1
|
Zhang W, Sun S, Zhu W, Meng D, Hu W, Yang S, Gao M, Yao P, Wang Y, Wang Q, Ji J. Birinapant Reshapes the Tumor Immunopeptidome and Enhances Antigen Presentation. Int J Mol Sci 2024; 25:3660. [PMID: 38612472 PMCID: PMC11011986 DOI: 10.3390/ijms25073660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143, USA;
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Delan Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Weiyi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Siqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Mingjie Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Pengju Yao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Yuhao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| |
Collapse
|
4
|
Feola S, Haapala M, Peltonen K, Capasso C, Martins B, Antignani G, Federico A, Pietiäinen V, Chiaro J, Feodoroff M, Russo S, Rannikko A, Fusciello M, Koskela S, Partanen J, Hamdan F, Tähkä SM, Ylösmäki E, Greco D, Grönholm M, Kekarainen T, Eshaghi M, Gurvich OL, Ylä-Herttuala S, M. Branca RM, Lehtiö J, Sikanen TM, Cerullo V. PeptiCHIP: A Microfluidic Platform for Tumor Antigen Landscape Identification. ACS NANO 2021; 15:15992-16010. [PMID: 34605646 PMCID: PMC8552492 DOI: 10.1021/acsnano.1c04371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Identification of HLA class I ligands from the tumor surface (ligandome or immunopeptidome) is essential for designing T-cell mediated cancer therapeutic approaches. However, the sensitivity of the process for isolating MHC-I restricted tumor-specific peptides has been the major limiting factor for reliable tumor antigen characterization, making clear the need for technical improvement. Here, we describe our work from the fabrication and development of a microfluidic-based chip (PeptiCHIP) and its use to identify and characterize tumor-specific ligands on clinically relevant human samples. Specifically, we assessed the potential of immobilizing a pan-HLA antibody on solid surfaces via well-characterized streptavidin-biotin chemistry, overcoming the limitations of the cross-linking chemistry used to prepare the affinity matrix with the desired antibodies in the immunopeptidomics workflow. Furthermore, to address the restrictions related to the handling and the limited availability of tumor samples, we further developed the concept toward the implementation of a microfluidic through-flow system. Thus, the biotinylated pan-HLA antibody was immobilized on streptavidin-functionalized surfaces, and immune-affinity purification (IP) was carried out on customized microfluidic pillar arrays made of thiol-ene polymer. Compared to the standard methods reported in the field, our methodology reduces the amount of antibody and the time required for peptide isolation. In this work, we carefully examined the specificity and robustness of our customized technology for immunopeptidomics workflows. We tested this platform by immunopurifying HLA-I complexes from 1 × 106 cells both in a widely studied B-cell line and in patients-derived ex vivo cell cultures, instead of 5 × 108 cells as required in the current technology. After the final elution in mild acid, HLA-I-presented peptides were identified by tandem mass spectrometry and further investigated by in vitro methods. These results highlight the potential to exploit microfluidics-based strategies in immunopeptidomics platforms and in personalized immunopeptidome analysis from cells isolated from individual tumor biopsies to design tailored cancer therapeutic vaccines. Moreover, the possibility to integrate multiple identical units on a single chip further improves the throughput and multiplexing of these assays with a view to clinical needs.
Collapse
Affiliation(s)
- Sara Feola
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Markus Haapala
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Karita Peltonen
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Cristian Capasso
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Beatriz Martins
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Gabriella Antignani
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Antonio Federico
- Faculty
of
Medicine and Health Technology, Tampere
University, Arvo Ylpön
katu 34, Tampere 33520, Finland
| | - Vilja Pietiäinen
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute
for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science
(HiLIFE), University of Helsinki, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jacopo Chiaro
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Michaela Feodoroff
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute
for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science
(HiLIFE), University of Helsinki, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Salvatore Russo
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Antti Rannikko
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Department
of Urology, Helsinki University and Helsinki
University Hospital, Haartmaninkatu 8, 00029 Helsinki, Finland
- Research
Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00029 Helsinki, Finland
| | - Manlio Fusciello
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Satu Koskela
- Research
& Development Finnish Red Cross Blood Service Helsinki, Kivihaantie 7, 00310 Helsinki, Finland
| | - Jukka Partanen
- Research
& Development Finnish Red Cross Blood Service Helsinki, Kivihaantie 7, 00310 Helsinki, Finland
| | - Firas Hamdan
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Sari M. Tähkä
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Erkko Ylösmäki
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Dario Greco
- Faculty
of
Medicine and Health Technology, Tampere
University, Arvo Ylpön
katu 34, Tampere 33520, Finland
| | - Mikaela Grönholm
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Tuija Kekarainen
- Kuopio
Center for Gene and Cell Therapy, Microkatu 1S, 70210 Kuopio, Finland
| | - Masoumeh Eshaghi
- Kuopio
Center for Gene and Cell Therapy, Microkatu 1S, 70210 Kuopio, Finland
| | - Olga L. Gurvich
- Kuopio
Center for Gene and Cell Therapy, Microkatu 1S, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.
I. Virtanen Institute, University of Eastern
Finland, Neulaniementie
2, 70211 Kuopio, Finland
| | - Rui M. M. Branca
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Tomtebodavagen 23B, 171 21 Solna, Sweden
| | - Janne Lehtiö
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Tomtebodavagen 23B, 171 21 Solna, Sweden
| | - Tiina M. Sikanen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Vincenzo Cerullo
- Drug
Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University
of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational
Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital
Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Department
of Molecular Medicine and Medical Biotechnology, Naples University “Federico II”, S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Engelhard VH, Obeng RC, Cummings KL, Petroni GR, Ambakhutwala AL, Chianese-Bullock KA, Smith KT, Lulu A, Varhegyi N, Smolkin ME, Myers P, Mahoney KE, Shabanowitz J, Buettner N, Hall EH, Haden K, Cobbold M, Hunt DF, Weiss G, Gaughan E, Slingluff CL. MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. J Immunother Cancer 2021; 8:jitc-2019-000262. [PMID: 32385144 PMCID: PMC7228659 DOI: 10.1136/jitc-2019-000262] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phosphorylated peptides presented by MHC molecules represent a new class of neoantigens expressed on cancer cells and recognized by CD8 T-cells. These peptides are promising targets for cancer immunotherapy. Previous work identified an HLA-A*0201-restricted phosphopeptide from insulin receptor substrate 2 (pIRS2) as one such target. The purpose of this study was to characterize a second phosphopeptide, from breast cancer antiestrogen resistance 3 (BCAR3), and to evaluate safety and immunogenicity of a novel immunotherapic vaccine comprising either or both of these phosphorylated peptides. METHODS Phosphorylated BCAR3 protein was evaluated in melanoma and breast cancer cell lines by Western blot, and recognition by T-cells specific for HLA-A*0201-restricted phosphorylated BCAR3 peptide (pBCAR3126-134) was determined by 51Cr release assay and intracellular cytokine staining. Human tumor explants were also evaluated by mass spectrometry for presentation of pIRS2 and pBCAR3 peptides. For the clinical trial, participants with resected stage IIA-IV melanoma were vaccinated 6 times over 12 weeks with one or both peptides in incomplete Freund's adjuvant and Hiltonol (poly-ICLC). Adverse events (AEs) were coded based on National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) V.4.03, with provision for early study termination if dose-limiting toxicity (DLT) rates exceeded 33%. The enrollment target was 12 participants evaluable for immune response to each peptide. T-cell responses were assessed by interferon-γ ELISpot assay. RESULTS pBCAR3 peptides were immunogenic in vivo in mice, and in vitro in normal human donors, and T-cells specific for pBCAR3126-134 controlled outgrowth of a tumor xenograft. The pIRS21097-1105 peptide was identified by mass spectrometry from human hepatocellular carcinoma tumors. In the clinical trial, 15 participants were enrolled. All had grade 1 or 2 treatment-related AEs, but there were no grade 3-4 AEs, DLTs or deaths on study. T-cell responses were induced to the pIRS21097-1105 peptide in 5/12 patients (42%, 90% CI 18% to 68%) and to the pBCAR3126-134 peptide in 2/12 patients (17%, 90% CI 3% to 44%). CONCLUSION This study supports the safety and immunogenicity of vaccines containing the cancer-associated phosphopeptides pBCAR3126-134 and pIRS21097-1105, and the data support continued development of immune therapy targeting phosphopeptides. Future studies will define ways to further enhance the magnitude and durability of phosphopeptide-specific immune responses. TRIAL REGISTRATION NUMBER NCT01846143.
Collapse
Affiliation(s)
- Victor H Engelhard
- Beirne Carter Center for Immunology Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rebecca C Obeng
- Beirne Carter Center for Immunology Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kara L Cummings
- Beirne Carter Center for Immunology Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gina R Petroni
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angela L Ambakhutwala
- Beirne Carter Center for Immunology Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kimberly A Chianese-Bullock
- Department of Surgery/Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kelly T Smith
- Department of Surgery/Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amanda Lulu
- Beirne Carter Center for Immunology Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nikole Varhegyi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark E Smolkin
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Paisley Myers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Keira E Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Nico Buettner
- 7Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Emily H Hall
- Office of Clinical Research, University Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kathleen Haden
- Department of Surgery/Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark Cobbold
- 7Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Geoffrey Weiss
- Medicine/Division of Hematology-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Elizabeth Gaughan
- Medicine/Division of Hematology-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Rijensky NM, Blondheim Shraga NR, Barnea E, Peled N, Rosenbaum E, Popovtzer A, Stemmer SM, Livoff A, Shlapobersky M, Moskovits N, Perry D, Rubin E, Haviv I, Admon A. Identification of Tumor Antigens in the HLA Peptidome of Patient-derived Xenograft Tumors in Mouse. Mol Cell Proteomics 2020; 19:1360-1374. [PMID: 32451349 PMCID: PMC8015002 DOI: 10.1074/mcp.ra119.001876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Personalized cancer immunotherapy targeting patient-specific cancer/testis antigens (CTA) and neoantigens may benefit from large-scale tumor human leukocyte antigen (HLA) peptidome (immunopeptidome) analysis, which aims to accurately identify antigens presented by tumor cells. Although significant efforts have been invested in analyzing the HLA peptidomes of fresh tumors, it is often impossible to obtain sufficient volumes of tumor tissues for comprehensive HLA peptidome characterization. This work attempted to overcome some of these obstacles by using patient-derived xenograft tumors (PDX) in mice as the tissue sources for HLA peptidome analysis. PDX tumors provide a proxy for the expansion of the patient tumor by re-grafting them through several passages to immune-compromised mice. The HLA peptidomes of human biopsies were compared with those derived from PDX tumors. Larger HLA peptidomes were obtained from the significantly larger PDX tumors as compared with the patient biopsies. The HLA peptidomes of different PDX tumors derived from the same source tumor biopsy were very reproducible, even following subsequent passages to new naïve mice. Many CTA-derived HLA peptides were discovered, as well as several potential neoantigens/variant sequences. Taken together, the use of PDX tumors for HLA peptidome analysis serves as a highly expandable and stable source of reproducible and authentic peptidomes, opening up new opportunities for defining large HLA peptidomes when only small tumor biopsies are available. This approach provides a large source for tumor antigens identification, potentially useful for personalized immunotherapy.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology Haifa, Israel
| | - Nir Peled
- Institute of Oncology, Davidoff Center, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Eli Rosenbaum
- Institute of Oncology, Davidoff Center, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Aron Popovtzer
- Institute of Oncology, Davidoff Center, Rabin Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Petah Tikva, Israel
| | - Solomon M Stemmer
- Davidoff Center, Rabin Medical Center, Beilinson Campus, Petach Tikva, and Felsentien medical research center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel
| | - Mark Shlapobersky
- Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel
| | - Neta Moskovits
- Davidoff Center, Rabin Medical Center, Beilinson Campus, Petach Tikva, and Felsentien medical research center, Petach Tikva, Israel
| | - Dafna Perry
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Eitan Rubin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel; The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Itzhak Haviv
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology Haifa, Israel.
| |
Collapse
|