1
|
Bleuzé M, Lehoux M, Auger JP, Gottschalk M, Segura M. The granulocyte colony-stimulating factor produced during Streptococcus suis infection controls neutrophil recruitment in the blood without affecting bacterial clearance. Front Immunol 2024; 15:1403789. [PMID: 39156897 PMCID: PMC11327821 DOI: 10.3389/fimmu.2024.1403789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Streptococcus suis causes diseases in pigs and has emerged as a zoonotic agent. When infected, the host develops an exacerbated inflammation that can lead to septic shock and meningitis. Although neutrophils greatly infiltrate the lesions, their dynamics during S. suis infection remain poorly described. Moreover, very few studies reported on the production and role of a key factor in the regulation of neutrophils: the colony-stimulating granulocyte factor (G-CSF). In this study, we characterized the G-CSF-neutrophil axis in the pathogenesis of S. suis induced disease. Using a mouse model of S. suis infection, we first evaluated the recruitment of neutrophils and their activation profile by flow cytometry. We found that infection provokes a massive neutrophil recruitment from the bone marrow to the blood and spleen. In both compartments, neutrophils displayed multiple activation markers. In parallel, we observed high systemic levels of G-CSF, with a peak of production coinciding with that of neutrophil recruitment. We then neutralized the effects of G-CSF and highlighted its role in the release of neutrophils from the bone marrow to the blood. However, it did not affect bacteremia nor the cytokine storm induced by S. suis. In conclusion, systemic G-CSF induces the release of neutrophils from the bone marrow to the blood, but its role in inflammation or bacterial clearance seems to be compensated by unknown factors. A better understanding of the role of neutrophils and inflammatory mediators could lead to better strategies for controlling the infection caused by S. suis.
Collapse
Affiliation(s)
| | | | | | | | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| |
Collapse
|
2
|
Taenaka H, Fang X, Maishan M, Trivedi A, Wick KD, Gotts JE, Martin TR, Calfee CS, Matthay MA. Neutrophil reduction attenuates the severity of lung injury in the early phase of pneumococcal pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L141-L149. [PMID: 38772909 DOI: 10.1152/ajplung.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Neutrophils are the first leukocytes to be recruited to sites of inflammation in response to chemotactic factors released by activated macrophages and pulmonary epithelial and endothelial cells in bacterial pneumonia, a common cause of acute respiratory distress syndrome (ARDS). Although neutrophilic inflammation facilitates the elimination of pathogens, neutrophils also may cause bystander tissue injury. Even though the presence of neutrophils in alveolar spaces is a key feature of acute lung injury and ARDS especially from pneumonia, their contribution to the pathogenesis of lung injury is uncertain. The goal of this study was to elucidate the role of neutrophils in a clinically relevant model of bacterial pneumonia. We investigated the effect of reducing neutrophils in a mouse model of pneumococcal pneumonia treated with antibiotics. Neutrophils were reduced with anti-lymphocyte antigen 6 complex locus G6D (Ly6G) monoclonal antibody 24 h before and immediately preceding infection. Mice were inoculated intranasally with Streptococcus pneumoniae and received ceftriaxone 12 h after bacterial inoculation. Neutrophil reduction in mice treated with ceftriaxone attenuated hypoxemia, alveolar permeability, epithelial injury, pulmonary edema, and inflammatory biomarker release induced by bacterial pneumonia, even though bacterial loads in the distal air spaces of the lung were modestly increased as compared with antibiotic treatment alone. Thus, when appropriate antibiotics are administered, lung injury in the early phase of bacterial pneumonia is mediated in part by neutrophils. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.NEW & NOTEWORTHY Neutrophil accumulation is a key feature of ARDS, but their contribution to the pathogenesis is still uncertain. We investigated the effect of reducing neutrophils in a clinically relevant mouse model of pneumococcal pneumonia treated with antibiotics. When appropriate antibiotics were administered, neutrophil reduction with Ly6G antibody markedly attenuated lung injury and improved oxygenation. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xiaohui Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Mazharul Maishan
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, California, United States
| | - Katherine D Wick
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jeffrey E Gotts
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Thomas R Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Michael A Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| |
Collapse
|
3
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
4
|
Cai B, Guo Z, Yan Q, Li H, Song H, Gong Y, Long X. Clinical features and risk factors of primary Sjögren's syndrome complicated with severe pneumonia: a case-control study. Clin Rheumatol 2024; 43:1665-1674. [PMID: 38512512 DOI: 10.1007/s10067-024-06942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES To analyze clinical characteristics, risk factors, pathogen distribution, and prognostic markers in primary Sjögren's syndrome (pSS) patients with severe pneumonia (SP) compared to those without severe pneumonia (NSP). METHODS This case-control study included 24 hospitalized pSS patients with SP and 96 NSP at the first affiliated hospital of Soochow university from June 2014 to May 2023. Data encompassing demographics, comorbidities, treatments, and laboratory results were retrospectively collected. Univariate and multivariate regression analyses, ROC curves, and statistical analyses using SPSS 23.0 assessed risk factors. The study retrospectively analyzed clinical features and risk factors, highlighting distinct parameters between pSS patients with and without SP. RESULTS Marked differences were observed in several parameters: pSS activity(P < 0.001), white blood cell (P = 0.043), lymphocyte (P < 0.001), neutrophils (P = 0.042), C-reactive protein (P = 0.042), and CD8+ T cell (P = 0.017). Notably, lymphocyte count and SS activity demonstrated robust discrimination ability (AUC > 0.85). C-reactive protein (CRP), procalcitonin, CD4+ T cell, and IgA showed significant associations with SP; higher CRP levels correlated with increased risk, while lower CD4+ T cell and IgA levels associated with increased risk. SS activity significantly impacted outcomes. Various biomarkers exhibited diverse discriminatory abilities but lacked strong predictive associations with outcomes. CONCLUSION pSS patients with SP exhibited higher disease activity and altered immune profiles compared to those NSP. Lymphocyte count and SS activity emerged as robust discriminators. Higher CRP levels correlated with increased risk of SP, while lower CD4+T cell and IgA levels associated with increased risk. SS activity significantly impacted patient outcomes. Key Points • pSS patients with SP exhibited higher disease activity and altered immune profiles compared to those NSP. • Lymphocyte count and SS activity emerged as robust discriminators. • Higher CRP levels correlated with increased risk of SP, while lower CD4+ T cell and IgA levels associated with decreased risk. • SS activity significantly impacted patient outcomes.
Collapse
Affiliation(s)
- Bo Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhiliang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Yan
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hua Song
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Gong
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China.
| | - Xianming Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
5
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
7
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
8
|
McGrath JJC, Vanderstocken G, Dvorkin-Gheva A, Cass SP, Afkhami S, Fantauzzi MF, Thayaparan D, Reihani A, Wang P, Beaulieu A, Shen P, Morissette M, Jiménez-Saiz R, Revill SD, Tabuchi A, Zabini D, Lee WL, Richards CD, Miller MS, Ask K, Kuebler WM, Simpson JA, Stämpfli MR. Cigarette smoke augments CSF3 expression in neutrophils to compromise alveolar-capillary barrier function during influenza infection. Eur Respir J 2022; 60:2102049. [PMID: 35058252 DOI: 10.1183/13993003.02049-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.
Collapse
Affiliation(s)
- Joshua J C McGrath
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Authors contributed equally
| | - Gilles Vanderstocken
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Authors contributed equally
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steven P Cass
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Peiyao Wang
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ashley Beaulieu
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Pamela Shen
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mathieu Morissette
- Dept of Medicine, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
| | - Rodrigo Jiménez-Saiz
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Dept of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- Dept of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Spencer D Revill
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Diana Zabini
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Carl D Richards
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jeremy A Simpson
- Dept of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Martin R Stämpfli
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
9
|
Boff D, Russo RC, Crijns H, de Oliveira VLS, Mattos MS, Marques PE, Menezes GB, Vieira AT, Teixeira MM, Proost P, Amaral FA. The Therapeutic Treatment with the GAG-Binding Chemokine Fragment CXCL9(74-103) Attenuates Neutrophilic Inflammation and Lung Dysfunction during Klebsiella pneumoniae Infection in Mice. Int J Mol Sci 2022; 23:ijms23116246. [PMID: 35682923 PMCID: PMC9181286 DOI: 10.3390/ijms23116246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74–103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74–103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74–103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1β (IL-1β) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74–103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Vivian Louise Soares de Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Gustavo Batista Menezes
- Center of Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mauro Martins Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
- Correspondence: (P.P.); (F.A.A.)
| | - Flávio Almeida Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Correspondence: (P.P.); (F.A.A.)
| |
Collapse
|
10
|
Zhang J, Wang J, Gong Y, Gu Y, Xiang Q, Tang LL. Interleukin-6 and granulocyte colony-stimulating factor as predictors of the prognosis of influenza-associated pneumonia. BMC Infect Dis 2022; 22:343. [PMID: 35382755 PMCID: PMC8983324 DOI: 10.1186/s12879-022-07321-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Background Pneumonia is a common complication of influenza and closely related to mortality in influenza patients. The present study examines cytokines as predictors of the prognosis of influenza-associated pneumonia. Methods This study included 101 inpatients with influenza (64 pneumonia and 37 non-pneumonia patients). 48 cytokines were detected in the serum samples of the patients and the clinical characteristics were analyzed. The correlation between them was analyzed to identify predictive biomarkers for the prognosis of influenza-associated pneumonia. Results Seventeen patients had poor prognosis and developed pneumonia. Among patients with influenza-associated pneumonia, the levels of 8 cytokines were significantly higher in those who had a poor prognosis: interleukin-6 (IL-6), interferon-γ (IFN-γ), granulocyte colony-stimulating factor (G-CSF), monocyte colony-stimulating factor (M-CSF), monocyte chemoattractant protein-1 (MCP-1), monocyte chemoattractant protein-3, Interleukin-2 receptor subunit alpha and Hepatocyte growth factor. Correlation analysis showed that the IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had positive correlations with the severity of pneumonia. IL-6 and G-CSF showed a strong and positive correlation with poor prognosis in influenza-associated pneumonia patients. The combined effect of the two cytokines resulted in the largest area (0.926) under the receiver-operating characteristic curve. Conclusion The results indicate that the probability of poor prognosis in influenza patients with pneumonia is significantly increased. IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had a positive correlation with the severity of pneumonia. Importantly, IL-6 and G-CSF were identified as significant predictors of the severity of influenza-associated pneumonia. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07321-6.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Yiwen Gong
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, People's Republic of China
| | - Yudan Gu
- Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Qiangqiang Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, 310000, People's Republic of China
| | - Ling-Ling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China. .,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
11
|
Mou K, Chan SMH, Brassington K, Dobric A, De Luca SN, Seow HJ, Selemidis S, Bozinovski S, Vlahos R. Influenza A Virus-Driven Airway Inflammation may be Dissociated From Limb Muscle Atrophy in Cigarette Smoke-Exposed Mice. Front Pharmacol 2022; 13:859146. [PMID: 35370652 PMCID: PMC8971713 DOI: 10.3389/fphar.2022.859146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.
Collapse
|
12
|
Van Nevel S, Declercq J, Holtappels G, Lambrecht BN, Bachert C. Granulocyte Colony-Stimulating Factor: Missing Link for Stratification of Type 2-high and Type 2-low Chronic Rhinosinusitis Patients. J Allergy Clin Immunol 2022; 149:1655-1665.e5. [DOI: 10.1016/j.jaci.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
13
|
Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers (Basel) 2021; 13:cancers13174495. [PMID: 34503307 PMCID: PMC8431228 DOI: 10.3390/cancers13174495] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review focuses on the pro-tumorigenic action of neutrophil extracellular traps (NETs). NETs were found in various samples of human and animal tumors. The role of the NETs in tumor development increasingly includes cancer immunoediting and interactions between immune system and cancer cells. NETs awake dormant cancer cells, play a key regulatory role in the tumor microenvironment, and exacerbate tumor aggressiveness by enhancing cancer migration and invasion capacity. Furthermore, NETs induce the epithelial to mesenchymal transition in tumor cells. NET proteinases can also degrade the extracellular matrix, promoting cancer cell extravasation. Moreover, NETs can entrap circulating cancer cells and, in that way, facilitate metastasis. A better understanding of the crosstalk between cancer and NETs can help to devise novel approaches to the therapeutic interventions that block cancer evasion mechanisms and prevent metastatic spread. Abstract The present review highlights the complex interactions between cancer and neutrophil extracellular traps (NETs). Neutrophils constitute the first line of defense against foreign invaders using major effector mechanisms: phagocytosis, degranulation, and NETs formation. NETs are composed from decondensed nuclear or mitochondrial DNA decorated with proteases and various inflammatory mediators. Although NETs play a crucial role in defense against systemic infections, they also participate in non-infectious conditions, such as inflammation, autoimmune disorders, and cancer. Cancer cells recruit neutrophils (tumor-associated neutrophils, TANs), releasing NETs to the tumor microenvironment. NETs were found in various samples of human and animal tumors, such as pancreatic, breast, liver, and gastric cancers and around metastatic tumors. The role of the NETs in tumor development increasingly includes cancer immunoediting and interactions between the immune system and cancer cells. According to the accumulated evidence, NETs awake dormant cancer cells, causing tumor relapse, as well as its unconstrained growth and spread. NETs play a key regulatory role in the tumor microenvironment, such as the development of distant metastases through the secretion of proteases, i.e., matrix metalloproteinases and proinflammatory cytokines. NETs, furthermore, directly exacerbate tumor aggressiveness by enhancing cancer migration and invasion capacity. The collected evidence also states that through the induction of the high-mobility group box 1, NETs induce the epithelial to mesenchymal transition in tumor cells and, thereby, potentiate their invasiveness. NET proteinases can also degrade the extracellular matrix, promoting cancer cell extravasation. Moreover, NETs can entrap circulating cancer cells and, in that way, facilitate metastasis. NETs directly trigger tumor cell proliferation through their proteases or activating signals. This review focused on the pro-tumorigenic action of NETs, in spite of its potential to also exhibit an antitumor effect. NET components, such as myeloperoxidase or histones, have been shown to directly kill cancer cells. A better understanding of the crosstalk between cancer and NETs can help to devise novel approaches to the therapeutic interventions that block cancer evasion mechanisms and prevent metastatic spread. This review sought to provide the most recent knowledge on the crosstalk between NETs and cancer, and bring more profound ideas for future scientists exploring this field.
Collapse
|
14
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
15
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
16
|
Neutrophils in Tumorigenesis: Missing Targets for Successful Next Generation Cancer Therapies? Int J Mol Sci 2021; 22:ijms22136744. [PMID: 34201758 PMCID: PMC8268516 DOI: 10.3390/ijms22136744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils—once considered as simple killers of pathogens and unexciting for cancer research—are now acknowledged for their role in the process of tumorigenesis. Neutrophils are recruited to the tumor microenvironment where they turn into tumor-associated neutrophils (TANs), and are able to initiate and promote tumor progression and metastasis. Conversely, anti-tumorigenic properties of neutrophils have been documented, highlighting the versatile nature and high pleiotropic plasticity of these polymorphonuclear leukocytes (PMN-L). Here, we dissect the ambivalent roles of TANs in cancer and focus on selected functional aspects that could be therapeutic targets. Indeed, the critical point of targeting TAN functions lies in the fact that an immunosuppressive state could be induced, resulting in unwanted side effects. A deeper knowledge of the mechanisms linked to diverse TAN functions in different cancer types is necessary to define appropriate therapeutic strategies that are able to induce and maintain an anti-tumor microenvironment.
Collapse
|
17
|
Lazarus HM, Gale RP. G-CSF and GM-CSF Are Different. Which One Is Better for COVID-19? Acta Haematol 2020; 144:355-359. [PMID: 32791509 PMCID: PMC7490498 DOI: 10.1159/000510352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, Ohio, USA,
| | - Robert Peter Gale
- Centre for Haematology Research, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
McRae JL, Vikstrom IB, Bongoni AK, Salvaris EJ, Fisicaro N, Ng M, Alhamdoosh M, Baz Morelli A, Cowan PJ, Pearse MJ. Blockade of the G-CSF Receptor Is Protective in a Mouse Model of Renal Ischemia–Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1433-1440. [DOI: 10.4049/jimmunol.2000390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
|
19
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
20
|
Older patients with cancer and febrile neutropenia in the COVID-19 era: A new concern. J Geriatr Oncol 2020; 11:1329-1330. [PMID: 32571666 PMCID: PMC7301139 DOI: 10.1016/j.jgo.2020.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
|
21
|
A favorable outcome of pneumonia COVID 19 in an advanced lung cancer patient with severe neutropenia: Is immunosuppression a risk factor for SARS-COV2 infection? Lung Cancer 2020; 145:213-215. [PMID: 32389426 PMCID: PMC7198145 DOI: 10.1016/j.lungcan.2020.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
|