1
|
Damasceno ROS, Pinheiro JLS, Rodrigues LHM, Gomes RC, Duarte ABS, Emídio JJ, Diniz LRL, de Sousa DP. Anti-Inflammatory and Antioxidant Activities of Eugenol: An Update. Pharmaceuticals (Basel) 2024; 17:1505. [PMID: 39598416 PMCID: PMC11597765 DOI: 10.3390/ph17111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
Medicinal plants are a rich source of bioactive compounds that possess pharmacological properties for preventing and treating inflammation-related diseases. Essential oils is a chemical class that contains many bioactive compounds, such as eugenol, which is capable of inhibiting or modulating the inflammatory response. This natural product emerges as a compound that promotes various biological activities, including antioxidant activity, which makes it useful in the food industry. Recently, its pharmacological applications have also been highlighted. So, this review aims to update and discuss the most recent findings on the anti-inflammatory and antioxidant activities of eugenol, along with its mechanisms of action and therapeutic potential for treating inflammation and oxidative imbalance conditions.
Collapse
Affiliation(s)
- Renan Oliveira Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - João Lucas Silva Pinheiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Lucas Henrique Marques Rodrigues
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Rebeca Carneiro Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Allana Brunna Sucupira Duarte
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Jeremias Justo Emídio
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| |
Collapse
|
2
|
Zakaria NH, Fadhlina A, Sheikh HI, Hairani MAS, Mohd Fauzi MSH, Abdul Majid FA. Stress-relieving properties of a polyherbal blend with Syzygium aromaticum L. and Coffea canephora Pierre ex A. Froehner: A review and bibliometric analysis. World J Biol Psychiatry 2024; 25:353-369. [PMID: 38900601 DOI: 10.1080/15622975.2024.2369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Syzygium aromaticum and Coffea canephora are acknowledged for their outstanding antioxidant, anti-inflammatory, and nerve-stimulant properties, showcasing potential in brain protection. Therefore, this study aims to quantitatively review existing literature and assess the potential of using it to formulate a herbal tea blend for managing stress and anxiety. METHODS Data was retrieved from the Scopus database, and a bibliometric analysis was performed using VOSviewer software. RESULTS Following a screening process, a total of 121 articles were identified, with S. aromaticum yielding a higher number compared to C. canephora. A detailed exploration of each plant revealed active components such as eugenol, β-caryophyllene, α-humulene, caffeine, mangiferin, and chlorogenic acids, each exhibiting stimulatory effects alongside antioxidant and anti-inflammatory properties. The neuroprotective effects were attributed to the reduction of oxidative stress and inflammation, coupled with the stimulation of neurotransmitters and hormones like dopamine, serotonin, cortisol, and adrenaline. CONCLUSIONS The review showed that these plants positively affect mood and cognition by influencing the brain's pleasure system. This suggests the need for further research to combine these plant extracts for developing 'Tenang tea', a potential herbal blend for managing stress and anxiety.
Collapse
Affiliation(s)
- Nor Hafizah Zakaria
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anis Fadhlina
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Hassan Ibrahim Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Afnan Syakir Hairani
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Fadzilah Adibah Abdul Majid
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Salas G, Litta AA, Medeot AC, Schuck VS, Andermatten RB, Miszczuk GS, Ciriaci N, Razori MV, Barosso IR, Sánchez Pozzi EJ, Roma MG, Basiglio CL, Crocenzi FA. NADPH oxidase-generated reactive oxygen species are involved in estradiol 17ß-d-glucuronide-induced cholestasis. Biochimie 2024; 223:41-53. [PMID: 38608750 DOI: 10.1016/j.biochi.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The endogenous metabolite of estradiol, estradiol 17β-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.
Collapse
Affiliation(s)
- Gimena Salas
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Alen A Litta
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Anabela C Medeot
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Virginia S Schuck
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Romina B Andermatten
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Nadia Ciriaci
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Ma Valeria Razori
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| |
Collapse
|
4
|
Mergulhão NLON, Bulhões LCG, Silva VC, Duarte IFB, Basílio-Júnior ID, Freitas JD, Oliveira AJ, Goulart MOF, Barbosa CV, Araújo-Júnior JX. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:599. [PMID: 38794169 PMCID: PMC11124181 DOI: 10.3390/ph17050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate encapsulates loaded with clove essential oil (CEO) were prepared by ionic gelation, with subsequent freeze-drying. The objective of the present work was to develop a product with the ability to protect CEO against its easy volatility and oxidation. The following techniques were used to characterize the formulations: eugenol release, degree of swelling, GC/MS, TGA/DSC, and SEM. The alginate solution (1.0%) containing different concentrations of CEO (LF1: 1.0%; LF2: 0.5%; LF3: 0.1%) was dropped into a 3.0% CaCl2 solution. After lyophilization, the encapsulated samples were wrinkled and rigid, with high encapsulation power (LF3: 76.9% ± 0.5). Three chemical components were identified: eugenol (the major one), caryophyllene, and humulene. The antioxidant power (LF1: DPPH IC50 18.1 µg mL-1) was consistent with the phenol content (LF1: 172.2 mg GAE g-1). The encapsulated ones were thermally stable, as shown by analysis of FTIR peaks, eugenol molecular structure was kept unaltered. The degree of swelling was 19.2% (PBS). The release of eugenol (92.5%) in the PBS solution was faster than in the acidic medium. It was concluded that the low-cost technology used allows the maintenance of the content and characteristics of CEO in the three concentrations tested, offering a basis for further research with essential oil encapsulates.
Collapse
Affiliation(s)
- Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Laisa C. G. Bulhões
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Valdemir C. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
- Estácio de Alagoas Faculty, Maceió 57035-225, Brazil
| | - Ilza F. B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Irinaldo D. Basílio-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - Johnnatan D. Freitas
- Department of Food Chemistry, Federal Institute of Alagoas, Maceió 57020-600, Brazil;
| | - Adeildo J. Oliveira
- Department of Exact Sciences, Federal University of Alagoas, Arapiraca 57309-005, Brazil;
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Círia V. Barbosa
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - João X. Araújo-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| |
Collapse
|
5
|
Chniguir A, Saguem MH, Dang PMC, El-Benna J, Bachoual R. Eugenol Inhibits Neutrophils Myeloperoxidase In Vitro and Attenuates LPS-Induced Lung Inflammation in Mice. Pharmaceuticals (Basel) 2024; 17:504. [PMID: 38675465 PMCID: PMC11054673 DOI: 10.3390/ph17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Amina Chniguir
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | | | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Rafik Bachoual
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| |
Collapse
|
6
|
Anjum NF, Shanmugarajan D, Prashantha Kumar BR, Faizan S, Durai P, Raju RM, Javid S, Purohit MN. Novel Derivatives of Eugenol as a New Class of PPARγ Agonists in Treating Inflammation: Design, Synthesis, SAR Analysis and In Vitro Anti-Inflammatory Activity. Molecules 2023; 28:molecules28093899. [PMID: 37175309 PMCID: PMC10180488 DOI: 10.3390/molecules28093899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/15/2023] Open
Abstract
The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove (Eugenia caryophyllata) from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, 1HNMR, 13CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that 1f exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Priya Durai
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Ruby Mariam Raju
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| |
Collapse
|
7
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
8
|
Randhawa PK, Rajakumar A, Futuro de Lima IB, Gupta MK. Eugenol attenuates ischemia-mediated oxidative stress in cardiomyocytes via acetylation of histone at H3K27. Free Radic Biol Med 2023; 194:326-336. [PMID: 36526244 PMCID: PMC10074330 DOI: 10.1016/j.freeradbiomed.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Despite clinical advances, ischemia-induced cardiac diseases remain an underlying cause of death worldwide. Epigenetic modifications, especially alterations in the acetylation of histone proteins play a pivotal role in counteracting stressful conditions, including ischemia. In our study, we found that histone active mark H3K27ac was significantly reduced and histone repressive mark H3K27me3 was significantly upregulated in the cardiomyocytes exposed to the ischemic condition. Then, we performed a high throughput drug screening assay using rat ventricular cardiomyocytes during the ischemic condition and screened an antioxidant compound library comprising of 84 drugs for H3K27ac by fluorescence microscopy. Our data revealed that most of the phenolic compounds like eugenol, apigenin, resveratrol, bis-demethoxy curcumin, D-gamma-tocopherol, ambroxol, and non-phenolic compounds like l-Ergothioneine, ciclopirox ethanolamine, and Tanshinone IIA have a crucial role in maintaining the cellular H3K27ac histone marks during the ischemic condition. Further, we tested the role of eugenol on cellular protection during ischemia. Our study shows that ischemia significantly reduces cellular viability and increases total reactive oxygen species (ROS), and mitochondrial ROS in the cells. Interestingly, eugenol treatment significantly restores the cellular acetylation at H3K27, decreases cellular ROS, and improves cellular viability. To explore the mechanism of eugenol-medicated inhibition of deacetylation, we performed a RNAseq experiment. Analysis of transcriptome data using IPA indicated that eugenol regulates several cellular functions associated with cardiovascular diseases, and metabolic processes. Further, we found that eugenol regulates the expression of HMGN1, CD151 and Ppp2ca genes during ischemia. Furthermore, we found that eugenol might protect the cells from ischemia through modulation of HMGN1 protein expression, which plays an active role in regulation of histone acetylation and cellular protection during stress. Thus, our study indicated that eugenol can be exploited as an agent to protect the ischemic cells and also could be used to develop a novel drug for treating cardiac disease.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Isabela Beatriz Futuro de Lima
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
9
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
10
|
Csikós E, Csekő K, Kemény Á, Draskóczi L, Kereskai L, Kocsis B, Böszörményi A, Helyes Z, Horváth G. Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123868. [PMID: 35744988 PMCID: PMC9229653 DOI: 10.3390/molecules27123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and their main components are shown to reduce inflammatory mediator production. The aim of our research was to investigate the chemical composition of commercially available SO and CO by gas chromatography–mass spectrometry and study their effects on airway functions and inflammation in an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast, MPO activity and several inflammatory cytokines (IL-1β, KC, MCP-1, MIP-2, TNF-α) were aggravated by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but enhance certain inflammatory parameters. These results suggest that these EOs should be used with caution in cases of inflammation-associated respiratory diseases.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Lilla Draskóczi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- PharmInVivo Ltd., H-7629 Pecs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
- Correspondence: ; Tel.: +36-72-503650-28823
| |
Collapse
|
11
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
12
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Wani MR, Shadab GGHA. Antioxidant thymoquinone and eugenol alleviate TiO 2 nanoparticle-induced toxicity in human blood cells in vitro. Toxicol Mech Methods 2021; 31:619-629. [PMID: 34219618 DOI: 10.1080/15376516.2021.1949083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are used extensively in a variety of commercial, industrial, and medical products, due to which human exposure is inevitable. This study aimed to explore the potential of eugenol and thymoquinone (TQ), two well-known antioxidants, in counteracting the NP-induced toxicity in human blood cells in vitro. Fresh lymphocytes and erythrocytes were isolated from volunteer human blood donors and incubated with 50 μg/mL of TiO2 NPs in the presence and absence of 50 μM of TQ and 20 μg/mL of eugenol for 3 h. Results showed that NP-treatment-induced hemolysis, oxidative stress, lactate dehydrogenase (LDH) leakage, and reduced ATPase activity in the erythrocytes. In the lymphocytes treated with NPs alone (50 μg/mL), cytotoxicity in MTT assay and DNA damage in comet assay were observed; in addition, mitochondrial membrane potential collapsed and ADP/ATP ratio increased indicating mitochondrial function impairment. However, in the presence of antioxidants, all these NP-induced changes were mitigated significantly. The results were more significant when both antioxidants eugenol and TQ were given together. Thus, it seems that antioxidants eugenol and TQ can be used as a protective agent against TiO2 NP-induced toxicity.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Department of Zoology, Section of Genetics, Cytogenetics and Molecular Toxicology Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - G G Hammad Ahmad Shadab
- Department of Zoology, Section of Genetics, Cytogenetics and Molecular Toxicology Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
14
|
Therapeutic Promises of Medicinal Plants in Bangladesh and Their Bioactive Compounds against Ulcers and Inflammatory Diseases. PLANTS 2021; 10:plants10071348. [PMID: 34371551 PMCID: PMC8309353 DOI: 10.3390/plants10071348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
When functioning properly, the stomach is the center of both physical and mental satisfaction. Gastrointestinal disorders, or malfunctioning of the stomach, due to infections caused by various biological entities and physiochemical abnormalities, are now widespread, with most of the diseases being inflammatory, which, depending on the position and degree of inflammation, have different names such as peptic or gastric ulcers, irritable bowel diseases, ulcerative colitis, and so on. While many synthetic drugs, such as non-steroidal anti-inflammatory drugs, are now extensively used to treat these diseases, their harmful and long-term side effects cannot be ignored. To treat these diseases safely and successfully, different potent medicinal plants and their active components are considered game-changers. In consideration of this, the present review aimed to reveal a general and comprehensive updated overview of the anti-ulcer and anti-inflammatory activities of medicinal plants. To emphasize the efficacy of the medicinal plants, various bioactive compounds from the plant extract, their experimental animal models, and clinical trials are depicted.
Collapse
|
15
|
Abou-Zeid SM, Ahmed AI, Awad A, Mohammed WA, Metwally MMM, Almeer R, Abdel-Daim MM, Khalil SR. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression. Biomed Pharmacother 2021; 133:110997. [PMID: 33197759 DOI: 10.1016/j.biopha.2020.110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Tilmicosin (Til) is a popular macrolide antibiotic, widely used in veterinary practice. The present study was designed to address the efficacy of Moringa oleifera ethanolic extract (MOE) in protecting against Tilmicosin (Til) - induced nephrotoxicity in Sprague Dawley rats. Animals were treated once with Til (75 mg/kg bw, subcutaneously), and/or MOE for 7 days (400 or 800 mg/kg bw, by oral gavage). Til-treatment was associated with significantly increased serum levels of creatinine, urea, sodium, potassium and GGT activity, as well as decreased total protein and albumin concentrations. Renal tissue hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were elevated, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were diminished. The levels of renal tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and the mRNA expression of intermediate filament protein encoding genes (desmin, nestin and vimentin) in the kidney were up- regulated with histopathological alterations in renal glomeruli, tubules and interstitial tissue. These toxic effects were markedly ameliorated by co-treatment of MOE with Til, in a dose dependent manner. Taken together, these results indicate that MO at 800 mg/kg protects against Til-induced renal injury, likely by its potent antioxidant and anti-inflammatory properties, which make it suitable to be used as a protective supplement with Til therapy.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Wafaa A Mohammed
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
16
|
Longo B, Sommerfeld EP, Dos Santos AC, da Silva RDCMVDAF, Somensi LB, Mariano LNB, Boeing T, Faloni de Andrade S, de Souza P, da Silva LM. Dual role of eugenol on chronic gastric ulcer in rats: Low-dose healing efficacy and the worsening gastric lesion in high doses. Chem Biol Interact 2020; 333:109335. [PMID: 33245926 DOI: 10.1016/j.cbi.2020.109335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
This study evaluated the gastric healing activity of eugenol, the main bioactive compound from clove (Syzygium aromaticun) essential oil. Five groups of female Wistar rats were submitted to acetic acid-induced ulcer model and treated with Vehicle (1 mL/kg, p.o.), eugenol (1, 10 or 100 mg/kg, p.o) or omeprazole (20 mg/kg, p.o), twice a day, by seven or fourteen days. Macroscopic, microscopic and biochemical analyses were performed in the ulcerated site. Eugenol (1 mg/kg, p.o) administered by 7 or 14 days accelerated the gastric healing process by 33% and 52%, respectively. The healing actions of eugenol were accompanied by the rescue on the histological architecture and the normalization of the superoxide dismutase and catalase activity. Moreover, eugenol (1 mg/kg, p.o) reduced the gastric mucosal myeloperoxidase activity and increased the mucin secretion. In contrast, eugenol at a dose of 100 mg/kg administered by 7 days enhanced 49% the ulcerated area, but at 10 mg/kg did not change the ulcer area after 7 or 14 days of treatment. Thus, despite the undesirable results due to the worsening of the gastric lesion with the use of eugenol in high doses, the antiulcer potential of this compound is evident and manageable in an adequate dose.
Collapse
Affiliation(s)
- Bruna Longo
- Curso de Nutrição, Escola de Ciências da Saúde (ECS), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Ellen Perfoll Sommerfeld
- Curso de Nutrição, Escola de Ciências da Saúde (ECS), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Ana Caroline Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | | | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Luísa Nathalia Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil
| | - Luísa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-901, Santa Catarina, SC, Brazil.
| |
Collapse
|
17
|
Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Sci Rep 2020; 10:16204. [PMID: 33004893 PMCID: PMC7530671 DOI: 10.1038/s41598-020-73203-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is triggered by numerous diseases such as osteoarthritis, Crohn's disease and cancer. The control of the pro-inflammatory process can prevent, mitigate and/or inhibit the evolution of these diseases. Therefore, anti-inflammatory drugs have been studied as possible compounds to act in these diseases. This paper proposes a computational analysis of eugenol in relation to aspirin and diclofenac and analyzing the ADMET profile and interactions with COX-2 and 5-LOX enzymes, important enzymes in the signaling pathway of pro-inflammatory processes. Through the analysis of ADMET in silico, it was found that the pharmacokinetic results of eugenol are similar to NSAIDs, such as diclofenac and aspirin. Bioinformatics analysis using coupling tests showed that eugenol can bind to COX-2 and 5-LOX. These results corroborate with different findings in the literature that demonstrate anti-inflammatory activity with less gastric irritation, bleeding and ulcerogenic side effects of eugenol. The results of bioinformatics reinforce studies that try to propose eugenol as an anti-inflammatory compound that can act in the COX-2/5-LOX pathways, replacing some NSAIDs in different diseases.
Collapse
|
18
|
Zhuang H, Yao C, Zhao X, Chen X, Yang Y, Huang S, Pan L, Du A, Yang Y. DNA double-strand breaks in the Toxoplasma gondii-infected cells by the action of reactive oxygen species. Parasit Vectors 2020; 13:490. [PMID: 32988387 PMCID: PMC7523337 DOI: 10.1186/s13071-020-04324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host's DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. METHODS HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. RESULTS γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. CONCLUSIONS Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.
Collapse
Affiliation(s)
- Haohan Zhuang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chaoqun Yao
- Departments of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Xianfeng Zhao
- Animals & Plant Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, 518045, PR China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Siyang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, Jiangsu Province, PR China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
19
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|