1
|
Kim JH, Choi Y, Lee S, Oh MS. Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial. Biomol Ther (Seoul) 2025; 33:54-74. [PMID: 39676295 PMCID: PMC11704393 DOI: 10.4062/biomolther.2024.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Fan H, Shen R, Yan J, Bai Y, Fu Q, Shi X, Du G, Wang D. Pyroptosis the Emerging Link Between Gut Microbiota and Multiple Sclerosis. Drug Des Devel Ther 2024; 18:6145-6164. [PMID: 39717200 PMCID: PMC11665440 DOI: 10.2147/dddt.s489454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
This review elucidates the pivotal role of pyroptosis, triggered by gut microbiota, in the development of multiple sclerosis (MS), emphasizing its significance within the gut-brain axis. Our comprehensive analysis of recent literature reveals how dysbiosis in the gut microbiota of MS patients-characterized by reduced microbial diversity and shifts in bacterial populations-profoundly impacts immune regulation and the integrity of the central nervous system (CNS). Pyroptosis, an inflammatory form of programmed cell death, significantly exacerbates MS by promoting the release of inflammatory cytokines and causing substantial damage to CNS tissues. The gut microbiota facilitates this detrimental process through metabolites such as short-chain fatty acids and neuroactive compounds, or self-structural products like lipopolysaccharides (LPS), which modulate immune responses and influence neuronal survival. This review highlights the potential of modulating gut microbiota to regulate pyroptosis, thereby suggesting that targeting this pathway could be a promising therapeutic strategy to mitigate inflammatory responses and preserve neuronal integrity in patients with MS.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ruile Shen
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Yongjie Bai
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Xiaofei Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ganqin Du
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Dongmei Wang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| |
Collapse
|
3
|
Jiraskova Zakostelska Z, Kraus M, Coufal S, Prochazkova P, Slavickova Z, Thon T, Hrncir T, Kreisinger J, Kostovcikova K, Kleinova P, Lizrova Preiningerova J, Pavelcova M, Ticha V, Kovarova I, Kubala Havrdova E, Tlaskalova-Hogenova H, Kverka M. Lysate of Parabacteroides distasonis prevents severe forms of experimental autoimmune encephalomyelitis by modulating the priming of T cell response. Front Immunol 2024; 15:1475126. [PMID: 39737164 PMCID: PMC11682988 DOI: 10.3389/fimmu.2024.1475126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
The gut microbiota influences the reactivity of the immune system, and Parabacteroides distasonis has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured P. distasonis (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses. One week later, EAE was induced and disease severity was assessed three weeks after induction. Fecal microbiota changes in both vehicle- and Pd lysate-treated animals was analyzed by 16S V3-V4 amplicon sequencing and qPCR, antimicrobial peptide expression in the intestinal mucosa was measured by qPCR, and immune cell composition in the mesenteric and inguinal lymph nodes was measured by multicolor flow cytometry. Pd lysate significantly delayed the development of EAE and reduced its severity when administered prior to disease induction. EAE induction was the main factor in altering the gut microbiota, decreasing the abundance of lactobacilli and segmented filamentous bacteria. Pd lysate significantly increased the intestinal abundance of the genera Anaerostipes, Parabacteroides and Prevotella, and altered the expression of antimicrobial peptides in the intestinal mucosa. It significantly increased the frequency of regulatory T cells, induced an anti-inflammatory milieu in mesenteric lymph nodes, and reduced the activation of T cells at the priming site. Pd lysate prevents severe forms of EAE by triggering a T regulatory response and modulating T cell priming to autoantigens. Pd lysate could thus be a future modulator of neuroinflammation that increases the resistance to multiple sclerosis.
Collapse
Affiliation(s)
- Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Kraus
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zaneta Slavickova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Hrncir
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jakub Kreisinger
- Laboratory of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavlina Kleinova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Jana Lizrova Preiningerova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Miluse Pavelcova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Veronika Ticha
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Ivana Kovarova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Wu G, Xu T, Zhao N, Lam YY, Ding X, Wei D, Fan J, Shi Y, Li X, Li M, Ji S, Wang X, Fu H, Zhang F, Shi Y, Zhang C, Peng Y, Zhao L. A core microbiome signature as an indicator of health. Cell 2024; 187:6550-6565.e11. [PMID: 39378879 DOI: 10.1016/j.cell.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Yan Y Lam
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongqin Wei
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Jian Fan
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Yajuan Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xiaofeng Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Mi Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Shenjie Ji
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- Nutrition Department (Clinical Study Center of Functional Food), The Affiliated Hospital of Jiangnan University Wuxi, Wuxi, Jiangsu 214122, China
| | - Yu Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Ashraf H, Dikarlo P, Masia A, Zarbo IR, Solla P, Ijaz UZ, Sechi LA. Mycobacterium avium subspecies paratuberculosis (MAP) infection, and its impact on gut microbiome of individuals with multiple sclerosis. Sci Rep 2024; 14:24027. [PMID: 39402079 PMCID: PMC11479286 DOI: 10.1038/s41598-024-74975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
The microbial ecology of Mycobacterium avium subspecies paratuberculosis infections (MAP) within the context of Multiple Sclerosis (MS) is largely an unexplored topic in the literature. Thus, we have characterized the compositional and predicted functional differences of the gut microbiome between MS patients with MAP (MAP+) and without (MAP-) infection. This was done in the context of exposome differences (through self-reported filled questionnaires), principally in anthropometric and sociodemographic patterns to gain an understanding of the gut microbiome dynamics. 16S rRNA microbiome profiling of faecal samples (n = 69) was performed for four groups, which differed by disease and MAP infection: healthy cohort (HC) MAP-; HC MAP+ ; MS MAP-; and MS MAP+ . Using a dynamic strategy, with MAP infection and time of sampling as occupancy models, we have recovered the core microbiome for both HC and MS individuals. Additional application of neutral modeling suggests key genera that are under selection pressure by the hosts. These include members of the phyla Actinobacteriota, Bacteroidota, and Firmicutes. As several subjects provided multiple samples, a Quasi Conditional Association Test that incorporates paired-nature of samples found major differences in Archaea. To consolidate treatment groups, confounders, microbiome, and the disease outcome parameters, a mediation analysis is performed for MS cohort. This highlighted certain genera i.e., Sutterella, Akkermansia, Bacteriodes, Gastranaerophilales, Alistipes, Balutia, Faecalibacterium, Lachnospiraceae, Anaerostipes, Ruminococcaceae, Eggerthellaceae and Clostridia-UCG-014 having mediatory effect using disease duration as an outcome and MAP infection as a treatment group. Our analyses indicate that the gut microbiome may be an important target for dietary and lifestyle intervention in MS patients with and without MAP infection.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Plamena Dikarlo
- BIOMES NGS GmbH, Schwartzkopffstraße 1, Halle 21, 15745, Wildau, Germany
| | - Aurora Masia
- Department of Medicine and Pharmacy, Neurology, University of Sassari, Sassari, Italy
| | - Ignazio R Zarbo
- Department of Medicine and Pharmacy, Neurology, University of Sassari, Sassari, Italy
| | - Paolo Solla
- Department of Medicine and Pharmacy, Neurology, University of Sassari, Sassari, Italy
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, UK.
- National University of Ireland, University Road, Galway, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
- Complex Structure of Microbiology and Virology, AOU Sassari, Sassari, Italy.
| |
Collapse
|
7
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
8
|
Steimle A, Neumann M, Grant ET, Willieme S, De Sciscio A, Parrish A, Ollert M, Miyauchi E, Soga T, Fukuda S, Ohno H, Desai MS. Gut microbial factors predict disease severity in a mouse model of multiple sclerosis. Nat Microbiol 2024; 9:2244-2261. [PMID: 39009690 PMCID: PMC11371644 DOI: 10.1038/s41564-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Gut bacteria are linked to neurodegenerative diseases but the risk factors beyond microbiota composition are limited. Here we used a pre-clinical model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), to identify microbial risk factors. Mice with different genotypes and complex microbiotas or six combinations of a synthetic human microbiota were analysed, resulting in varying probabilities of severe neuroinflammation. However, the presence or relative abundances of suspected microbial risk factors failed to predict disease severity. Akkermansia muciniphila, often associated with MS, exhibited variable associations with EAE severity depending on the background microbiota. Significant inter-individual disease course variations were observed among mice harbouring the same microbiota. Evaluation of microbial functional characteristics and host immune responses demonstrated that the immunoglobulin A coating index of certain bacteria before disease onset is a robust individualized predictor of disease development. Our study highlights the need to consider microbial community networks and host-specific bidirectional interactions when aiming to predict severity of neuroinflammation.
Collapse
Affiliation(s)
- Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mareike Neumann
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Willieme
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alessandro De Sciscio
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Zhang X, Wei Z, Liu Z, Yang W, Huai Y. Changes in Gut Microbiota in Patients with Multiple Sclerosis Based on 16s rRNA Gene Sequencing Technology: A Review and Meta-Analysis. J Integr Neurosci 2024; 23:127. [PMID: 39082295 DOI: 10.31083/j.jin2307127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND This meta-analysis explores alterations in the gut microbiota of patients with Multiple Sclerosis (MS) using 16S ribosomal RNA (rRNA) gene sequencing. METHODS Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, our comprehensive review spanned major databases, including PubMed, Web of Science, Embase, Cochrane, and Ovid, targeting observational studies that implemented 16S rRNA gene sequencing on fecal specimens. The quality of these studies was meticulously evaluated using the Newcastle-Ottawa scale. RESULTS Our search yielded 26 relevant studies conducted between 2015-2022, encompassing 2885 participants. No significant differences were observed in alpha diversity indices (Shannon, Chao1, Operational Taxonomic Units (OTU), and Simpson) between MS patients and controls in general. Nonetheless, subgroup analyses according to disease activity using the Shannon index highlighted a significant decrease in microbial diversity during MS's active phase. Similarly, an evaluation focusing on MS phenotype revealed diminished diversity in individuals with relapsing-remitting MS (RRMS). Microbial composition analysis revealed no consistent increase in pro-inflammatory Bacteroidetes or decrease in anti-inflammatory Firmicutes within the MS cohort. CONCLUSION The gut microbiome's role in MS presents a complex panorama, where alterations in microbial composition might hold greater significance to disease mechanisms than diversity changes. The impact of clinical factors such as disease activity and phenotype are moderately significant, underscoring the need for further research to elucidate these relationships. Prospective research should employ longitudinal methodologies to elucidate the chronological interplay among gut microbiota, disease evolution, and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Rehabilitation, Shenzhen Longhua District Central Hospital, 518000 Shenzhen, Guangdong, China
| | - Zhiqiang Wei
- Department of Neurology, Shenzhen Longhua District Central Hospital, 518000 Shenzhen, Guangdong, China
| | - Zhen Liu
- Department of Pharmaceutical, Peking University Shenzhen Hospital, 518000 Shenzhen, Guangdong, China
| | - Weiwei Yang
- Department of Rehabilitation, Shenzhen Longhua District Central Hospital, 518000 Shenzhen, Guangdong, China
| | - Yaping Huai
- Department of Rehabilitation, Shenzhen Longhua District Central Hospital, 518000 Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JWS, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. Sci Rep 2024; 14:15292. [PMID: 38961134 PMCID: PMC11222390 DOI: 10.1038/s41598-024-64369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Qin Wang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ali Mirza
- Pharmacoepidemiology in Multiple Sclerosis Research Group, The University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Deanna Dwyer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qi Wu
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Catherine A Dowling
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jennifer Yang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| | - Yang Mao-Draayer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Autoimmunity Center of Excellence, Multiple Sclerosis Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Kamer AR, Pushalkar S, Hamidi B, Janal MN, Tang V, Annam KRC, Palomo L, Gulivindala D, Glodzik L, Saxena D. Periodontal Inflammation and Dysbiosis Relate to Microbial Changes in the Gut. Microorganisms 2024; 12:1225. [PMID: 38930608 PMCID: PMC11205299 DOI: 10.3390/microorganisms12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontal disease (PerioD) is a chronic inflammatory disease of dysbiotic etiology. Animal models and few human data showed a relationship between oral bacteria and gut dysbiosis. However, the effect of periodontal inflammation and subgingival dysbiosis on the gut is unknown. We hypothesized that periodontal inflammation and its associated subgingival dysbiosis contribute to gut dysbiosis even in subjects free of known gut disorders. We evaluated and compared elderly subjects with Low and High periodontal inflammation (assessed by Periodontal Inflamed Surface Area (PISA)) for stool and subgingival derived bacteria (assayed by 16S rRNA sequencing). The associations between PISA/subgingival dysbiosis and gut dysbiosis and bacteria known to produce short-chain fatty acid (SCFA) were assessed. LEfSe analysis showed that, in Low PISA, species belonging to Lactobacillus, Roseburia, and Ruminococcus taxa and Lactobacillus zeae were enriched, while species belonging to Coprococcus, Clostridiales, and Atopobium were enriched in High PISA. Regression analyses showed that PISA associated with indicators of dysbiosis in the gut mainly reduced abundance of SCFA producing bacteria (Radj = -0.38, p = 0.03). Subgingival bacterial dysbiosis also associated with reduced levels of gut SCFA producing bacteria (Radj = -0.58, p = 0.002). These results suggest that periodontal inflammation and subgingival microbiota contribute to gut bacterial changes.
Collapse
Affiliation(s)
- Angela R. Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA;
| | - Babak Hamidi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| | - Vera Tang
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Kumar Raghava Chowdary Annam
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Leena Palomo
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Deepthi Gulivindala
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute Cornell University, New York, NY 10021, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| |
Collapse
|
13
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024:10.1111/febs.17161. [PMID: 38817090 PMCID: PMC11607183 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | | | - Kristina Hill
- Department of Biological Sciences, Boise State University, Boise, ID 83725
| | | |
Collapse
|
14
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
16
|
Song Y, Bai Y, Liu C, Zhai X, Zhang L. The impact of gut microbiota on autoimmune thyroiditis and relationship with pregnancy outcomes: a review. Front Cell Infect Microbiol 2024; 14:1361660. [PMID: 38505287 PMCID: PMC10948601 DOI: 10.3389/fcimb.2024.1361660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Autoimmune thyroiditis (AITD) is a T-cell-mediated, organ- specific autoimmune disease caused by interactions between genetic and environmental factors. Patients with AITD show thyroid lymphocyte infiltration and an increase in the titer of thyroid autoimmune antibodies, thereby altering the integrity of thyroid follicle epithelial cells and dysregulating their metabolism and immune function, leading to a decrease in multi-tissue metabolic activity. Research has shown that patients with AITD have a significantly higher risk of adverse pregnancy outcomes, such as infertility and miscarriage. Levothyroxine(LT4) treatment can improve the pregnancy outcomes of normal pregnant women with thyroid peroxidase antibodies(TPOAb) positivity, but it is not effective for invitro fertilization embryo transfer (IVF-ET) in women with normal thyroid function and positive TPOAb. Other factors may also influence pregnancy outcomes of patients with AITD. Recent studies have revealed that the gut microbiota participates in the occurrence and development of AITD by influencing the gut-thyroid axis. The bacterial abundance and diversity of patients with Hashimoto thyroiditis (HT) were significantly reduced, and the relative abundances of Bacteroides, fecal Bacillus, Prevotella, and Lactobacillus also decreased. The confirmation of whether adjusting the composition of the gut microbiota can improve pregnancy outcomes in patients with AITD is still pending. This article reviews the characteristics of the gut microbiota in patients with AITD and the current research on its impact in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Le Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Jank L, Bhargava P. Relationship Between Multiple Sclerosis, Gut Dysbiosis, and Inflammation: Considerations for Treatment. Neurol Clin 2024; 42:55-76. [PMID: 37980123 DOI: 10.1016/j.ncl.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis is associated with gut dysbiosis, marked by changes in the relative abundances of specific microbes, circulating gut-derived metabolites, and altered gut permeability. This gut dysbiosis promotes disease pathology by increasing circulating proinflammatory bacterial factors, reducing tolerogenic factors, inducing molecular mimicry, and changing microbial nutrient metabolism. Beneficial antiinflammatory effects of the microbiome can be harnessed in therapeutic interventions. In the future, it is essential to assess the efficacy of these therapies in randomized controlled clinical trials to help make dietary and gut dysbiosis management an integral part of multiple sclerosis care.
Collapse
Affiliation(s)
- Larissa Jank
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 6-144, Baltimore, MD 21287, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 6-144, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Montgomery TL, Toppen LC, Eckstrom K, Heney ER, Kennedy JJ, Scarborough MJ, Krementsov DN. Lactobacillaceae differentially impact butyrate-producing gut microbiota to drive CNS autoimmunity. Gut Microbes 2024; 16:2418415. [PMID: 39462277 PMCID: PMC11520542 DOI: 10.1080/19490976.2024.2418415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), produced by the gut microbiota, are thought to exert an anti-inflammatory effect on the host immune system. The levels of SCFAs and abundance of the microbiota that produce them are depleted in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS). The mechanisms leading to this depletion are unknown. Using experimental autoimmune encephalomyelitis (EAE) as a model for MS, we have previously shown that gut microbiomes divergent in their abundance of specific commensal Lactobacillaceae, Limosilactobacillus reuteri (L. reuteri) and Ligilactobacillus murinus (L. murinus), differentially impact CNS autoimmunity. To determine the underlying mechanisms, we employed colonization by L. reuteri and L. murinus in disparate gut microbiome configurations in vivo and in vitro, profiling their impact on gut microbiome composition and metabolism, coupled with modulation of dietary fiber in the EAE model. RESULTS We show that stable colonization by L. reuteri, but not L. murinus, exacerbates EAE, in conjunction with a significant remodeling of gut microbiome composition, depleting SCFA-producing microbiota, including Lachnospiraceae, Prevotellaceae, and Bifidobacterium, with a net decrease in bacterial metabolic pathways involved in butyrate production. In a minimal microbiome culture model in vitro, L. reuteri directly inhibited SCFA-producer growth and depleted butyrate. Genomic analysis of L. reuteri isolates revealed an enrichment in bacteriocins with known antimicrobial activity against SCFA-producing microbiota. Functionally, provision of excess dietary fiber, as the prebiotic substrate for SCFA production, elevated SCFA levels and abrogated the ability of L. reuteri to exacerbate EAE. CONCLUSTIONS Our data highlight a potential mechanism for reduced SCFAs and their producers in MS through depletion by other members of the gut microbiome, demonstrating that interactions between microbiota can impact CNS autoimmunity in a diet-dependent manner. These data suggest that therapeutic restoration of SCFA levels in MS may require not only dietary intervention, but also modulation of the gut microbiome.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Lucinda C. Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eamonn R. Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
20
|
Bruijstens AL, Molenaar S, Wong YYM, Kraaij R, Neuteboom RF. Gut microbiota analysis in pediatric-onset multiple sclerosis compared to pediatric monophasic demyelinating syndromes and pediatric controls. Eur J Neurol 2023; 30:3507-3515. [PMID: 36209482 DOI: 10.1111/ene.15594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Gut microbiota dysbiosis may lead to proinflammatory conditions contributing to multiple sclerosis (MS) etiology. Pediatric-onset MS patients are close to biological disease onset and less exposed to confounders. Therefore, this study investigated gut microbiota composition and functional pathways in pediatric-onset MS, compared to monophasic acquired demyelinating syndromes (mADS) and healthy controls (HCs). METHODS Pediatric participants were selected from the Dutch national prospective cohort study including ADS patients and HCs <18 years old. Amplicon sequence variants (ASVs) were generated from sequencing the V3/4 regions of the 16S rRNA gene. Functional MetaCyc microbial pathways were predicted based on Enzyme Commission numbers. Gut microbiota composition (alpha/beta diversity and individual microbe abundance at ASV to phylum level) and predicted functional pathways were tested using nonparametric tests, permutational multivariate analysis of variance, and linear regression. RESULTS Twenty-six pediatric-onset MS (24 with disease-modifying therapy [DMT]), 25 mADS, and 24 HC subjects were included. Alpha/beta diversity, abundance of individual resident microbes, and microbial functional features were not different between these participant groups. Body mass index (BMI) showed significant differences, with obese children having a lower alpha diversity (Chao1 Index p = 0.015, Shannon/Simpson Diversity Index p = 0.014/p = 0.023), divergent beta diversity (R2 = 3.7%, p = 0.013), and higher abundance of numerous individual resident microbes and functional microbial pathways. CONCLUSIONS Previous results of gut microbiota composition and predicted functional features could not be validated in this Dutch pediatric-onset MS cohort using a more sensitive 16S pipeline, although it was limited by sample size and DMT use. Notably, several other host-related factors were found to associate with gut microbiota variation, especially BMI.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sandy Molenaar
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rinze F Neuteboom
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Nitzan Z, Staun-Ram E, Volkowich A, Miller A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int J Mol Sci 2023; 24:15024. [PMID: 37834472 PMCID: PMC10573818 DOI: 10.3390/ijms241915024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and environmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the MS-associated gut microbiome in the Israeli populations and to identify associations with demographic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS (PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance compared. Associations between differential microbes with demographic or clinical characteristics, as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia, and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Additional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or disability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease progression, gender-related differences, and vitamin D-mediated immunological effects recognized in MS. Dietary interventions may be beneficial in restoring a "healthy microbiota" as part of applying comprehensive personalized therapeutic strategies for PwMS.
Collapse
Affiliation(s)
- Zehavit Nitzan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
22
|
Yadav SK, Ito K, Dhib-Jalbut S. Interaction of the Gut Microbiome and Immunity in Multiple Sclerosis: Impact of Diet and Immune Therapy. Int J Mol Sci 2023; 24:14756. [PMID: 37834203 PMCID: PMC10572709 DOI: 10.3390/ijms241914756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The bidirectional communication between the gut and central nervous system (CNS) through microbiota is known as the microbiota-gut-brain axis. The brain, through the enteric neural innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and peptide secretion), as well as the development of the mucosal immune system. Conversely, the gut can influence the CNS via intestinal microbiota, its metabolites, and gut-homing immune cells. Growing evidence suggests that gut immunity is critically involved in gut-brain communication during health and diseases, including multiple sclerosis (MS). The gut microbiota can influence the development and function of gut immunity, and conversely, the innate and adaptive mucosal immunity can influence microbiota composition. Gut and systemic immunity, along with gut microbiota, are perturbed in MS. Diet and disease-modifying therapies (DMTs) can affect the composition of the gut microbial community, leading to changes in gut and peripheral immunity, which ultimately affects MS. A high-fat diet is highly associated with gut dysbiosis-mediated inflammation and intestinal permeability, while a high-fiber diet/short-chain fatty acids (SCFAs) can promote the development of Foxp3 Tregs and improvement in intestinal barrier function, which subsequently suppress CNS autoimmunity in the animal model of MS (experimental autoimmune encephalomyelitis or EAE). This review will address the role of gut immunity and its modulation by diet and DMTs via gut microbiota during MS pathophysiology.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
- Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
23
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JW, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291875. [PMID: 37425956 PMCID: PMC10327224 DOI: 10.1101/2023.06.26.23291875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. Methods In a longitudinal study, disability status and associated clinical features in 60 MS patients were tracked over 4.2 ± 0.97 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. Results We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 45 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia , Lachnospiraceae, and Oscillospiraceae , with an expansion of Alloprevotella , Prevotella-9 , and Rhodospirillales . Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed a significant enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K 2 production (linked to Akkermansia ), and a depletion in SCFA metabolism (linked to Lachnospiraceae and Oscillospiraceae ). Further, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to robustly predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. Conclusions These results demonstrate the utility of the gut microbiome for predicting disease progression in MS. Further, analysis of the inferred metagenome revealed that oxidative stress, vitamin K 2 and SCFAs are associated with progression. Abstract Figure
Collapse
|
24
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
25
|
Ma Y, Sannino D, Linden JR, Haigh S, Zhao B, Grigg JB, Zumbo P, Dündar F, Butler D, Profaci CP, Telesford K, Winokur PN, Rumah KR, Gauthier SA, Fischetti VA, McClane BA, Uzal FA, Zexter L, Mazzucco M, Rudick R, Danko D, Balmuth E, Nealon N, Perumal J, Kaunzner U, Brito IL, Chen Z, Xiang JZ, Betel D, Daneman R, Sonnenberg GF, Mason CE, Vartanian T. Epsilon toxin-producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J Clin Invest 2023; 133:e163239. [PMID: 36853799 PMCID: PMC10145940 DOI: 10.1172/jci163239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.
Collapse
Affiliation(s)
- Yinghua Ma
- Feil Family Brain and Mind Research Institute
| | | | | | | | - Baohua Zhao
- Feil Family Brain and Mind Research Institute
| | - John B. Grigg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Paul Zumbo
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Daniel Butler
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Caterina P. Profaci
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | | | - Paige N. Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-endocrinology and
| | - Kareem R. Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Lily Zexter
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | | | - David Danko
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Nancy Nealon
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Jai Perumal
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, and
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Core Laboratories Center, Weill Cornell Medicine, New York, New York, USA
| | - Doron Betel
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | - Gregory F. Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Christopher E. Mason
- Feil Family Brain and Mind Research Institute
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute
- Immunology and Microbial Pathogenesis Program and
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
26
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
27
|
Ladakis DC, Bhargava P. The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs 2023; 37:117-132. [PMID: 36690786 DOI: 10.1007/s40263-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
It has now been established that a perturbation in gut microbiome composition exists in multiple sclerosis (MS) and its interplay with the immune system and brain could potentially contribute to the development of the disease and influence its course. The effects of the gut microbiota on the disease may be mediated by direct interactions between bacteria and immune cells or through interactions of products of bacterial metabolism with immune and CNS cells. In this review article we summarize the ways in which the gut microbiome of people with MS differs from controls and how bacterial metabolites can potentially play a role in MS pathogenesis, and examine approaches to alter the composition of the gut microbiota potentially alleviating gut dysbiosis and impacting the course of MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA.
| |
Collapse
|
28
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
29
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|
30
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
31
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
32
|
Mancabelli L, Milani C, Fontana F, Lugli GA, Tarracchini C, Viappiani A, Ciociola T, Ticinesi A, Nouvenne A, Meschi T, Turroni F, Ventura M. Untangling the link between the human gut microbiota composition and the severity of the symptoms of the COVID-19 infection. Environ Microbiol 2022; 24:6453-6462. [PMID: 36086955 PMCID: PMC9538590 DOI: 10.1111/1462-2920.16201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Recent pandemic infection caused by SARS-CoV-2 (COVID-19) led the scientific community to investigate the possible causes contributing to the physiopathology of this disease. In this context, analyses of the intestinal microbiota highlighted possible correlation between host-associated bacterial communities and development of the COVID-19. Nevertheless, a detailed investigation of the role of the human microbiota in the severity of the symptoms of this disease is still lacking. This study performed a comprehensive meta-analysis of 323 faecal samples from public and novel Italian data sets based on the shotgun metagenomic approach. In detail, the comparative analyses revealed possible differences in the microbial biodiversity related to the individual health status, highlighting a species richness decrease in COVID-19 patients with a severe prognosis. Moreover, healthy subjects resulted characterized by a higher abundance of protective and health-supporting bacterial species, while patients affected by COVID-19 disease displayed a significant increase of opportunistic pathogen bacteria involved in developing putrefactive dysbiosis. Furthermore, prediction of the microbiome functional capabilities suggested that individuals affected by COVID-19 subsist in an unbalanced metabolism characterized by an overrepresentation of enzymes involved in the protein metabolism at the expense of carbohydrates oriented pathways, which can impact on disease severity and in excessive systemic inflammation.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly,Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly
| | - Christian Milani
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | | | - Tecla Ciociola
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Ticinesi
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Antonio Nouvenne
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Tiziana Meschi
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| |
Collapse
|
33
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
34
|
Mirza AI, Zhu F, Knox N, Forbes JD, Bonner C, Van Domselaar G, Bernstein CN, Graham M, Marrie RA, Hart J, Yeh EA, Arnold DL, Bar-Or A, O'Mahony J, Zhao Y, Hsiao W, Banwell B, Waubant E, Tremlett H. The metabolic potential of the paediatric-onset multiple sclerosis gut microbiome. Mult Scler Relat Disord 2022; 63:103829. [DOI: 10.1016/j.msard.2022.103829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
|
35
|
Intze E, Lagkouvardos I. DivCom: A Tool for Systematic Partition of Groups of Microbial Profiles Into Intrinsic Subclusters and Distance-Based Subgroup Comparisons. FRONTIERS IN BIOINFORMATICS 2022; 2:864382. [PMID: 36304338 PMCID: PMC9580884 DOI: 10.3389/fbinf.2022.864382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
When analyzing microbiome data, one of the main objectives is to effectively compare the microbial profiles of samples belonging to different groups. Beta diversity measures the level of similarity among samples, usually in the form of dissimilarity matrices. The use of suitable statistical tests in conjunction with those matrices typically provides us with all the necessary information to evaluate the overall similarity of groups of microbial communities. However, in some cases, this approach can lead us to deceptive conclusions, mainly due to the uneven dispersions of the groups and the existence of unique or unexpected substructures in the dataset. To address these issues, we developed divide and compare (DivCom), an automated tool for advanced beta diversity analysis. DivCom reveals the inner structure of groups by dividing their samples into the appropriate number of clusters and then compares the distances of every profile to the centers of these clusters. This information can be used for determining the existing interrelation of the groups. The proposed methodology and the developed tool were assessed by comparing the response of anemic patients with or without inflammatory bowel disease to different iron replacement therapies. DivCom generated results that revealed the inner structure of the dataset, evaluated the relationship among the clusters, and assessed the effect of the treatments. The DivCom tool is freely available at: https://github.com/Lagkouvardos/DivCom.
Collapse
Affiliation(s)
- Evangelia Intze
- School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL – Institute for Food and Health, Technical University Munich, Freising, Germany
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- *Correspondence: Ilias Lagkouvardos ,
| |
Collapse
|
36
|
Ntranos A, Park HJ, Wentling M, Tolstikov V, Amatruda M, Inbar B, Kim-Schulze S, Frazier C, Button J, Kiebish MA, Lublin F, Edwards K, Casaccia P. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain 2022; 145:569-583. [PMID: 34894211 PMCID: PMC10060700 DOI: 10.1093/brain/awab320] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/14/2022] Open
Abstract
The identification of intestinal dysbiosis in patients with neurological and psychiatric disorders has highlighted the importance of gut-brain communication, and yet the question regarding the identity of the components responsible for this cross-talk remains open. We previously reported that relapsing remitting multiple sclerosis patients treated with dimethyl fumarate have a prominent depletion of the gut microbiota, thereby suggesting that studying the composition of plasma and CSF samples from these patients may help to identify microbially derived metabolites. We used a functional xenogeneic assay consisting of cultured rat neurons exposed to CSF samples collected from multiple sclerosis patients before and after dimethyl fumarate treatment to assess neurotoxicity and then conducted a metabolomic analysis of plasma and CSF samples to identify metabolites with differential abundance. A weighted correlation network analysis allowed us to identify groups of metabolites, present in plasma and CSF samples, whose abundance correlated with the neurotoxic potential of the CSF. This analysis identified the presence of phenol and indole group metabolites of bacterial origin (e.g. p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) as potentially neurotoxic and decreased by treatment. Chronic exposure of cultured neurons to these metabolites impaired their firing rate and induced axonal damage, independent from mitochondrial dysfunction and oxidative stress, thereby identifying a novel pathway of neurotoxicity. Clinical, radiological and cognitive test metrics were also collected in treated patients at follow-up visits. Improved MRI metrics, disability and cognition were only detected in dimethyl fumarate-treated relapsing remitting multiple sclerosis patients. The levels of the identified metabolites of bacterial origin (p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) were inversely correlated to MRI measurements of cortical volume and directly correlated to the levels of neurofilament light chain, an established biomarker of neurodegeneration. Our data suggest that phenol and indole derivatives from the catabolism of tryptophan and phenylalanine are microbially derived metabolites, which may mediate gut-brain communication and induce neurotoxicity in multiple sclerosis.
Collapse
Affiliation(s)
- Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Hye-Jin Park
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Maureen Wentling
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | | | - Mario Amatruda
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Benjamin Inbar
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Frazier
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | - Judy Button
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | | | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keith Edwards
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | - Patrizia Casaccia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
- Graduate Program in Biology and Biochemistry at the Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
37
|
Al KF, Craven LJ, Gibbons S, Parvathy SN, Wing AC, Graf C, Parham KA, Kerfoot SM, Wilcox H, Burton JP, Kremenchutzky M, Morrow SA, Casserly C, Meddings J, Sharma M, Silverman MS. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: A pilot randomized controlled trial. Mult Scler J Exp Transl Clin 2022; 8:20552173221086662. [PMID: 35571974 PMCID: PMC9102167 DOI: 10.1177/20552173221086662] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Background Patients with MS have an altered gut microbiota compared to healthy individuals, as well as elevated small intestinal permeability, which may be contributing to the development and progression of the disease. Objective We sought to investigate if fecal microbiota transplantation was safe and tolerable in MS patients and if it could improve abnormal intestinal permeability. Methods Nine patients with MS were recruited and provided monthly FMTs for up to six months. The primary outcome investigated was change in peripheral blood cytokine concentrations. The secondary outcomes were gut microbiota composition, intestinal permeability, and safety (assessed with EDSS and MRI). Results The study was terminated early and was subsequently underpowered to assess whether peripheral blood cytokines were altered following FMTs. FMTs were safe in this group of patients. Two of five patients had elevated small intestinal permeability at baseline that improved to normal values following FMTs. Significant, donor-specific, beneficial alterations to the MS patient gut microbiota were observed following FMT. Conclusion FMT was safe and tolerable in this cohort of RRMS patients, may improve elevated small intestinal permeability, and has the potential to enrich for an MS-protective microbiota. Further studies with longer follow-up and larger sample sizes are required to determine if FMT is a suitable therapy for MS.
Collapse
Affiliation(s)
| | | | - Shaeley Gibbons
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | | | - Ana Christina Wing
- Department of Neurology, London Health Sciences Centre, London, ON, Canada
| | - Chantelle Graf
- Division of Infectious Diseases, Western University, London, ON, Canada
| | | | | | - Hannah Wilcox
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Division of Urology, Department of Surgery, St Joseph’s Health Care, Western University, London, ON, Canada
| | | | | | - Courtney Casserly
- Department of Neurology, London Health Sciences Centre, London, ON, Canada
| | - Jon Meddings
- Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, ON, Canada
| | - Michael S. Silverman
- Michael Silverman, Division of Infectious Diseases, Western University, 268 Grosvenor Street, London, ON, Canada N6A 4V2.
| |
Collapse
|
38
|
Bonnechère B, Amin N, van Duijn C. The Role of Gut Microbiota in Neuropsychiatric Diseases – Creation of An Atlas-Based on Quantified Evidence. Front Cell Infect Microbiol 2022; 12:831666. [PMID: 35360098 PMCID: PMC8964285 DOI: 10.3389/fcimb.2022.831666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
There is a growing body of evidence highlighting the significant role of gut microbiota in various pathologies. We performed a systematic review to review the different microbiota involved in neuropsychiatric diseases. 50 studies (23 studies for autism spectrum disorders, 18 for major depression, and 9 for schizophrenia), representing 2,137 patients and 2,844 controls. Concerning the microbiota, the genera Prevotella, Clostridium, Bacteroides, Bifidobacterium, Ruminococcus, Megamonas, and Faecalbacterium were the ones detected with the most frequent variation of their relatives abundance. We also assess the overlap between the different pathologies. This study provides new insights into the complex relationship between the brain and the gut and the implications in neuropsychiatric pathologies. The identification of unique signatures in neuropsychiatric diseases suggests new possibilities in targeted anti or probiotic treatment.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Cornelia van Duijn,
| |
Collapse
|
39
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
40
|
Mirza AI, Zhu F, Knox N, Forbes JD, Van Domselaar G, Bernstein CN, Graham M, Marrie RA, Hart J, Yeh EA, Arnold DL, Bar-Or A, O'Mahony J, Zhao Y, Hsiao W, Banwell B, Waubant E, Tremlett H. Metagenomic Analysis of the Pediatric-Onset Multiple Sclerosis Gut Microbiome. Neurology 2022; 98:e1050-e1063. [PMID: 34937787 PMCID: PMC8967388 DOI: 10.1212/wnl.0000000000013245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Little is known of the functional potential of the gut microbiome in pediatric-onset multiple sclerosis (MS). We performed metagenomic analyses using stool samples from individuals with pediatric-onset MS and unaffected controls. METHODS Persons ≤21 years old enrolled in the Canadian Pediatric Demyelinating Disease Network providing a stool sample were eligible. Twenty patients with MS (McDonald criteria) with symptom onset <18 years were matched to 20 controls by sex, age (±3 years), stool consistency, and race. Microbial taxonomy and functional potentials were estimated from stool sample-derived metagenomic reads and compared by disease status (MS vs controls) and disease-modifying drug (DMD) exposure using alpha diversity, relative abundance, and prevalence using Wilcoxon rank sum, ALDEx2, and Fisher exact tests, respectively. RESULTS Individuals with MS were aged 13.6 years (mean) at symptom onset and 8 were DMD-naive. Mean ages at stool sample were 16.1 and 15.4 years for MS and control participants, respectively; 80% were girls. Alpha diversity of enzymes and proteins did not differ by disease or DMD status (p > 0.20), but metabolic pathways, gene annotations, and microbial taxonomy did. Individuals with MS (vs controls) exhibited higher methanogenesis prevalence (odds ratio 10, p = 0.044) and Methanobrevibacter abundance (log2 fold change [LFC] 1.7, p = 0.0014), but lower homolactic fermentation abundance (LFC -0.48, p = 0.039). Differences by DMD status included lower phosphate butyryl transferase for DMD-naive vs exposed patients with MS (LFC -1.0, p = 0.033). DISCUSSION The gut microbiome's functional potential and taxonomy differed between individuals with pediatric-onset MS vs controls, including higher prevalence of a methane-producing pathway from Archaea and depletion of the lactate fermentation pathway. DMD exposure was associated with butyrate-producing enzyme enrichment. Together these findings indicate that the gut microbiome of individuals with MS may have a disturbed functional potential.
Collapse
Affiliation(s)
- Ali I Mirza
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Feng Zhu
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Natalie Knox
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Jessica D Forbes
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Gary Van Domselaar
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Charles N Bernstein
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Morag Graham
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Ruth Ann Marrie
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Janace Hart
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - E Ann Yeh
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Douglas L Arnold
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Amit Bar-Or
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Julia O'Mahony
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Yinshan Zhao
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - William Hsiao
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Brenda Banwell
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Emmanuelle Waubant
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Helen Tremlett
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA.
| |
Collapse
|
41
|
Tremlett H, Zhu F, Arnold D, Bar-Or A, Bernstein CN, Bonner C, Forbes JD, Graham M, Hart J, Knox NC, Marrie RA, Mirza AI, O'Mahony J, Van Domselaar G, Yeh EA, Zhao Y, Banwell B, Waubant E. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol 2021; 8:2252-2269. [PMID: 34889081 PMCID: PMC8670321 DOI: 10.1002/acn3.51476] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To examine the gut microbiota in individuals with and without pediatric‐onset multiple sclerosis (MS). Methods We compared stool‐derived microbiota of Canadian Pediatric Demyelinating Disease Network study participants ≤21 years old, with MS (disease‐modifying drug [DMD] exposed and naïve) or monophasic acquired demyelinating syndrome [monoADS] (symptom onset <18 years), and unaffected controls. All were ≥30 days without antibiotics or corticosteroids. V4 region 16S RNA gene‐derived amplicon sequence variants (Illumina MiSeq) were assessed using negative binomial regression and network analyses; rate ratios were age‐ and sex‐adjusted (aRR). Results Thirty‐two MS, 41 monoADS (symptom onset [mean] = 14.0 and 6.9 years) and 36 control participants were included; 75%/56%/58% were female, with mean ages at stool sample = 16.5/13.8/15.1 years, respectively. Nine MS cases (28%) were DMD‐naïve. Although microbiota diversity (alpha, beta) did not differ between participants (p > 0.1), taxa‐level and gut community networks did. MS (vs. monoADS) exhibited > fourfold higher relative abundance of the superphylum Patescibacteria (aRR = 4.2;95%CI:1.6–11.2, p = 0.004, Q = 0.01), and lower abundances of short‐chain fatty acid (SCFA)‐producing Lachnospiraceae (Anaerosporobacter) and Ruminococcaceae (p, Q < 0.05). DMD‐naïve MS cases were depleted for Clostridiales vadin‐BB60 (unnamed species) versus either DMD‐exposed, controls (p, Q < 0.01), or monoADS (p = 0.001, Q = 0.06) and exhibited altered community connectedness (p < 10−9 Kruskal–Wallis), with SCFA‐producing taxa underrepresented. Consistent taxa‐level findings from an independent US Network of Pediatric MS Centers case/control (n = 51/42) cohort included >eightfold higher abundance for Candidatus Stoquefichus and Tyzzerella (aRR = 8.8–12.8, p < 0.05) in MS cases and 72%–80% lower abundance of SCFA‐producing Ruminococcaceae‐NK4A214 (aRR = 0.38–0.2, p ≤ 0.01). Interpretation Gut microbiota community structure, function and connectivity, and not just individual taxa, are of likely importance in MS.
Collapse
Affiliation(s)
- Helen Tremlett
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Feng Zhu
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Douglas Arnold
- The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perleman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Christine Bonner
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Morag Graham
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Janace Hart
- Department of Neurology, University of California San Francisco, San Francisco, California, 94158, USA
| | - Natalie C Knox
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Ali I Mirza
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Julia O'Mahony
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - E Ann Yeh
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Yinshan Zhao
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Brenda Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California San Francisco, San Francisco, California, 94158, USA
| | | |
Collapse
|
42
|
Farshbafnadi M, Agah E, Rezaei N. The second brain: The connection between gut microbiota composition and multiple sclerosis. J Neuroimmunol 2021; 360:577700. [PMID: 34482269 DOI: 10.1016/j.jneuroim.2021.577700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 02/08/2023]
Abstract
Gut microbiota composition may affect the central nervous system (CNS) and immune function. Several studies have recently examined the possible link between gut microbiota composition and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Most of these studies agree that patients with MS suffer from dysbiosis. Moreover, an altered proportion of certain phyla of bacteria was detected in the digestive tracts of these patients compared to healthy individuals. This review article gathers information from research papers that have examined the relationship between gut microbiota composition and MS and its possible mechanisms.
Collapse
Affiliation(s)
| | - Elmira Agah
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Students' Scientific Research Center, Tehran University of Medical Sciences, NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
43
|
Zhu W, Dykstra K, Zhang L, Xia Z. Gut Microbiome as Potential Therapeutics in Multiple Sclerosis. Curr Treat Options Neurol 2021; 23:37. [PMID: 39877812 PMCID: PMC11774507 DOI: 10.1007/s11940-021-00693-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The gut microbiome is an emerging arena to investigate multiple sclerosis (MS) pathogenesis and potential therapeutics. In this review, we summarize the available data and postulate the feasibilities of potential MS therapeutic approaches that modulate the gut microbiome. Recent Findings Growing evidence indicates dysbiosis in the gut bacterial ecosystem in MS. Diet and other interventions produce biologically significant changes in the gut bacterial communities and functions, can potentially regulate the immune system, and benefit people with MS. While well-conducted investigations of the therapeutic mechanisms for targeting gut microbiome in animal models and humans remain limited, promising connections between various mechanisms of gut microbiome regulation and beneficial effects on MS outcomes are emerging. Summary To date, studies examining the microbiome-based therapies in MS remain limited in number and follow-up duration. There is a clear need to determine the long-term efficacy and safety of these approaches, and to identify their underlying mechanisms of actions.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - Kiersten Dykstra
- Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - Lili Zhang
- Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - Zongqi Xia
- Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Microbiota in Health and Disease-Potential Clinical Applications. Nutrients 2021; 13:nu13113866. [PMID: 34836121 PMCID: PMC8622281 DOI: 10.3390/nu13113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Within the last two decades tremendous efforts in biomedicine have been undertaken to understand the interplay of commensal bacteria living in and on our human body with our own human physiology. It became clear that (1) a high diversity especially of the microbial communities in the gut are important to preserve health and that (2) certain bacteria via nutrition-microbe-host metabolic axes are beneficially affecting various functions of the host, including metabolic control, energy balance and immune function. While a large set of evidence indicate a special role for small chain fatty acids (SCFA) in that context, recently also metabolites of amino acids (e.g., tryptophan and arginine) moved into scientific attention. Of interest, microbiome alterations are not only important in nutrition associated diseases like obesity and diabetes, but also in many chronic inflammatory, oncological and neurological abnormalities. From a clinician’s point of view, it should be mentioned, that the microbiome is not only interesting to develop novel therapies, but also as a modifiable factor to improve efficiency of modern pharmaceutics, e.g., immune-therapeutics in oncology. However, so far, most data rely on animal experiments or human association studies, whereas controlled clinical intervention studies are spare. Hence, the translation of the knowledge of the last decades into clinical routine will be the challenge of microbiome based biomedical research for the next years. This review aims to provide examples for future clinical applications in various entities and to suggest bacterial species and/or microbial effector molecules as potential targets for intervention studies.
Collapse
|
45
|
Sun Y, Zhang Z, Cheng L, Zhang X, Liu Y, Zhang R, Weng P, Wu Z. Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota. Food Res Int 2021; 149:110675. [PMID: 34600677 DOI: 10.1016/j.foodres.2021.110675] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pharmacological and clinical studies have consistently demonstrated that polysaccharides exhibit great potential on immune regulation. Polysaccharides can interact directly or indirectly with the immune system, triggering cell-cell communication and molecular recognition, leading to immunostimulatory responses. Gut microbiota is adept at foraging polysaccharides as energy sources and confers benefits in the context of immunity and chronic autoimmune disease, such as multiple sclerosis. A compelling set of interconnectedness between the gut microbiota, natural polysaccharides, and immune regulation has emerged. In this review, we highlighted the available avenues supporting the existence of these interactions, with a focus on cytokines-mediated and SCFAs-mediated pathways. Additionally, the neuroimmune mechanisms for gut microbiota communication with the brain in multiple sclerosis are also discussed, which will lay the ground for ameliorate multiple sclerosis via polysaccharide intervention.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhepeng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
46
|
Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV. Role of environmental factors in multiple sclerosis. Expert Rev Neurother 2021; 21:1389-1408. [PMID: 34494502 DOI: 10.1080/14737175.2021.1978843] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Environmental factors play a significant role in the pathogenesis and progression of multiple sclerosis (MS), either acting alone or by interacting with other environmental or genetic factors. This cumulative exposure to external risk factors is highly complex and highly variable between individuals. AREAS COVERED We narratively review the current evidence on the role of environment-specific risk factors in MS onset and progression, as well as the effect of gene-environment interactions and the timing of exposure We have reviewed the latest literature, by Ovid Medline, retrieving the most recently published systematic reviews and/or meta-analyses and more recent studies not previously included in meta-analyses or systematic reviews. EXPERT OPINION There is some good evidence supporting the impact of some environmental risk factors in increasing the risk of developing MS. Tobacco smoking, low vitamin D levels and/or low sun exposure, Epstein Barr Virus (EBV) seropositivity and a history of infectious mononucleosis may increase the risk of developing MS. Additionally, there is some evidence that gene-smoking, gene-EBV, and smoking-EBV interactions additively affect the risk of MS onset. However, the evidence for a role of other environmental factors in MS progression is limited. Finally, there is some evidence that tobacco smoking, insufficient vitamin D levels and/or sun exposure have impacts on MS phenotypes and various markers of disease activity including relapse, disability progression and MRI findings. Clearly the effect of environmental factors on MS disease course is an area that requires significantly more research.
Collapse
Affiliation(s)
- Amin Zarghami
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ying Li
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Suzi B Claflin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
47
|
Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker T. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord 2021; 14:17562864211035657. [PMID: 34394728 PMCID: PMC8361534 DOI: 10.1177/17562864211035657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.
Collapse
Affiliation(s)
- Andreas Totzeck
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr 55, Essen, 45147, Germany
| | - Elakiya Ramakrishnan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melina Schlag
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Thimm
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian R Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
49
|
Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, Bakshi R, Chitnis T, Weiner HL. Gut Microbiome in Progressive Multiple Sclerosis. Ann Neurol 2021; 89:1195-1211. [PMID: 33876477 DOI: 10.1002/ana.26084] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the gut microbiome in progressive multiple sclerosis (MS) and how it relates to clinical disease. METHODS We sequenced the microbiota from healthy controls and relapsing-remitting MS (RRMS) and progressive MS patients and correlated the levels of bacteria with clinical features of disease, including Expanded Disability Status Scale (EDSS), quality of life, and brain magnetic resonance imaging lesions/atrophy. We colonized mice with MS-derived Akkermansia and induced experimental autoimmune encephalomyelitis (EAE). RESULTS Microbiota β-diversity differed between MS patients and controls but did not differ between RRMS and progressive MS or differ based on disease-modifying therapies. Disease status had the greatest effect on the microbiome β-diversity, followed by body mass index, race, and sex. In both progressive MS and RRMS, we found increased Clostridium bolteae, Ruthenibacterium lactatiformans, and Akkermansia and decreased Blautia wexlerae, Dorea formicigenerans, and Erysipelotrichaceae CCMM. Unique to progressive MS, we found elevated Enterobacteriaceae and Clostridium g24 FCEY and decreased Blautia and Agathobaculum. Several Clostridium species were associated with higher EDSS and fatigue scores. Contrary to the view that elevated Akkermansia in MS has a detrimental role, we found that Akkermansia was linked to lower disability, suggesting a beneficial role. Consistent with this, we found that Akkermansia isolated from MS patients ameliorated EAE, which was linked to a reduction in RORγt+ and IL-17-producing γδ T cells. INTERPRETATION Whereas some microbiota alterations are shared in relapsing and progressive MS, we identified unique bacteria associated with progressive MS and clinical measures of disease. Furthermore, elevated Akkermansia in MS may be a compensatory beneficial response in the MS microbiome. ANN NEUROL 2021;89:1195-1211.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | | | - Fyonn H Dhang
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Valerie Willocq
- Department of Neurology, Harvard Medical School, Harvard University Wyss Institute for Biologically Inspired Engineering, Boston, MA
| | - Anya Song
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Mark C Anderson
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Philip L De Jager
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Mariann Polgar-Turcsanyi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Brian C Healy
- Department of Neurology, Biostatistics Center, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
50
|
Levi I, Gurevich M, Perlman G, Magalashvili D, Menascu S, Bar N, Godneva A, Zahavi L, Chermon D, Kosower N, Wolf BC, Malka G, Lotan-Pompan M, Weinberger A, Yirmiya E, Rothschild D, Leviatan S, Tsur A, Didkin M, Dreyer S, Eizikovitz H, Titngi Y, Mayost S, Sonis P, Dolev M, Stern Y, Achiron A, Segal E. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep Med 2021; 2:100246. [PMID: 33948576 PMCID: PMC8080254 DOI: 10.1016/j.xcrm.2021.100246] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease whose precise etiology is unknown. Several studies found alterations in the microbiome of individuals with MS, but the mechanism by which it may affect MS is poorly understood. Here we analyze the microbiome of 129 individuals with MS and find that they harbor distinct microbial patterns compared with controls. To study the functional consequences of these differences, we measure levels of 1,251 serum metabolites in a subgroup of subjects and unravel a distinct metabolite signature that separates affected individuals from controls nearly perfectly (AUC = 0.97). Individuals with MS are found to be depleted in butyrate-producing bacteria and in bacteria that produce indolelactate, an intermediate in generation of the potent neuroprotective antioxidant indolepropionate, which we found to be lower in their serum. We identify microbial and metabolite candidates that may contribute to MS and should be explored further for their causal role and therapeutic potential.
Collapse
Affiliation(s)
- Izhak Levi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Gal Perlman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Magalashvili
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liron Zahavi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Danyel Chermon
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Noa Kosower
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bat Chen Wolf
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Malka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Yirmiya
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daphna Rothschild
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avishag Tsur
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Maria Didkin
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Sapir Dreyer
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Hen Eizikovitz
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Yamit Titngi
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Sue Mayost
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Yael Stern
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|