1
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH, Lian WS. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol Nutr Food Res 2023; 67:e2200348. [PMID: 37118999 DOI: 10.1002/mnfr.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/19/2023] [Indexed: 04/30/2023]
Abstract
SCOPE miR-29a expression patterns influence numerous physiological phenomena. Of note, upregulation of miR-29a ameliorates high-fat diet (HFD)-induced liver dysfunctions in mice. However, the miR-29a effect on gut microbiome composition and HFD-induced gut microbiota changes during metabolic disturbances remains unclear. The study provides compelling evidence for the protective role of miR-29a in gut barrier dysfunction and steatohepatitis. METHODS AND RESULTS miR-29a overexpressed mice (miR-29aTg) are bred to characterize intestinal, serum biochemical, and fecal microbiota profiling features compared to wild-type mice (WT). Mice are fed an HFD for 8 months to induce steatohepatitis, and intestinal dysfunction is determined via histopathological analysis. miR-29aTg has better lipid metabolism capability that decreases total cholesterol and triglyceride levels in serum than WT of the same age. The study further demonstrates that miR-29aTg contributes to intestinal integrity by maintaining periodic acid Schiff positive cell numbers and diversity of fecal microorganisms. HFD-induced bacterial community disturbance and steatohepatitis result in more severe WT than miR-29aTg. Gut microorganism profiling reveals Lactobacillus, Ruminiclostridium_9, and Lachnoclostridium enrichment in miR-29aTg and significantly decreases interleukin-6 expression in the liver and intestinal tract. CONCLUSION This study provides new evidence that sheds light on the host genetic background of miR-29a, which protects against steatohepatitis and other intestinal disorders.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ying-Hsien Huang
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ming-Chao Tsai
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chien-Hung Chen
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
3
|
Meyer F, Wendling D, Demougeot C, Prati C, Verhoeven F. Cytokines and intestinal epithelial permeability: A systematic review. Autoimmun Rev 2023; 22:103331. [PMID: 37030338 DOI: 10.1016/j.autrev.2023.103331] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND The intestinal mucosa is composed of a well-organized epithelium, acting as a physical barrier to harmful luminal contents, while simultaneously ensuring absorption of physiological nutrients and solutes. Increased intestinal permeability has been described in various chronic diseases, leading to abnormal activation of subepithelial immune cells and overproduction of inflammatory mediators. This review aimed to summarize and evaluate the effects of cytokines on intestinal permeability. METHODS A systematic review of the literature was performed in the Medline, Cochrane and Embase databases, up to 01/04/2022, to identify published studies assessing the direct effect of cytokines on intestinal permeability. We collected data on the study design, the method of assessment of intestinal permeability, the type of intervention and the subsequent effect on gut permeability. RESULTS A total of 120 publications were included, describing a total of 89 in vitro and 44 in vivo studies. TNFα, IFNγ or IL-1β were the most frequently studied cytokines, inducing an increase in intestinal permeability through a myosin light-chain-mediated mechanism. In situations associated with intestinal barrier disruption, such as inflammatory bowel diseases, in vivo studies showed that anti-TNFα treatment decreased intestinal permeability while achieving clinical recovery. In contrast to TNFα, IL-10 decreased permeability in conditions associated with intestinal hyperpermeability. For some cytokines (e.g. IL-17, IL-23), results are conflicting, with both an increase and a decrease in gut permeability reported, depending on the study model, methodology, or the studied conditions (e.g. burn injury, colitis, ischemia, sepsis). CONCLUSION This systematic review provides evidence that intestinal permeability can be directly influenced by cytokines in numerous conditions. The immune environment probably plays an important role, given the variability of their effect, according to different conditions. A better understanding of these mechanisms could open new therapeutic perspectives for disorders associated with gut barrier dysfunction.
Collapse
Affiliation(s)
- Frédéric Meyer
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Daniel Wendling
- Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France; EA 4266, EPILAB, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Clément Prati
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Frank Verhoeven
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France.
| |
Collapse
|
4
|
Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, Yu WY. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol 2022; 12:997018. [PMID: 36425787 PMCID: PMC9679376 DOI: 10.3389/fcimb.2022.997018] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 07/21/2023] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing recently and has become one of the most common clinical liver diseases. Since the pathogenesis of NAFLD has not been completely elucidated, few effective therapeutic drugs are available. As the "second genome" of human body, gut microbiota plays an important role in the digestion, absorption and metabolism of food and drugs. Gut microbiota can act as an important driver to advance the occurrence and development of NAFLD, and to accelerate its progression to cirrhosis and hepatocellular carcinoma. Growing evidence has demonstrated that gut microbiota and its metabolites directly affect intestinal morphology and immune response, resulting in the abnormal activation of inflammation and intestinal endotoxemia; gut dysbiosis also causes dysfunction of gut-liver axis via alteration of bile acid metabolism pathway. Because of its composition diversity and disease-specific expression characteristics, gut microbiota holds strong promise as novel biomarkers and therapeutic targets for NAFLD. Intervening intestinal microbiota, such as antibiotic/probiotic treatment and fecal transplantation, has been a novel strategy for preventing and treating NAFLD. In this article, we have reviewed the emerging functions and association of gut bacterial components in different stages of NAFLD progression and discussed its potential implications in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue-Jian Li
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jin-Mei Yao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng-Yu Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Soo-Hyun Yoon
- Institute of Medical Science, Wonkwang University, Iksan, South Korea
| | - Wen-Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Menta PLR, Andrade MER, de Castro LF, Trindade LM, Dias MTS, Miyamoto JÉ, Dos Santos RM, Cassali GD, Leal RF, Ribeiro APB, Grimaldi R, Ignacio-Souza LM, Torsoni MA, Torsoni AS, Cardoso VN, Milanski M. Interesterified palm oil increases intestinal permeability, promotes bacterial translocation, alters inflammatory parameters and tight-junction protein genic expression in Swiss mice. Food Res Int 2022; 151:110897. [PMID: 34980418 DOI: 10.1016/j.foodres.2021.110897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
High-fat diets seem to have a negative influence on the development of obesity and the processes associated with low-grade chronic systemic inflammation. In recent years, partial hydrogenated oil, rich in trans isomers, has been associated with deleterious health effects. It has been replaced by interesterified fat (IF). However, there is no evidence whether IF ingestion can exert adverse effects on the intestinal mucosa. Thus, this study aimed to evaluate the effect of IF on the intestinal mucosa of male Swiss mice fed a normal or high-fat diet, focusing on its effects on intestinal permeability and bacterial translocation and its possible damage to the intestinal epithelium. The animals were divided into 4 groups: Control (C) and Interesterified Control (IC) groups (10 En% lipids from unmodified fat or interesterified fat, respectively) and High Fat (HF) and Interesterified High Fat (IHF) groups (45 En% lipids from unmodified fat or interesterified fat, respectively). Compare to C, the IC, HF, and IHF groups presented flattened epithelium, a shorter villi length and a lower percentage of goblet cells, less mucin 2, an increased oxidative stress and more inflammatory cells, higher IL-1β, IL-17, and IL-23 levels. These groups also presented increased intestinal permeability and gene expression of the protein claudin 2, while JAM-A and claudin 1 gene expression was reduced. IC and IHF increased IL-6 levels while reducing occludin expression. In addition, the IC group also presented a mucosa with lesions of low intensity in the ileum, an increased mucin 5ac, TNF-α levels, and reduced occludin expression in the distal jejunum. Moreover, there was a significant increase in bacterial translocation in the IC group to blood, liver, and lungs, while HF and IHF groups presented bacterial translocation which was restricted to the mesenteric lymph nodes. In summary, our results supported the hypothesis that IF added to a normolipidic diet can be considered harmful or even worse when compared to a HF.
Collapse
Affiliation(s)
- Penélope Lacrísio Reis Menta
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Maria Emília Rabelo Andrade
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lívia Furquim de Castro
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Luísa Martins Trindade
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Melissa Tainan Silva Dias
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Josiane Érica Miyamoto
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Raisa Magno Dos Santos
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Geovanni Dantas Cassali
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raquel Franco Leal
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil; IBD Research Laboratory, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | - Renato Grimaldi
- School of Food Engineering, University of Campinas, UNICAMP, Campinas, Brazil
| | - Letícia Martins Ignacio-Souza
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Marcio Alberto Torsoni
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Adriana Souza Torsoni
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marciane Milanski
- School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
6
|
NSAID-Induced Enteropathy Affects Regulation of Hepatic Glucose Production by Decreasing GLP-1 Secretion. Nutrients 2021; 14:nu14010120. [PMID: 35010994 PMCID: PMC8746549 DOI: 10.3390/nu14010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIM Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy. METHOD We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp. RESULTS Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9-a GLP-1 receptor antagonist-worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates. CONCLUSIONS Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.
Collapse
|
7
|
Kosaka S, Nadatani Y, Higashimori A, Otani K, Fujimoto K, Nagata Y, Ominami M, Fukunaga S, Hosomi S, Kamata N, Tanaka F, Nagami Y, Taira K, Imoto S, Uematsu S, Watanabe T, Fujiwara Y. Ovariectomy-Induced Dysbiosis May Have a Minor Effect on Bone in Mice. Microorganisms 2021; 9:microorganisms9122563. [PMID: 34946163 PMCID: PMC8708113 DOI: 10.3390/microorganisms9122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
We determined the bone mineral density (BMD) and the expression of serum bone formation marker (procollagen type I N-terminal propeptide: PINP) and bone resorption marker (C-terminal telopeptide of collagen: CTX) by ELISA to evaluate ovariectomy-induced osteoporosis in ovariectomized (OVX) mice. The intestinal microbiota of the mice was assessed using 16S rRNA gene sequencing. OVX mice exhibited a lower BMD of 87% with higher serum levels of CTX and PINP compared to sham-operated (sham) mice. The cecum microbiome of OVX mice showed lower bacterial diversity than that of sham mice. TNFα mRNA levels in the colon were 1.6 times higher, and zonula occludens-1 mRNA and protein expression were lower in OVX mice than in sham mice, suggesting that ovariectomy induced inflammation and increased intestinal permeability. Next, we used antibiotic treatment followed by fecal microbiota transplantation (FMT) to remodel the gut microbiota in the OVX mice. A decrease in PINP was observed in antibiotic-treated mice, while there was no change in BMD or CTX between mice with and without antibiotic treatment. Oral transplantation of the luminal cecal content of OVX or sham mice to antibiotic-treated mice did not affect the BMD or PINP and CTX expression. Additionally, transplantation of the luminal contents of OVX or sham mice to antibiotic-treated OVX mice had similar effects on BMD, PINP, and CTX. In conclusion, although ovariectomy induces dysbiosis in the colon, the changes in the gut microbiota may only have a minor role in ovariectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Satoshi Kosaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Yuji Nadatani
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81-6-6645-3946
| | - Akira Higashimori
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (K.F.); (S.U.)
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuki Nagata
- Department of Vascular Medicine, Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masaki Ominami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Shusei Fukunaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (K.F.); (S.U.)
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Watanabe
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.K.); (A.H.); (K.O.); (M.O.); (S.F.); (S.H.); (N.K.); (F.T.); (Y.N.); (K.T.); (Y.F.)
| |
Collapse
|
8
|
Bhunyakarnjanarat T, Udompornpitak K, Saisorn W, Chantraprapawat B, Visitchanakun P, Dang CP, Issara-Amphorn J, Leelahavanichkul A. Prominent Indomethacin-Induced Enteropathy in Fcgriib Defi-cient lupus Mice: An Impact of Macrophage Responses and Immune Deposition in Gut. Int J Mol Sci 2021; 22:1377. [PMID: 33573095 PMCID: PMC7866536 DOI: 10.3390/ijms22031377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
A high dose of NSAIDs, a common analgesic, might induce lupus activity through several NSAIDs adverse effects including gastrointestinal permeability defect (gut leakage) and endotoxemia. Indomethacin (25 mg/day) was orally administered for 7 days in 24-wk-old Fc gamma receptor IIb deficient (FcgRIIb-/-) mice, an asymptomatic lupus model (increased anti-dsDNA without lupus nephritis), and age-matched wild-type (WT) mice. Severity of indomethacin-induced enteropathy in FcgRIIb-/- mice was higher than WT mice as demonstrated by survival analysis, intestinal injury (histology, immune-deposition, and intestinal cytokines), gut leakage (FITC-dextran assay and endotoxemia), serum cytokines, and lupus characteristics (anti-dsDNA, renal injury, and proteinuria). Prominent responses of FcgRIIb-/- macrophages toward lipopolysaccharide (LPS) compared to WT cells due to the expression of only activating-FcgRs without inhibitory-FcgRIIb were demonstrated. Extracellular flux analysis indicated the greater mitochondria activity (increased respiratory capacity and respiratory reserve) in FcgRIIb-/- macrophages with a concordant decrease in glycolysis activity when compared to WT cells. In conclusion, gut leakage-induced endotoxemia is more severe in indomethacin-administered FcgRIIb-/- mice than WT, possibly due to the enhanced indomethacin toxicity from lupus-induced intestinal immune-deposition. Due to a lack of inhibitory-FcgRIIb expression, mitochondrial function, and cytokine production of FcgRIIb-/- macrophages were more prominent than WT cells. Hence, lupus disease-activation from NSAIDs-enteropathy-induced gut leakage is possible.
Collapse
Affiliation(s)
- Thansita Bhunyakarnjanarat
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Kanyarat Udompornpitak
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Bhumdhanin Chantraprapawat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Cong Phi Dang
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Jiraphorn Issara-Amphorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
- Department of Microbiology, Immunology Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|
10
|
Osgood RS, Tashiro H, Kasahara DI, Yeliseyev V, Bry L, Shore SA. Gut microbiota from androgen-altered donors alter pulmonary responses to ozone in female mice. Physiol Rep 2020; 8:e14584. [PMID: 33052618 PMCID: PMC7556311 DOI: 10.14814/phy2.14584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
In mice, both androgens and the gut microbiota modify pulmonary responses to ozone. We hypothesized that androgens affect gut microbiota and thereby impact pulmonary responses to ozone. To address this hypothesis, we transferred cecal microbiota from male castrated or sham castrated C57BL/6J mice into female germ-free recipient C57BL/6J mice. Four weeks later mice were exposed to ozone (2 ppm) or room air for 3 hr. The gut microbiomes of castrated versus sham castrated donors differed, as did those of recipients of microbiota from castrated versus sham castrated donors. In recipients, ozone-induced airway hyperresponsiveness was not affected by donor castration status. However, compared to mice receiving microbiota from sham castrated donors, mice receiving microbiota from castrated donors had elevated numbers of bronchoalveolar lavage (BAL) neutrophils despite evidence of reduced lung injury as measured by BAL protein. Serum concentrations of IL-17A and G-CSF were significantly greater in recipients of castrated versus sham castrated microbiota. Furthermore, BAL neutrophils correlated with both serum IL-17A and serum G-CSF. Our data indicate that androgen-mediated effects on the gut microbiota modulate pulmonary inflammatory responses to ozone and suggest a role for circulating IL-17A and G-CSF in these events.
Collapse
Affiliation(s)
- Ross S. Osgood
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hiroki Tashiro
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - David I. Kasahara
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Vladimir Yeliseyev
- Massachusetts Host‐Microbiome CenterDepartment of Pathology, Brigham & Women’s HospitalBostonMAUSA
| | - Lynn Bry
- Massachusetts Host‐Microbiome CenterDepartment of Pathology, Brigham & Women’s HospitalBostonMAUSA
| | - Stephanie A. Shore
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
11
|
Salameh E, Jarbeau M, Morel FB, Zeilani M, Aziz M, Déchelotte P, Marion-Letellier R. Modeling undernutrition with enteropathy in mice. Sci Rep 2020; 10:15581. [PMID: 32973261 PMCID: PMC7518247 DOI: 10.1038/s41598-020-72705-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
Undernutrition is a global health issue leading to 1 out 5 all deaths in children under 5 years. Undernutrition is often associated with environmental enteric dysfunction (EED), a syndrome associated with increased intestinal permeability and gut inflammation. We aimed to develop a novel murine model of undernutrition with these EED features. Post-weaning mice were fed with low-protein diet (LP) alone or combined with a gastrointestinal insult trigger (indomethacin or liposaccharides). Growth, intestinal permeability and inflammation were assessed. LP diet induced stunting and wasting in post-weaning mice but did not impact gut barrier. We therefore combined LP diet with a single administration of indomethacin or liposaccharides (LPS). Indomethacin increased fecal calprotectin production while LPS did not. To amplify indomethacin effects, we investigated its repeated administration in addition to LP diet and mice exhibited stunting and wasting with intestinal hyperpermeability and gut inflammation. The combination of 3-weeks LP diet with repeated oral indomethacin administration induced wasting, stunting and gut barrier dysfunction as observed in undernourished children with EED. As noninvasive methods for investigating gut function in undernourished children are scarce, the present pre-clinical model provides an affordable tool to attempt to elucidate pathophysiological processes involved in EED and to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Emmeline Salameh
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.,Nutrition Department, Nutriset S.A.S, Malaunay, France
| | - Marine Jarbeau
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Fanny B Morel
- Nutrition Department, Nutriset S.A.S, Malaunay, France
| | | | - Moutaz Aziz
- Anatomopathology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.,Nutrition Unit, Rouen University Hospital, Rouen, France
| | - Rachel Marion-Letellier
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France. .,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.
| |
Collapse
|
12
|
Rekatsina M, Paladini A, Cifone MG, Lombardi F, Pergolizzi JV, Varrassi G. Influence of Microbiota on NSAID Enteropathy: A Systematic Review of Current Knowledge and the Role of Probiotics. Adv Ther 2020; 37:1933-1945. [PMID: 32291647 PMCID: PMC7467482 DOI: 10.1007/s12325-020-01338-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Microbiota are increasingly studied, providing more precise information on their important role in physiologic processes. They also influence some pathologic processes, such as NSAID-induced enteropathy. This side effect is much more diffuse than it has been described in the past. It derives mainly from the local action of the medicines and is caused by the local binding of gram-negative bacterial lipopolysaccharides and infiltration of neutrophils into the intestinal mucosa. The initial interest in the interaction between these damages and microbiota is very old, but new and interesting data are available. This review aims to focus on recent studies on NSAID-induced enteropathy, an often-underestimated medical condition, and on the influence of microbiota on this condition. Apart from the broadly investigated use of antibiotics and other mucosal protective solutions, this systematic review focuses mostly on the use of probiotics, which directly influence intestinal microflora. Other important factors influencing NSAID-induced enteropathy, such as sex, advanced age, infection and use of proton pump inhibitors, are also discussed.
Collapse
Affiliation(s)
| | - Antonella Paladini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | | | - Giustino Varrassi
- Paolo Procacci Foundation, Via Tacito 7, 00193, Rome, Italy.
- World Institute of Pain, Winston Salem, NC, USA.
| |
Collapse
|
13
|
Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol 2020; 11:1153. [PMID: 32848762 PMCID: PMC7426480 DOI: 10.3389/fphar.2020.01153] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects. The interaction between the gut microbiota and host has emerged as a key player in modulating host physiology, gut microbiota-related disorders, and metabolism of xenobiotics. Indeed, host-gut microbiota dynamic interactions influence NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly cause chemical modifications of the NSAID or can indirectly influence its absorption or metabolism by regulating host metabolic enzymes or processes, which may have consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID itself can directly impact the composition and function of the gut microbiota or indirectly alter the physiological properties or functions of the host which may, in turn, precipitate in dysbiosis. Thus, the complex interconnectedness between host-gut microbiota and drug may contribute to the variability in NSAID response and ultimately influence the outcome of NSAID therapy. Herein, we review the interplay between host-gut microbiota and NSAID and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition, we highlight progress towards microbiota-based intervention to reduce NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Emanuela Ricciotti,
| |
Collapse
|