1
|
Rubí-Sans G, Nyga A, Mateos-Timoneda MA, Engel E. Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts. BIOMATERIALS ADVANCES 2025; 166:214061. [PMID: 39406156 DOI: 10.1016/j.bioadv.2024.214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 11/13/2024]
Abstract
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex three-dimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain.
| |
Collapse
|
2
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
3
|
Narasimhan BN, Fraley SI. Degradability tunes ECM stress relaxation and cellular mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605514. [PMID: 39131364 PMCID: PMC11312499 DOI: 10.1101/2024.07.28.605514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In native extracellular matrices (ECM), cells can use matrix metalloproteinases (MMPs) to degrade and remodel their surroundings. Likewise, synthetic matrices have been engineered to facilitate MMP-mediated cleavage that enables cell spreading, migration, and interactions. However, the intersection of matrix degradability and mechanical properties has not been fully considered. We hypothesized that immediate mechanical changes result from the action of MMPs on the ECM and that these changes are sensed by cells. Using atomic force microscopy (AFM) to measure cell-scale mechanical properties, we find that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation after MMP exposure. Cells respond to these relaxation differences by altering their spreading and focal adhesions. We demonstrate that stress relaxation can be tuned through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, which may impact a range of biological applications.
Collapse
Affiliation(s)
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Chen J, Tsai YH, Linden AK, Kessler JA, Peng CY. YAP and TAZ differentially regulate postnatal cortical progenitor proliferation and astrocyte differentiation. J Cell Sci 2024; 137:jcs261516. [PMID: 38639242 DOI: 10.1242/jcs.261516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of β1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.
Collapse
Affiliation(s)
- Jessie Chen
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne K Linden
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Ewald CY, Nyström A. Mechanotransduction through hemidesmosomes during aging and longevity. J Cell Sci 2023; 136:jcs260987. [PMID: 37522320 DOI: 10.1242/jcs.260987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Hemidesmosomes are structural protein complexes localized at the interface of tissues with high mechanical demand and shear forces. Beyond tissue anchoring, hemidesmosomes have emerged as force-modulating structures important for translating mechanical cues into biochemical and transcriptional adaptation (i.e. mechanotransduction) across tissues. Here, we discuss the recent insights into the roles of hemidesmosomes in age-related tissue regeneration and aging in C. elegans, mice and humans. We highlight the emerging concept of preserved dynamic mechanoregulation of hemidesmosomes in tissue maintenance and healthy aging.
Collapse
Affiliation(s)
- Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Schwerzenbach CH-8603, Switzerland
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg DE-79104, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstraße 19, Freiburg im Breisgau DE-79104, Germany
| |
Collapse
|
6
|
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023; 49:44. [PMID: 36633146 PMCID: PMC9868893 DOI: 10.3892/or.2023.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
Collapse
Affiliation(s)
- Jennifer M. Caron
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Xianghua Han
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Christine W. Lary
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Pradeep Sathyanarayana
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Scot C. Remick
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Marc S. Ernstoff
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Peter C. Brooks
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| |
Collapse
|
7
|
Xu Z, Li Y, Li P, Sun Y, Lv S, Wang Y, He X, Xu J, Xu Z, Li L, Li Y. Soft substrates promote direct chemical reprogramming of fibroblasts into neurons. Acta Biomater 2022; 152:255-272. [PMID: 36041647 DOI: 10.1016/j.actbio.2022.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM). Previous in vitro studies mainly used rigid polystyrene dishes, while one of the characteristics of the native in-vivo environment of neurons is the soft nature of brain ECM. The reported stiffness of brain tissue is very soft ranging between 100 Pa and 3 kPa, and the effect of substrate stiffness on direct neuronal reprogramming has not been explored. Here, we show for the first time that soft substrates substantially improved the production efficiency and quality of iNs, without needing to co-culture with glial cells during reprogramming, producing more glutamatergic neurons with electrophysiological functions in a shorter time. Transcriptome sequencing indicated that soft substrates might promote glutamatergic neuron reprogramming through integrins, actin cytoskeleton, Hippo signalling pathway, and regulation of mesenchymal-to-epithelial transition, and competing endogenous RNA network analysis provided new targets for neuronal reprogramming. We demonstrated that soft substrates may promote neuronal reprogramming by inhibiting microRNA-615-3p-targeting integrin subunit beta 4. Our findings can aid the development of regenerative therapies and help improve our understanding of neuronal reprogramming. STATEMENT OF SIGNIFICANCE: : First, we have shown that low stiffness promotes direct reprogramming on the basis of small molecule combinations. To the best of our knowledge, this is the first report on this type of method, which may greatly promote the progress of neural reprogramming. Second, we found that miR-615-3p may interact with ITGB4, and the soft substrates may promote neural reprogramming by inhibiting microRNA (miR)-615-3p targeting integrin subunit beta 4 (ITGB4). We are the first to report on this mechanism. Our findings will provide more functional neurons for subsequent basic and clinical research in neurological regenerative medicine, and will help to improve the overall understanding of neural reprogramming. This work also provides new ideas for the design of medical biomaterials for nerve regeneration.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Pathology, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Burns Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| | - Zhixiang Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Millet M, Bollmann E, Ringuette Goulet C, Bernard G, Chabaud S, Huot MÉ, Pouliot F, Bolduc S, Bordeleau F. Cancer-Associated Fibroblasts in a 3D Engineered Tissue Model Induce Tumor-like Matrix Stiffening and EMT Transition. Cancers (Basel) 2022; 14:cancers14153810. [PMID: 35954473 PMCID: PMC9367573 DOI: 10.3390/cancers14153810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The physical properties of a tumor, such as stiffness, are important drivers of tumor progression. However, current in vitro tumor models fail to recapitulate the full range of physical properties observed in solid tumors. Here, we proposed a 3D self-assembly engineered bladder model using cancer-associated fibroblasts in which stromal cells produce their extracellular matrix. We then proceeded to assess how our model recapitulates biological and mechanical features found in tumors. We confirmed that stroma assembled by cancer-associated fibroblasts have increased extracellular matrix content and display increased remodeling and higher stiffness. Moreover, normal urothelial cells seeded on the tumor model displayed a mechanotransduction response, increased cell proliferation, cell infiltration within stroma, and displayed features of the epithelial-to-mesenchymal transition. Altogether, we demonstrated that our cancer-associated fibroblast-derived tumor stroma recapitulates several biological and physical features expected from a tumor-like environment and, thus, provides the basis for more accurate cancer models. Abstract A tumor microenvironment is characterized by its altered mechanical properties. However, most models remain unable to faithfully recreate the mechanical properties of a tumor. Engineered models based on the self-assembly method have the potential to better recapitulate the stroma architecture and composition. Here, we used the self-assembly method based on a bladder tissue model to engineer a tumor-like environment. The tissue-engineered tumor models were reconstituted from stroma-derived healthy primary fibroblasts (HFs) induced into cancer-associated fibroblast cells (iCAFs) along with an urothelium overlay. The iCAFs-derived extracellular matrix (ECM) composition was found to be stiffer, with increased ECM deposition and remodeling. The urothelial cells overlaid on the iCAFs-derived ECM were more contractile, as measured by quantitative polarization microscopy, and displayed increased YAP nuclear translocation. We further showed that the proliferation and expression of epithelial-to-mesenchymal transition (EMT) marker in the urothelial cells correlate with the increased stiffness of the iCAFs-derived ECM. Our data showed an increased expression of EMT markers within the urothelium on the iCAFs-derived ECM. Together, our results demonstrate that our tissue-engineered tumor model can achieve stiffness levels comparable to that of a bladder tumor, while triggering a tumor-like response from the urothelium.
Collapse
Affiliation(s)
- Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Enola Bollmann
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Cassandra Ringuette Goulet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Geneviève Bernard
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Marc-Étienne Huot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Frédéric Pouliot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 15554)
| |
Collapse
|
9
|
Jagiełło A, Castillo U, Botvinick E. Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Sci Rep 2022; 12:11736. [PMID: 35817812 PMCID: PMC9273755 DOI: 10.1038/s41598-022-14953-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Ulysses Castillo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Elliot Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, 92612, USA.
- Department of Surgery, University of California Irvine, 333 City Boulevard, Suite 700, Orange, CA, 92868, USA.
- The Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697-2730, USA.
| |
Collapse
|
10
|
Cell morphology and mechanosensing can be decoupled in fibrous microenvironments and identified using artificial neural networks. Sci Rep 2021; 11:5950. [PMID: 33723274 PMCID: PMC7961147 DOI: 10.1038/s41598-021-85276-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.
Collapse
|
11
|
Deguchi S, Kato A, Wu P, Hakamada M, Mabuchi M. Heterogeneous role of integrins in fibroblast response to small cyclic mechanical stimulus generated by a nanoporous gold actuator. Acta Biomater 2021; 121:418-430. [PMID: 33326880 DOI: 10.1016/j.actbio.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
It is important to understand the effects of mechanical stimulation on cell behaviors for homeostasis. Many studies have been performed on cell responses to mechanical stimuli, but the mechanosensing mechanism is still under debate. In the present study, experiments employing molecular dynamics (MD) simulations concerning the effects of cyclic mechanical stimulus on cell proliferation were performed based on the hypothesis that mechanosensing depends on integrin types. We used a nanoporous gold (NPG) actuator to prevent transfer of a mechanical stimulus via molecules other than integrins. Surprisingly, a small cyclic strain of only 0.5% enhanced the proliferation of fibroblasts. α5β1 and αvβ3 integrins showed high sensitivity to the mechanical stimulus, whereas α1β1 and α2β1 integrins exhibited low mechanosensitivity. The MD simulations showed that different conformational changes of the integrin headpiece induced by binding to the ECM led to a difference in mechanosensitivity between αI and αI-less integrin types. Thus, the present study provides evidence to support the hypothesis and suggests the mechanism for the heterogeneous roles of integrins in mechanosensing.
Collapse
Affiliation(s)
- Soichiro Deguchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan.
| | - Atsushi Kato
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Serna-Márquez N, Rodríguez-Hernández A, Ayala-Reyes M, Martínez-Hernández LO, Peña-Rico MÁ, Carretero-Ortega J, Hautefeuille M, Vázquez-Victorio G. Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics (Basel) 2020; 5:E30. [PMID: 32630500 PMCID: PMC7345357 DOI: 10.3390/biomimetics5020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver is an essential organ that carries out multiple functions such as glycogen storage, the synthesis of plasma proteins, and the detoxification of xenobiotics. Hepatocytes are the parenchyma that sustain almost all the functions supported by this organ. Hepatocytes and non-parenchymal cells respond to the mechanical alterations that occur in the extracellular matrix (ECM) caused by organogenesis and regenerating processes. Rearrangements of the ECM modify the composition and mechanical properties that result in specific dedifferentiation programs inside the hepatic cells. Quiescent hepatocytes are embedded in the soft ECM, which contains an important concentration of fibrillar collagens in combination with a basement membrane-associated matrix (BM). This work aims to evaluate the role of fibrillar collagens and BM on actin cytoskeleton organization and the function of rat primary hepatocytes cultured on soft elastic polyacrylamide hydrogels (PAA HGs). We used rat tail collagen type I and Matrigel® as references of fibrillar collagens and BM respectively and mixed different percentages of collagen type I in combination with BM. We also used peptides obtained from decellularized liver matrices (dECM). Remarkably, hepatocytes showed a poor adhesion in the absence of collagen on soft PAA HGs. We demonstrated that collagen type I inhibited apoptosis and activated extracellular signal-regulated kinases 1/2 (ERK1/2) in primary hepatocytes cultured on soft hydrogels. Epidermal growth factor (EGF) was not able to rescue cell viability in conjugated BM but affected cell aggregation in soft PAA HGs conjugated with combinations of different proportions of collagen and BM. Interestingly, actin cytoskeleton was localized and preserved close to plasma membrane (cortical actin) and proximal to intercellular ducts (canaliculi-like structures) in soft conditions; however, albumin protein expression was not preserved, even though primary hepatocytes did not remodel their actin cytoskeleton significantly in soft conditions. This investigation highlights the important role of fibrillar collagens on soft hydrogels for the maintenance of survival and aggregation of the hepatocytes. Data suggest evaluating the conditions that allow the establishment of optimal biomimetic environments for physiology and cell biology studies, where the phenotype of primary cells may be preserved for longer periods of time.
Collapse
Affiliation(s)
- Nathalia Serna-Márquez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Adriana Rodríguez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Marisol Ayala-Reyes
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Lorena Omega Martínez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Miguel Ángel Peña-Rico
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Jorge Carretero-Ortega
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| |
Collapse
|