing aptitude of AgNPs as a semiconductors. The subsequent characterization results revealed the effective synthesis of silver nanoparticles. The biosynthesized AgNPs were found to have significant antimicrobial effect against three Gram-positive and three Gram-negative bacteria. They also demonstrated higher antioxidative potential by demonstrating strong radical scavenging activity against DPPH (2, 2-diphenyl-1-picrylhydrazyl). AgNPs showed highest anticancer activity (62.69 ± 1.73%) against human breast cancer (MCF-7) cell line at 100 µg/mL with the IC50 value of 66.07 ± 2.17 µg/mL. CONCLUSIONS This study revealed the prospect for further utilization of AgNPs by Cell free filtrate of Hamigera pallida as an antibacterial, antioxidative and anticancer agents.
Collapse
Affiliation(s)
- Harsh Mistry
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rashmi Thakor
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Himanshu Bariya
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| |
Collapse
|
13
|
Miebach L, Freund E, Cecchini AL, Bekeschus S. Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer's Lactate Solutions in a Model of Peritoneal Carcinomatosis. Antioxidants (Basel) 2022; 11:antiox11081439. [PMID: 35892641 PMCID: PMC9331608 DOI: 10.3390/antiox11081439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil;
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Correspondence: ; Tel.: +49-3834-554-3948
| |
Collapse
|
14
|
Solé-Martí X, Vilella T, Labay C, Tampieri F, Ginebra MP, Canal C. Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose. Biomater Sci 2022; 10:3845-3855. [PMID: 35678531 DOI: 10.1039/d2bm00308b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.
Collapse
Affiliation(s)
- Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Tània Vilella
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
15
|
Kim S, Lee HY, Lee HR, Jang JY, Yun JH, Shin YS, Kim CH. Liquid-type plasma-controlled in situ crosslinking of silk-alginate injectable gel displayed better bioactivities and mechanical properties. Mater Today Bio 2022; 15:100321. [PMID: 35757030 PMCID: PMC9214807 DOI: 10.1016/j.mtbio.2022.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Silk is a promising biomaterial for injectable hydrogel, but its long-gelation time and cytotoxic crosslinking methods are the main obstacles for clinical application. Here, we purpose a new in situ crosslinking technique of silk-alginate (S-A) injectable hydrogel using liquid-type non-thermal atmospheric plasma (LTP) in vocal fold (VF) wound healing. We confirmed that LTP induces the secondary structure of silk in a dose-dependent manner, resulting in improved mechanical properties. Significantly increased crosslinking of silk was observed with reduced gelation time. Moreover, controlled release of nitrate, an LTP effectors, from LTP-treated S-A hydrogel was detected over 7 days. In vitro experiments regarding biocompatibility showed activation of fibroblasts beyond the non-cytotoxicity of LTP-treated S-A hydrogels. An in vivo animal model of VF injury was established in New Zealand White rabbits. Full-thickness injury was created on the VF followed by hydrogel injection. In histologic analyses, LTP-treated S-A hydrogels significantly reduced a scar formation and promoted favorable wound healing. Functional analysis using videokymography showed eventual viscoelastic recovery. The LTP not only changes the mechanical structures of a hydrogel, but also has sustained biochemical effects on the damaged tissue due to controlled release of LTP effectors, and that LTP-treated S-A hydrogel can be used to enhance wound healing after VF injury.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, College of Medicine, Inha University, Incheon, South Korea.,Department of Medical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Hye-Young Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hye Ran Lee
- Department of Otorhino-laryngology-Head and Neck Surgery, Catholic Kwandong University, College of Medicine, Incheon, South Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| |
Collapse
|
16
|
Kim S, Kim CH. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021; 9:biomedicines9111700. [PMID: 34829929 PMCID: PMC8615748 DOI: 10.3390/biomedicines9111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence:
| |
Collapse
|
17
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Lee HR, Lee HY, Heo J, Jang JY, Shin YS, Kim CH. Liquid-type nonthermal atmospheric plasma enhanced regenerative potential of silk-fibrin composite gel in radiation-induced wound failure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112304. [PMID: 34474855 DOI: 10.1016/j.msec.2021.112304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Delayed wound healing in heavily irradiated areas is a serious clinical complication that makes widespread therapeutic use of radiation difficult. Efficient treatment strategies are urgently required for addressing radiation-induced wound failure. Herein, we applied liquid-type nonthermal atmospheric plasma (LTP) to a silk-fibrin (SF) composite gel to investigate whether controlled release of LTP from SF hydrogel not only induced favorable cellular events in an irradiated wound bed but also modulated the SF hydrogel microstructure itself, eventually facilitating the development of a regenerative microenvironment. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed that LTP modulated the microstructures and chemical bindings of the SF gel. Improved cell viability, morphology, and extracellular matrix depositions by the LTP-treated SF hydrogel were identified with wound-healing assays and immunofluorescence staining. An irradiated random-pattern skin-flap animal model was established in six-week-old C57/BL6 mice. Full-thickness skin was flapped from the dorsum and SF hydrogel was placed underneath the raised skin flap. Postoperative histological analysis of the irradiated random-pattern skin-flap mice model suggested that LTP-treated SF hydrogel much improved wound regeneration and the inflammatory response compared to the SF hydrogel- and sham-treated groups. These results support that LTP-treated SF hydrogel significantly enhanced irradiated wound healing. Cellular and tissue reactions to released LTP from the SF hydrogel were favorable for the regenerative process of the wound; furthermore, mechanochemical properties of the SF gel were improved by LTP.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Hye-Young Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Jaesung Heo
- Department of Radiation Oncology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
20
|
Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat Protoc 2021; 16:2826-2850. [PMID: 33990800 DOI: 10.1038/s41596-021-00521-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
Abstract
Cold atmospheric plasma (CAP) is a potential anticancer therapy. CAP has cytotoxic effects when applied either directly to cancer cell cultures or indirectly through plasma-conditioned liquids. This protocol describes how to treat adherent cultures of human cancer cell lines with CAP or plasma-conditioned medium and determine cell viability following treatment. The protocol also includes details on how to quantify the reactive oxygen and nitrogen species present in medium following CAP treatment, using chemical probes using UV-visible or fluorescence spectroscopy. CAP treatment takes ~30 min, and 3 h are required to complete quantification of reactive oxygen and nitrogen species. By providing a standardized protocol for evaluation of the effects of CAP and plasma-conditioned medium, we hope to facilitate the comparison and interpretation of results seen across different laboratories.
Collapse
|
21
|
Tampieri F, Ginebra MP, Canal C. Quantification of Plasma-Produced Hydroxyl Radicals in Solution and their Dependence on the pH. Anal Chem 2021; 93:3666-3670. [PMID: 33596048 PMCID: PMC7931173 DOI: 10.1021/acs.analchem.0c04906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HO radicals are the most important reactive species generated during water treatment by non-thermal plasma devices. In this letter, we report the first quantification of the steady-state concentration and lifetime of plasma-produced hydroxyl radicals in water solutions at pH 3 and 7, and we discuss the differences based on their reactivity with other plasma-generated species. Finally, we show to what extent the use of chemical probes to quantify short-lived reactive species has an influence on the results and that it should be taken into account.
Collapse
Affiliation(s)
- Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), c. Eduard Maristany 16, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
22
|
Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules 2021; 26:molecules26051336. [PMID: 33801451 PMCID: PMC7958621 DOI: 10.3390/molecules26051336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.
Collapse
|
23
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
24
|
Tan F, Fang Y, Zhu L, Al-Rubeai M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit Rev Biotechnol 2021; 41:425-440. [PMID: 33622112 DOI: 10.1080/07388551.2020.1853671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold atmospheric plasma (CAP) has been intensively researched for direct treatment of living cells and tissues. Significant attention is now being given to its indirect applications in plasma medicine. Surgical implant is an exemplary conveyor to deliver the therapeutic effects of plasma to patients. There is a constant drive to enhance the clinical performance of surgical implants, targeting at the implant-tissue interface. As a versatile and potent tool, CAP is capable of ameliorating surgical implants using various strategies of interface biotechnology, such as surface modification, coating deposition, and drug delivery. Understanding the chemical, physical, mechanical, electrical, and pharmacological processes occurring at the implant-tissue interface is crucial to effective application of CAP as an interface biotechnology. This preclinical review focuses on the recent advances in CAP-assisted implant-based therapy for major surgical specialties. The ultimate goal here is to elicit unique opportunities and challenges for translating implant science to plasma medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China.,School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Yin Fang
- School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China
| | - Liwei Zhu
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med 2021; 164:107-118. [PMID: 33401009 PMCID: PMC7921834 DOI: 10.1016/j.freeradbiomed.2020.12.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.
Collapse
Affiliation(s)
- Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. de Roma S/n, Oviedo, Spain
| | - Aranzazu Villasante
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain.
| |
Collapse
|
26
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
27
|
Labay C, Roldán M, Tampieri F, Stancampiano A, Bocanegra PE, Ginebra MP, Canal C. Enhanced Generation of Reactive Species by Cold Plasma in Gelatin Solutions for Selective Cancer Cell Death. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47256-47269. [PMID: 33021783 DOI: 10.1021/acsami.0c12930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric pressure plasma jets generate reactive oxygen and nitrogen species (RONS) in liquids and biological media, which find application in the new area of plasma medicine. These plasma-treated liquids were demonstrated recently to possess selective properties on killing cancer cells and attracted attention toward new plasma-based cancer therapies. These allow for local delivery by injection in the tumor but can be quickly washed away by body fluids. By confining these RONS in a suitable biocompatible delivery system, great perspectives can be opened in the design of novel biomaterials aimed for cancer therapies. Gelatin solutions are evaluated here to store RONS generated by atmospheric pressure plasma jets, and their release properties are evaluated. The concentration of RONS was studied in 2% gelatin as a function of different plasma parameters (treatment time, nozzle distance, and gas flow) with two different plasma jets. Much higher production of reactive species (H2O2 and NO2-) was revealed in the polymer solution than in water after plasma treatment. The amount of RONS generated in gelatin is greatly improved with respect to water, with concentrations of H2O2 and NO2- between 2 and 12 times higher for the longest plasma treatments. Plasma-treated gelatin exhibited the release of these RONS to a liquid media, which induced an effective killing of bone cancer cells. Indeed, in vitro studies on the sarcoma osteogenic (SaOS-2) cell line exposed to plasma-treated gelatin led to time-dependent increasing cytotoxicity with the longer plasma treatment time of gelatin. While the SaOS-2 cell viability decreased to 12%-23% after 72 h for cells exposed to 3 min of treated gelatin, the viability of healthy cells (hMSC) was preserved (∼90%), establishing the selectivity of the plasma-treated gelatin on cancer cells. This sets the basis for designing improved hydrogels with high capacity to deliver RONS locally to tumors.
Collapse
Affiliation(s)
- Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering, UPC, 08019 Barcelona, Spain
| | - Marcel Roldán
- Biomaterials, Biomechanics and Tissue Engineering Group, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering, UPC, 08019 Barcelona, Spain
| | - Augusto Stancampiano
- GREMI, UMR 7344, CNRS/Université d'Orléans, BP 6744, CEDEX 2, 45067 Orléans, France
| | | | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering, UPC, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia, c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering, UPC, 08019 Barcelona, Spain
| |
Collapse
|
28
|
TRPA1 and TRPV1 channels participate in atmospheric-pressure plasma-induced [Ca 2+] i response. Sci Rep 2020; 10:9687. [PMID: 32546738 PMCID: PMC7297720 DOI: 10.1038/s41598-020-66510-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
Despite successful clinical application of non-equilibrium atmospheric pressure plasma (APP), the details of the molecular mechanisms underlying APP-inducible biological responses remain ill-defined. We previously reported that exposure of 3T3L1 cells to APP-irradiated buffer raised the cytoplasmic free Ca2+ ([Ca2+]i) concentration by eliciting Ca2+ influx in a manner sensitive to transient receptor potential (TRP) channel inhibitors. However, the precise identity of the APP-responsive channel molecule(s) remains unclear. In the present study, we aimed to clarify channel molecule(s) responsible for indirect APP-responsive [Ca2+]i rises. siRNA-mediated silencing experiments revealed that TRPA1 and TRPV1 serve as the major APP-responsive Ca2+ channels in 3T3L1 cells. Conversely, ectopic expression of either TRPA1 or TRPV1 in APP-unresponsive C2C12 cells actually triggered [Ca2+]i elevation in response to indirect APP exposure. Desensitization experiments using 3T3L1 cells revealed APP responsiveness to be markedly suppressed after pretreatment with allyl isothiocyanate or capsaicin, TRPA1 and TRPV1 agonists, respectively. APP exposure also desensitized the cells to these chemical agonists, indicating the existence of a bi-directional heterologous desensitization property of APP-responsive [Ca2+]i transients mediated through these TRP channels. Mutational analyses of key cysteine residues in TRPA1 (Cys421, Cys621, Cys641, and Cys665) and in TRPV1 (Cys258, Cys363, and Cys742) have suggested that multiple reactive oxygen and nitrogen species are intricately involved in activation of the channels via a broad range of modifications involving these cysteine residues. Taken together, these observations allow us to conclude that both TRPA1 and TRPV1 channels play a pivotal role in evoking indirect APP-dependent [Ca2+]i responses.
Collapse
|
29
|
Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D. Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol 2020; 38:1278-1291. [PMID: 32418663 PMCID: PMC7164895 DOI: 10.1016/j.tibtech.2020.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures. Pathogenic viruses are becoming an increasing burden for health, agriculture, and the global economy. Classic disinfection methods have several drawbacks, and innovative solutions for virus inactivation are urgently needed. CP can be used as an environmentally friendly tool for virus inactivation. It can inactivate different human, animal, and plant viruses in various matrices. When using CP for virus inactivation it is important to set the correct parameters and to choose treatment durations that allow particles to interact with the contaminated material. Reactive oxygen and/or nitrogen species have been shown to be responsible for virus inactivation through effects on capsid proteins and/or nucleic acids. The development of more accurate methods will provide information on which plasma particles are crucial in each experiment, and how exactly they affect viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
|
31
|
Mateu-Sanz M, Tornín J, Brulin B, Khlyustova A, Ginebra MP, Layrolle P, Canal C. Cold Plasma-Treated Ringer's Saline: A Weapon to Target Osteosarcoma. Cancers (Basel) 2020; 12:cancers12010227. [PMID: 31963398 PMCID: PMC7017095 DOI: 10.3390/cancers12010227] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic effects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Bénédicte Brulin
- Inserm, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, 44035 Nantes, France; (B.B.); (P.L.)
| | - Anna Khlyustova
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Pierre Layrolle
- Inserm, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, 44035 Nantes, France; (B.B.); (P.L.)
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
- Correspondence:
| |
Collapse
|
32
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|