1
|
Morales-Soto W, Thomasi B, Gulbransen BD. Endocannabinoids regulate enteric neuron-glia networks and visceral hypersensitivity following inflammation through a glial-dependent mechanism. Glia 2024. [PMID: 39132860 DOI: 10.1002/glia.24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
3
|
Dinur E, Goldenberg H, Robinson E, Naggan L, Kozela E, Yirmiya R. A Novel Anti-Inflammatory Formulation Comprising Celecoxib and Cannabidiol Exerts Antidepressant and Anxiolytic Effects. Cannabis Cannabinoid Res 2024; 9:561-580. [PMID: 36520610 DOI: 10.1089/can.2022.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Ample research shows that anti-inflammatory drugs, particularly celecoxib, exert antidepressant effects, especially in patients with microglia activation. However, substantial cardiovascular adverse effects limit celecoxib's usefulness. Given that cannabidiol (CBD) exerts anti-inflammatory, microglia-suppressive, and antidepressant effects, we hypothesized that it may potentiate the therapeutic effects of celecoxib. Methods: The effects of celecoxib, CBD, and their combination were examined in murine models of antidepressant- and anxiolytic-like behavioral responsiveness, including the forced swim test (FST), elevated plus maze (EPM), lipopolysaccharide (LPS)-induced neuroinflammation, and chronic social defeat stress (CSDS), as well as in microglia cell cultures. Results: Acute administration of a combination of celecoxib plus CBD, at doses that had no effects by themselves (10 and 5 mg/kg, respectively), produced significant antidepressant- and anxiolytic-like effects in the FST and EPM, in male and female mice. In the LPS model, combinations of celecoxib (10 or 20 mg/kg) plus CBD (30 mg/kg) reversed the anxiety-like behavior in the open-field test (OFT) and anhedonia in the sucrose preference test (SPT), with minimal effects of celecoxib or CBD by themselves. In the CSDS paradigm, a combination of celecoxib plus CBD (each at 30 mg/kg) reversed the deficits in the OFT, EPM, social exploration, and SPT, whereas celecoxib or CBD by themselves had partial effects. In BV2 microglia cultures stimulated with LPS or α-synuclein, CBD markedly potentiated the suppressive effects of celecoxib over TNFα (tumor necrosis factor-α) and IL (interleukin)-1β secretion. Conclusions: Combinations of celecoxib plus CBD produce efficacious antidepressant- and anxiolytic-like effects, which may depend on their synergistic microglia-suppressive effects.
Collapse
Affiliation(s)
- Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Okonogi T, Kuga N, Yamakawa M, Kayama T, Ikegaya Y, Sasaki T. Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice. Nat Commun 2024; 15:183. [PMID: 38195621 PMCID: PMC10776769 DOI: 10.1038/s41467-023-44205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The vagus nerve crucially affects emotions and psychiatric disorders. However, the detailed neurophysiological dynamics of the vagus nerve in response to emotions and its associated pathological changes remain unclear. In this study, we demonstrated that the spike rates of the cervical vagus nerve change depending on anxiety behavior in an elevated plus maze test, and these changes were eradicated in stress-susceptible male mice. Furthermore, instantaneous spike rates of the vagus nerve were negatively and positively correlated with the power of 2-4 Hz and 20-30 Hz oscillations, respectively, in the prefrontal cortex and amygdala. The oscillations also underwent dynamic changes depending on the behavioral state in the elevated plus maze, and these changes were no longer observed in stress-susceptible and vagotomized mice. Chronic vagus nerve stimulation restored behavior-relevant neuronal oscillations with the recovery of altered behavioral states in stress-susceptible mice. These results suggested that physiological vagal-brain communication underlies anxiety and mood disorders.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Musashi Yamakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Yin W, Swanson SP, Biltz RG, Goodman EJ, Gallagher NR, Sheridan JF, Godbout JP. Unique brain endothelial profiles activated by social stress promote cell adhesion, prostaglandin E2 signaling, hypothalamic-pituitary-adrenal axis modulation, and anxiety. Neuropsychopharmacology 2022; 47:2271-2282. [PMID: 36104533 PMCID: PMC9630498 DOI: 10.1038/s41386-022-01434-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Chronic stress may precipitate psychiatric disorders including anxiety. We reported that Repeated Social Defeat (RSD) in mice increased accumulation of inflammatory monocytes within the brain vasculature, which corresponded with increased interleukin (IL)-1 Receptor 1-mediated activation of endothelia, and augmented anxiety-like behavior. One unknown, however, is the role of immune-activated endothelia in regulating the physiological and behavioral responses to social stress. Thus, we sought to determine the RNA profile of activated endothelia and delineate the pathways by which these endothelia communicate within the brain to influence key responses to social stress. First, endothelial-specific RiboTag mice were exposed to RSD and brain endothelial mRNA profiles from the whole brain and prefrontal cortex were determined using RNAseq. RSD increased expression of cell adhesion molecules (Icam1), inflammatory genes (Lrg1, Lcn2, Ackr1, Il1r1), and cyclooxygenase-2 (Ptgs2/COX-2). In studies with IL-1R1KO mice, there was clear dependence on IL-1R1 on endothelia-associated transcripts including Lrg1, Icam1, Lcn2. Moreover, prostaglandin (PG)E2 was increased in the brain after RSD and Ptgs2 was localized to endothelia, especially within the hypothalamus. Next, a selective COX-2 inhibitor, Celecoxib (CCB), was used with social stress. RSD increased PGE2 in the brain and this was abrogated by CCB. Moreover, CCB reduced RSD-induced Hypothalamic-Pituitary-Adrenal (HPA) axis activation with attenuation of hypothalamic paraventricular neuron activation, hypothalamic Crh expression, and corticosterone in circulation. Production, release, and accumulation of inflammatory monocytes after RSD was COX-2 independent. Nonetheless, CCB blocked anxiety-like behavior in response to RSD. Collectively, social stress stimulated specific endothelia RNA profiles associated with increased cell adhesion, IL-1 and prostaglandin signaling, HPA axis activation, and anxiety.
Collapse
Affiliation(s)
- Wenyuan Yin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Samuel P Swanson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Rebecca G Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Natalie R Gallagher
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, Columbus, OH, USA
| | - John F Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA.
| |
Collapse
|
7
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
8
|
Akiyama S, Nagai H, Oike S, Horikawa I, Shinohara M, Lu Y, Futamura T, Shinohara R, Kitaoka S, Furuyashiki T. Chronic social defeat stress increases the amounts of 12-lipoxygenase lipid metabolites in the nucleus accumbens of stress-resilient mice. Sci Rep 2022; 12:11385. [PMID: 35790870 PMCID: PMC9256733 DOI: 10.1038/s41598-022-15461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Severe and prolonged social stress induces mood and cognitive dysfunctions and precipitates major depression. Neuroinflammation has been associated with chronic stress and depression. Rodent studies showed crucial roles of a few inflammation-related lipid mediators for chronic stress-induced depressive-like behaviors. Despite an increasing number of lipid mediators identified, systematic analyses of synthetic pathways of lipid mediators in chronic stress models have not been performed. Using LC–MS/MS, here we examined the effects of chronic social defeat stress on multiple synthetic pathways of lipid mediators in brain regions associated with stress susceptibility in mice. Chronic social defeat stress increased the amounts of 12-lipoxygenase (LOX) metabolites, 12-HETE and 12-HEPE, specifically in the nucleus accumbens 1 week, but not immediately, after the last stress exposure. The increase was larger in stress-resilient mice than stress-susceptible mice. The S isomer of 12-HETE was selectively increased in amount, indicating the role of 12S-LOX activity. Among the enzymes known to have 12S-LOX activity, only Alox12 mRNA was reliably detected in the brain and enriched in brain endothelial cells. These findings suggest that chronic social stress induces a late increase in the amounts of 12S-LOX metabolites derived from the brain vasculature in the nucleus accumbens in a manner associated with stress resilience.
Collapse
Affiliation(s)
- Satoshi Akiyama
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Shota Oike
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.,Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan.,The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yabin Lu
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Takashi Futamura
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.,Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. .,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
9
|
Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance. J Pharmacol Sci 2022; 148:262-266. [DOI: 10.1016/j.jphs.2021.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
|
10
|
Ishikawa Y, Furuyashiki T. The impact of stress on immune systems and its relevance to mental illness. Neurosci Res 2021; 175:16-24. [PMID: 34606943 DOI: 10.1016/j.neures.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
Stress due to adverse and demanding conditions alters immune functions. How innate and adaptive immune systems respond to stress and affect neural processes remains unclear. Rodent studies have demonstrated crucial roles of stress-induced immune responses for depressive- and anxiety-like behaviors. In the periphery, stress evokes the mobilization of neutrophils and monocytes to the circulation via sympathetic nerves and glucocorticoids. These myeloid cells are thought to promote depressive- and anxiety-like behaviors by infiltrating the brain's perivascular space, releasing cytokines, and affecting vascular endothelial functions. In the brain, stress activates microglia via innate immune receptors TLR2/4. The activated microglia in the medial prefrontal cortex secrete cytokines and alter neuronal morphology and activity in their vicinity. In subcortical brain areas, prostaglandin (PG) E2 released from the activated microglia attenuates the dopaminergic projection to the medial prefrontal cortex via PGE receptor EP1. These multiple actions of microglia promote depressive-like behavior in concert. These rodent findings may be translatable to depression that clinical studies have associated with brain and peripheral inflammations. Understanding causal relationships between immune and neural alterations under stress might be exploitable to develop inflammation-targeting therapeutics for mental illness.
Collapse
Affiliation(s)
- Yuka Ishikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
11
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
12
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Xu X, Huang H, Tu Y, Sun J, Xiong Y, Ma C, Qin S, Hu W, Zhou J. Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose Response 2021; 19:15593258211024393. [PMID: 34177398 PMCID: PMC8207280 DOI: 10.1177/15593258211024393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The underlying mechanisms of radiation-induced brain injury are poorly understood, although COX-2 inhibitors have been shown to reduce brain injury after irradiation. In the present study, the effect of celecoxib (a selective COX-2 inhibitor) pretreatment on radiation-induced injury to rat brain was studied by means of histopathological staining, evaluation of integrity of blood-brain barrier and detection of the expressions of inflammation-associated genes. The protective effect of celecoxib on human brain microvascular endothelial cells (HBMECs) against irradiation was examined and the potential mechanisms were explored. Colony formation assay and apoptosis assay were undertaken to evaluate the effect of celecoxib on the radiosensitivity of the HBMECs. ELISA was used to measure 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) secretion. Western blot was employed to examine apoptosis-related proteins expressions. It was found that celecoxib protected rat from radiation-induced brain injury by maintaining the integrity of the blood-brain barrier and reducing inflammation in rat brain tissues. In addition, celecoxib showed a significant protective effect on HBMECs against irradiation, which involves inhibited apoptosis and decreased TXB2/6-keto-PGF1α ratio in brain vascular endothelial cells. In conclusion, celecoxib could alleviate radiation-induced brain injury in rats, which may be partially due to the protective effect on brain vascular endothelial cells from radiation-induced apoptosis.
Collapse
Affiliation(s)
- Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiaxing Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozu Xiong
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
15
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
16
|
Liu S, Zhou A, Xie S, Sun D, Zhang Y, Sun Z, Chen Y, Zou J. Immune-related genes expression analysis of Western mosquitofish (Gambusia affinis) challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 102:92-100. [PMID: 32276038 DOI: 10.1016/j.fsi.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The great Gambusia affinis (G. affinis) is considered as an important animal model to study the endocrine disruption, ecological behavior, and environmental pollutant. The present study aims to build a new promising infection model with Aeromonas hydrophila (A. hydrophila) in aquaculture. The mRNA expression of Rac1, MyD88, IRAK4, TAK1, IKKβ, and IL-1β in G. affinis were significance higher (P < 0.05) in the liver of G. affinis than that of brain and intestine. And the PI3K mRNA expression level was significant lower (P < 0.05) in the intestine than that of brain and liver. The mRNA levels of AKT3 were significant higher (P < 0.05) in the brain than that of liver and intestine. And then the brain, liver, and intestine were collected at different time points (0 h, 3 h, 9 h, 18 h, 24 h, 48 h) after post injection of LD50 of A. hydrophila. The 0.85% NaCl was used as a negative control for the LD50 of A. hydrophila. The RT-PCR results showed that mRNA expressions of TLR2/4 pathway downstream genes MyD88, IRAK4, TAK1, Rac1, IKKβ, and IL-1β were firstly significantly up-regulated (P < 0.05) and were then backed to the 0 h group levels in three tissues. In contrast, mRNA expressions of TLR2/4 pathway downstream genes PI3K and AKT3 were firstly significantly decreased (P < 0.05) and were then increased to the 0 h group levels in brain and intestine. In summary, the results indicated that A. hydrophila could cause inflammatory reaction in intestinal and brain. In addition, the liver showed a provocative reaction when infected with A. hydrophila.
Collapse
Affiliation(s)
- Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuolin Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|