1
|
Xiang SL, Xu KZ, Yin LJ, Rao Y, Wang B, Jia AQ. Dopamine, an exogenous quorum sensing signaling molecule or a modulating factor in Pseudomonas aeruginosa? Biofilm 2024; 8:100208. [PMID: 39036334 PMCID: PMC11260039 DOI: 10.1016/j.bioflm.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Pseudomonas aeruginosa is recognized globally as an opportunistic pathogen of considerable concern due to its high virulence and pathogenicity, especially in immunocompromised individuals. While research has identified several endogenous quorum sensing (QS) signaling molecules that enhance the virulence and pathogenicity of P. aeruginosa, investigations on exogenous QS signaling molecules or modulating factors remain limited. This study found that dopamine serves as an exogenous QS signaling molecule or modulating factor of P. aeruginosa PAO1, enhancing the production of virulence factors and biofilms. Compared to the control group, treatment with 40 μM dopamine resulted in a 33.1 % increase in biofilm formation, 68.1 % increase in swimming mobility, 63.1 % increase in swarming mobility, 147.2 % increase in the signaling molecule 3-oxo-C12-HSL, and 50.5 %, 28.5 %, 27.0 %, and 33.2 % increases in the virulence factors alginate, rhamnolipids, protease, and pyocyanin, respectively. This study further explored the mechanism of dopamine regulating the biofilm formation and virulence of P. aeruginosa PAO1 through transcriptome and metabolome. Transcriptomic analysis showed that dopamine promoted the expression of virulence genes psl, alg, lasA, rhlABC, rml, and phz in P. aeruginosa PAO1. Metabolomic analysis revealed changes in the concentrations of tryptophan, pyruvate, ethanolamine, glycine, 3-hydroxybutyric acid, and alizarin. Furthermore, KEGG enrichment analysis of altered genes and metabolites indicated that dopamine enhanced phenylalanine, tyrosine, and tryptophan in P. aeruginosa PAO1. The results of this study will contribute to the development of novel exogenous QS signaling molecules or modulating factors and advance our understanding of the interactions between P. aeruginosa and the host environment.
Collapse
Affiliation(s)
- Shi-Liang Xiang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lu-Jun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
2
|
Rosina P, Grube M. Novel image-analytic approach reveals new insights in fine-tuning of slime mould network adaptation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240950. [PMID: 39493301 PMCID: PMC11528663 DOI: 10.1098/rsos.240950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
This study introduces a novel methodology to explore the network dynamics of Physarum polycephalum, an organism celebrated for its remarkable adaptive capabilities. We used two innovative techniques to analyse its growth behaviour and network modifications under stress conditions, including starvation and differential epinephrine exposures. The first method provided a quantitative assessment of growth and exploration over time. The second method provided a detailed examination of vein diameter and contraction patterns, illuminating the physiological adjustments P. polycephalum undergoes in response to environmental challenges. By integrating these approaches, we were able to estimate the total network volume of the organism, with a focus on the normalized estimated volume, unveiling insightful aspects of its structural adaptations. While starvation reduced the volume, indicating a significant structural compromise, low and high epinephrine concentrations maintained a volume-to-area ratio comparable with the control. Determining the fractal dimension of the networks over time revealed a fine-tuning of the network complexity in response to environmental conditions, with significant reductions under stress indicating a constrained network adaptation strategy. These methods, novel in their application to P. polycephalum, provide a framework for future studies and a basis for exploring complex network behaviours with potential applications in bioengineering and adaptive network design.
Collapse
Affiliation(s)
- Philipp Rosina
- Institute of Biology, University of Graz, Graz8010, Austria
| | - Martin Grube
- Institute of Biology, University of Graz, Graz8010, Austria
| |
Collapse
|
3
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Luo Z, Xi H, Huang W, Liu MF, Yuan L, Chen Q, Xiao Y, Zhu Q, Zhao R, Sheng YY. The role of male hormones in bacterial infections: enhancing Staphylococcus aureus virulence through testosterone-induced Agr activation. Arch Microbiol 2024; 206:401. [PMID: 39261350 DOI: 10.1007/s00203-024-04130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Staphylococcus aureus is a notorious pathogen predominantly involved in skin and soft tissue infections, exhibiting a distinct innate sex bias. This study explores the influence of testosterone on the virulence of S. aureus and elucidates its underlying mechanisms. Utilizing a skin abscess model in intact and castrated male mice, we assessed the effects of testosterone on S. aureus pathogenicity. Compared to controls, castrated mice showed significantly reduced abscess sizes and decreased bacterial loads, highlighting the role of testosterone in modulating the severity of S. aureus infections. In vitro experiments revealed that testosterone enhances the hemolytic activity, cytotoxicity, and oxidative stress resistance of S. aureus. Real-time quantitative PCR analysis showed a significant upregulation of the genes encoding α-hemolysin (hla) and phenol-soluble modulin (psmα). Importantly, testosterone treatment significantly enhanced the expression of the accessory gene regulator (Agr) quorum-sensing system components (agrC, agrA, agrB, agrD), while the SaeRS system (saeR, saeS, and sbi) exhibited only slight changes. Gene knockout experiments revealed that deletion of agrC, rather than saeRS and agrBD, abolishes the testosterone-induced enhancement of hemolysis and gene expression, underscoring the key role of AgrC. Molecular docking simulations indicated a direct interaction between testosterone and AgrC protein, with a strong binding affinity at the active site residue SER201. This study provides new insights into the mechanistic basis of how testosterone enhances the pathogenicity of S. aureus, potentially contributing to increased male susceptibility to S. aureus infections and offering a targeted approach for therapeutic interventions.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Huimin Xi
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wei Huang
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mei-Fang Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lei Yuan
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qiang Chen
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yanghua Xiao
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yi-Yun Sheng
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
7
|
Gannesen AV, Schelkunov MI, Ziganshin RH, Ovcharova MA, Sukhacheva MV, Makarova NE, Mart'yanov SV, Loginova NA, Mosolova AM, Diuvenji EV, Nevolina ED, Plakunov VK. Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine. AIMS Microbiol 2024; 10:363-390. [PMID: 38919714 PMCID: PMC11194618 DOI: 10.3934/microbiol.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Transcriptomic and proteomic analysis were performed on 72 h biofilms of the acneic strain Cutibacterium acnes and planktonic cultures in the presence of epinephrine. Epinephrine predominantly downregulated genes associated with various transporter proteins. No correlation was found between proteomic and transcriptomic profiles. In control samples, the expression of 51 proteins differed between planktonic cultures and biofilms. Addition of 5 nM epinephrine reduced this number, and in the presence of 5 µM epinephrine, the difference in proteomic profiles between planktonic cultures and biofilms disappeared. According to the proteomic profiling, epinephrine itself was more effective in the case of C. acnes biofilms and potentially affected the tricarboxylic acid cycle (as well as alpha-ketoglutarate decarboxylase Kgd), biotin synthesis, cell division, and transport of different compounds in C. acnes cells. These findings are consistent with recent research on Micrococcus luteus, suggesting that the effects of epinephrine on actinobacteria may be universal.
Collapse
Affiliation(s)
- AV Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - MI Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - RH Ziganshin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - MA Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - MV Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - NE Makarova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - SV Mart'yanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - NA Loginova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - AM Mosolova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
- Russian Biotechnological University, Moscow 125080, Russia
| | - EV Diuvenji
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - ED Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - VK Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
8
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Lei Y, Rahman K, Cao X, Yang B, Zhou W, Reheman A, Cai L, Wang Y, Tyagi R, Wang Z, Chen X, Cao G. Epinephrine Stimulates Mycobacterium tuberculosis Growth and Biofilm Formation. Int J Mol Sci 2023; 24:17370. [PMID: 38139199 PMCID: PMC10743465 DOI: 10.3390/ijms242417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The human stress hormones catecholamines play a critical role in communication between human microbiota and their hosts and influence the outcomes of bacterial infections. However, it is unclear how M. tuberculosis senses and responds to certain types of human stress hormones. In this study, we screened several human catecholamine stress hormones (epinephrine, norepinephrine, and dopamine) for their effects on Mycobacterium growth. Our results showed that epinephrine significantly stimulated the growth of M. tuberculosis in the serum-based medium as well as macrophages. In silico analysis and molecular docking suggested that the extra-cytoplasmic domain of the MprB might be the putative adrenergic sensor. Furthermore, we showed that epinephrine significantly enhances M. tuberculosis biofilm formation, which has distinct texture composition, antibiotic resistance, and stress tolerance. Together, our data revealed the effect and mechanism of epinephrine on the growth and biofilm formation of M. tuberculosis, which contributes to the understanding of the environmental perception and antibiotic resistance of M. tuberculosis and provides important clues for the understanding of bacterial pathogenesis and the development of novel antibacterial therapeutics.
Collapse
Affiliation(s)
- Yingying Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Khaista Rahman
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Xiaojian Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Bing Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Wei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Aikebaier Reheman
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Luxia Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Yifan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Rohit Tyagi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
| | - Gang Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (K.R.); (X.C.); (B.Y.); (W.Z.); (A.R.)
- Bio-Medical Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
11
|
Thiroux A, Berjeaud JM, Villéger R, Crépin A. Effect of endocrine disruptors on bacterial virulence. Front Cell Infect Microbiol 2023; 13:1292233. [PMID: 38029256 PMCID: PMC10657830 DOI: 10.3389/fcimb.2023.1292233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| | | | | | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| |
Collapse
|
12
|
Dupont CA, Bourigault Y, Osmond T, Nier M, Barbey C, Latour X, Konto-Ghiorghi Y, Verdon J, Merieau A. Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule. Front Microbiol 2023; 14:1264801. [PMID: 37908545 PMCID: PMC10614000 DOI: 10.3389/fmicb.2023.1264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Théo Osmond
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Maëva Nier
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| |
Collapse
|
13
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
14
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
15
|
Regulation of Lysozyme Activity by Human Hormones. IRANIAN BIOMEDICAL JOURNAL 2023; 27:58-65. [PMID: 36624688 PMCID: PMC9971709 DOI: 10.52547/ibj.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Lysozyme is a part of human and animal noncellular immunity. The regulation of its activity by hormones is poorly studied. The aim of this study was to test the in vitro activity of lysozyme in the presence of catecholamines, natriuretic hormones, and estradiol (E2). Methods Hormones were incubated with lysozyme, and the activity of lysozome was further determined using a test culture of Micrococcus luteus in the early exponential growth stage. The activity of lysozyme was assessed based on the rate of change in the OD of the test culture. Molecular docking was performed using SwissDock server http://www.swissdock.ch/docking), and molecular structures were further analyzed and visualized in the UCSF Chimera 1.15rc software. Results According to the results, epinephrine and norepinephrine increased lysozyme activity up to 180% compared to the hormone-free enzyme. Changing the pH of the medium from 6.3 to 5.5, increased the lysozyme activity in the presence of E2 up to 150-200 %. The results also showed that exposure to hormones could modify lysozyme ctivity, and this effect depends on the temperature and pH value. The molecular docking revealed a decrease in the activation energy of the active site of enzyme during the interaction of catecholamines with the amino acid residues, asp52 and glu35 of the active site. Conclusion Our findings demonstrate an additional mechanism for the involvement of lysozyme in humoral regulation of nonspecific immunity with respect to human pathogenic microflora and bacterial skin commensals by direct modulation of its activity using human hormones.
Collapse
|
16
|
Moraes RM, Garcia MT, Stossi F, de Barros PP, Junqueira JC, Anbinder AL. Effects of α and β-adrenergic signaling on innate immunity and Porphyromonas gingivalis virulence in an invertebrate model. Virulence 2022; 13:1614-1630. [PMID: 36121102 PMCID: PMC9487758 DOI: 10.1080/21505594.2022.2123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the role of adrenergic signalling (AS) in the host immune response and Porphyromonas gingivalis virulence, we compared norepinephrine (NE) and isoproterenol (ISO) responses in Galleria mellonella. P. gingivalis infection was evaluated by survival; humoral immune responses (i.e. melanization and cecropin and gloverin mRNA expression); cellular immune responses (i.e. haemocyte count, nodulation by histology); and P. gingivalis recovery (CFU/mL). P. gingivalis was cultivated in the presence of ISO (PgISO) or NE and injected into the larvae for survival evaluation. Finally, we co-injected ISO and PgISO to evaluate the concomitant effects on the immune response and bacterial virulence. None of the ligands were toxic to the larvae; ISO increased haemocyte number, even after P. gingivalis infection, by mobilizing sessile haemocytes in a β-adrenergic-specific manner, while NE showed the opposite effect. ISO treatment reduced larval mortality and the number of recovered bacteria, while NE increased mortality and showed no effect on bacterial recovery. ISO and NE had similar effects on melanization and decreased the expression of cecropin. Although co-cultivation with NE and ISO increased the gene expression of bacterial virulence factors in vitro, only the injection of PgISO increased larval death, which was partially reversed by circulating ISO. Therefore, α- and β-adrenergic signalling had opposite effects after P. gingivalis infection. Ultimately, the catecholamine influence on the immune response overcame the effect of more virulent strains. The effect of AS directly on the pathogen found in vitro did not translate to the in vivo setting.
Collapse
Affiliation(s)
- Renata Mendonça Moraes
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Maíra Terra Garcia
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Patrícia Pimentel de Barros
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil.,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caicó, RN, Brazil
| | - Juliana Campos Junqueira
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Ana Lia Anbinder
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| |
Collapse
|
17
|
Louis M, Tahrioui A, Verdon J, David A, Rodrigues S, Barreau M, Manac’h M, Thiroux A, Luton B, Dupont C, Calvé ML, Bazire A, Crépin A, Clabaut M, Portier E, Taupin L, Defontaine F, Clamens T, Bouffartigues E, Cornelis P, Feuilloley M, Caillon J, Dufour A, Berjeaud JM, Lesouhaitier O, Chevalier S. Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091788. [PMID: 36144390 PMCID: PMC9502294 DOI: 10.3390/microorganisms10091788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Phthalates are used in a variety of applications—for example, as plasticizers in polyvinylchloride products to improve their flexibility—and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.
Collapse
Affiliation(s)
- Mélissande Louis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Ali Tahrioui
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Julien Verdon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Audrey David
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sophie Rodrigues
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Magalie Barreau
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Maëliss Manac’h
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Audrey Thiroux
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Baptiste Luton
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Charly Dupont
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marie Le Calvé
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexis Bazire
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexandre Crépin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Maximilien Clabaut
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Emilie Portier
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Laure Taupin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Florian Defontaine
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Thomas Clamens
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Emeline Bouffartigues
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Pierre Cornelis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marc Feuilloley
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Jocelyne Caillon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Faculté de Médecine, Université de Nantes, F-44000 Nantes, France
| | - Alain Dufour
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Jean-Marc Berjeaud
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sylvie Chevalier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-2-32-29-15-60
| |
Collapse
|
18
|
Brain Natriuretic Peptide (BNP) Affects Growth and Stress Tolerance of Representatives of the Human Microbiome, Micrococcus luteus C01 and Alcaligenes faecalis DOS7. BIOLOGY 2022; 11:biology11070984. [PMID: 36101364 PMCID: PMC9311935 DOI: 10.3390/biology11070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The body of an average person weighing 70 kg contains approximately 39 trillion bacterial cells, which densely inhabit the gastrointestinal tract, skin, mucous membranes, etc. Bacteria respond to the signaling molecules in the human body, regulate the expression of the necessary genes, and thus adapt to the physiology of the host. Signaling molecules include hormones, neurotransmitters, immune system molecules, as well as natriuretic peptides, which are involved in the regulation of the circulatory system, water and electrolyte metabolism, and adipose tissue metabolism. Brain natriuretic peptide (BNP) is secreted by the ventricles during congestion and signals heart failure. This study showed that the presence of BNP in the growth medium of human symbiont bacteria affects their growth characteristics, survival, and stress resistance, including antibiotic resistance. It was concluded that bacterial populations that develop in a healthy person at a BNP level of up to 250 pg/mL will be more stress resistant than in a person suffering from heart failure. Our findings are promising to be used both in clinical medical practice and in the production of bacterial preparations for cosmetology, agriculture, and waste management. Abstract Brain natriuretic peptide (BNP) is secreted by the ventricles of the heart during overload to signal heart failure. Slight bilateral skin itching induced by BNP has been associated with response activity of the skin microbiota. In this work, we studied the effect of 25–250,000 pg BNP/mL on the growth, long-term survival, and stress (H2O2, antibiotics, salinity, heat and pH shock) resistance of human symbiont bacteria: Gram-positive Micrococcus luteus C01 and Gram-negative Alcaligenes faecalis DOS7. The effect of BNP turned out to be dose-dependent. Up to 250 pg BNP/mL made bacteria more stress resistant. At 2500 pg BNP/mL (heart failure) the thermosensitivity of the bacteria increased. Almost all considered BNP concentrations increased the resistance of bacteria to the action of tetracycline and ciprofloxacin. Both bacteria survived 1.3–1.7 times better during long-term (up to 4 months) storage. Our findings are important both for clinical medical practice and for practical application in other areas. For example, BNP can be used to obtain stress-resistant bacteria, which is important in the collection of microorganisms, as well as for the production of bacterial preparations and probiotics for cosmetology, agriculture, and waste management.
Collapse
|
19
|
Doublier S, Cirrincione S, Scardaci R, Botta C, Lamberti C, Di Giuseppe F, Angelucci S, Rantsiou K, Cocolin L, Pessione E. Putative probiotics decrease cell viability and enhance chemotherapy effectiveness in human cancer cells: role of butyrate and secreted proteins. Microbiol Res 2022; 260:127012. [DOI: 10.1016/j.micres.2022.127012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
|
20
|
Lyte JM, Martinez DA, Robinson K, Donoghue AM, Daniels KM, Lyte M. A neurochemical biogeography of the broiler chicken intestinal tract. Poult Sci 2022; 101:101671. [PMID: 35066383 PMCID: PMC8783147 DOI: 10.1016/j.psj.2021.101671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
The study of neurochemical-based interkingdom signaling and its impact on host-microbe interaction is called microbial endocrinology. Neurochemicals play a recognized role in determining bacterial colonization and interaction with the gut epithelium. While much attention has been devoted to the determination of neurochemical concentrations in the mammalian gut to better understand tissue and region-specific microbial endocrinology-based mechanisms of host-microbe interaction, little is known regarding the biogeography of neurochemicals in the avian gut. Greater resolution of avian gut neurochemical concentrations is needed especially as recent microbial endocrinology-based investigations into bacterial foodborne pathogen colonization of the chicken gut have demonstrated neurochemicals to affect Campylobacter jejuni and Salmonella spp. in vivo and in vitro. The aim of the present study was to determine the concentrations of stress-related neurochemicals in the tissue and luminal content of the duodenum, jejunum, ileum, cecum, and colon of the broiler intestinal tract, and to investigate if this biogeography changes with age of the bird. While all neurochemicals measured were detected in the intestinal tract, many displayed differences in regional concentrations. Whereas the catecholamine norepinephrine was detected in each region of the intestinal tract, epinephrine was present only in the cecum and colon. Likewise, dopamine, and its metabolite 3,4-dihydroxyphenylacetic acid were found in the greatest quantities in the cecum and colon. Serotonin and histamine were identified in each gut region. Region-specific age-related changes were observed (P < 0.05) for serotonin, its metabolite 5-hydroxyindole acetic acid as well as for histamine. Several neurochemicals, including norepinephrine, were found in the contents of each gut region. Epinephrine was not detected in the gut content of any region. Salsolinol, a microbial-produced neuroactive compound was detected in the gut content but not in tissue. Together, our data establish a neurochemical biogeography of the broiler chicken intestinal tract. By providing researchers with a region-by-region map of in vivo gut neurochemical concentrations of a modern broiler chicken breed, this neurochemical map is expected to inform future investigations that seek to utilize avian enteric neurochemistry.
Collapse
|
21
|
Scardaci R, Bietto F, Racine PJ, Boukerb AM, Lesouhaitier O, Feuilloley MGJ, Scutera S, Musso T, Connil N, Pessione E. Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved? Microorganisms 2022; 10:microorganisms10030487. [PMID: 35336063 PMCID: PMC8954575 DOI: 10.3390/microorganisms10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.
Collapse
Affiliation(s)
- Rossella Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
- Correspondence:
| | - Francesca Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| | - Pierre-Jean Racine
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Amine M. Boukerb
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Olivier Lesouhaitier
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Sara Scutera
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Tiziana Musso
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Nathalie Connil
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Enrica Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| |
Collapse
|
22
|
Medina Lopez AI, Fregoso DR, Gallegos A, Yoon DJ, Fuentes JJ, Crawford R, Kaba H, Yang H, Isseroff RR. Beta adrenergic receptor antagonist can modify
Pseudomonas aeruginosa
biofilm formation in vitro: Implications for chronic wounds. FASEB J 2022; 36:e22057. [DOI: 10.1096/fj.202100717rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
| | - Daniel R. Fregoso
- Department of Dermatology University of California, Davis Davis California USA
| | - Anthony Gallegos
- Department of Dermatology University of California, Davis Davis California USA
| | - Daniel J. Yoon
- Department of Dermatology University of California, Davis Davis California USA
| | - Jaime J. Fuentes
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Robert Crawford
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Hawa Kaba
- Department of Dermatology University of California, Davis Davis California USA
| | - Hsin‐ya Yang
- Department of Dermatology University of California, Davis Davis California USA
| | - R. Rivkah Isseroff
- Department of Dermatology University of California, Davis Davis California USA
- Dermatology Section VA Northern California Health Care System Mather USA
| |
Collapse
|
23
|
Gannesen A, Schelkunov M, Geras'kina O, Makarova N, Sukhacheva M, Danilova N, Ovcharova M, Mart'yanov S, Pankratov T, Muzychenko D, Zhurina M, Feofanov A, Botchkova E, Plakunov V. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in M icrococcus luteus strain C01 isolated from human skin. Biofilm 2021; 3:100058. [PMID: 34729469 PMCID: PMC8543384 DOI: 10.1016/j.bioflm.2021.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10-9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT-PCR demonstrated reproducible upregulation of genes encoding Fe-S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
Collapse
Affiliation(s)
- A.V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
- Corresponding author.
| | - M.I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - O.V. Geras'kina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N.E. Makarova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - M.V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - N.D. Danilova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - S.V. Mart'yanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - T.A. Pankratov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - D.S. Muzychenko
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E.A. Botchkova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - V.K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
25
|
Patil A, Banerji R, Kanojiya P, Saroj SD. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: lessons Learned from Clinical Isolates. Pathog Glob Health 2021; 115:339-356. [PMID: 33851566 PMCID: PMC8592604 DOI: 10.1080/20477724.2021.1916158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ESKAPE pathogens (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are identified to be multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR); thereby, imposing severe challenges in the treatment of associated infections. ESKAPE pathogens colonize on various biotic and abiotic surfaces; biofilms formed by these pathogens are a potential source for food contamination. Moreover, biofilms play a pivotal role in the development of antimicrobial-resistant (AMR) strains. Hence, the frequent isolation of antimicrobial-resistant ESKAPE pathogens from food products across the globe imposes a threat to public health. A comprehensive understanding of the adhesion signaling involved in the polymicrobial and single-species biofilm will assist in developing alternative preservation techniques and novel therapeutic strategies to combat ESKAPE pathogens. The review provides a comprehensive overview of the signaling mechanisms that prevail in the ESKAPE pathogens for adhesion to abiotic and biotic surfaces and molecular mechanisms associated with poly-microbial biofilm-assisted AMR in ESKAPE.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| |
Collapse
|
26
|
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the microbiota–gut–brain axis in maintaining a healthy status is well recognized. In this bidirectional flux, the influence of host hormones on gut bacteria is crucial. However, data on commensal/probiotics are scarce since most reports analyzed the effects of human bioactive compounds on opportunistic strains, highlighting the risk of increased pathogenicity under stimulation. The present investigation examined the modifications induced by 5HT, a tryptophan-derived molecule abundant in the intestine, on the probiotic Enterococcus faecium NCIMB10415. Specific phenotypic modifications concerning the probiotic potential and possible effects of treated bacteria on dendritic cells were explored together with the comparative soluble proteome evaluation. Increased resistance to bile salts and ampicillin in 5HT-stimulated conditions relate with overexpression of specific proteins (among which Zn-beta-lactamases, a Zn-transport protein and a protein involved in fatty acid incorporation into the membrane). Better auto-aggregating properties and biofilm-forming aptitude are consistent with enhanced QS peptide transport. Concerning interaction with the host, E. faecium NCIMB10415 enhanced dendritic cell maturation, but no significant differences were observed between 5HT-treated and untreated bacteria; meanwhile, after 5HT exposure, some moonlight proteins possibly involved in tissue adhesion were found in higher abundance. Finally, the finding in stimulated conditions of a higher abundance of VicR, a protein involved in two-component signal transduction system (VicK/R), suggests the existence of a possible surface receptor (VicK) for 5HT sensing in the strain studied. These overall data indicate that E. faecium NCIMB10415 modifies its physiology in response to 5HT by improving bacterial interactions and resistance to stressors.
Collapse
|
27
|
Serotonin modulates Campylobacter jejuni physiology and invitro interaction with the gut epithelium. Poult Sci 2021; 100:100944. [PMID: 33652538 PMCID: PMC7936195 DOI: 10.1016/j.psj.2020.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Microbial endocrinology, which is the study of neurochemical-based host–microbe interaction, has demonstrated that neurochemicals affect bacterial pathogenicity. A variety of neurochemicals, including norepinephrine, were shown to enhance intestinal epithelial colonization by Campylobacter jejuni. Yet, little is known whether serotonin, an abundant neurochemical produced in the gut, affects the physiology of C. jejuni and its interaction with the host gut epithelium. Considering the avian gut produces serotonin and serves as a major reservoir of C. jejuni, we sought to investigate whether serotonin can affect C. jejuni physiology and gut epithelial colonization in vitro. We first determined the biogeographical distribution of serotonin concentrations in the serosa, mucosa, as well as the luminal contents of the broiler chicken ileum, cecum, and colon. Serotonin concentrations were greater (P < 0.05) in the mucosa and serosa compared to the luminal content in each gut region examined. Among the ileum, colon, and cecum, the colon was found to contain the greatest concentrations of serotonin. We then investigated whether serotonin may effect changes in C. jejuni growth and motility in vitro. The C. jejuni used in this study was previously isolated from the broiler chicken ceca. Serotonin at concentrations of 1mM or below did not elicit changes in growth (P > 0.05) or motility (P > 0.05) of C. jejuni. Next, we utilized liquid chromatography tandem mass spectrometry to investigate whether serotonin affected the proteome of C. jejuni. Serotonin caused (P < 0.05) the downregulation of a protein (CJJ81176_1037) previously identified to be essential in C. jejuni colonization. Based on our findings, we evaluated whether serotonin would cause a functional change in C. jejuni adhesion and invasion of the HT29MTX-E12 colonic epithelial cell line. Serotonin was found to cause a reduction in adhesion (P < 0.05) but not invasion (P > 0.05). Together, we have identified a potential role for serotonin in modulating C. jejuni colonization in the gut in vitro. Further studies are required to understand the practical implications of these findings for the control of C. jejuni enteric colonization in vivo.
Collapse
|
28
|
Cambronel M, Nilly F, Mesguida O, Boukerb AM, Racine PJ, Baccouri O, Borrel V, Martel J, Fécamp F, Knowlton R, Zimmermann K, Domann E, Rodrigues S, Feuilloley M, Connil N. Influence of Catecholamines (Epinephrine/Norepinephrine) on Biofilm Formation and Adhesion in Pathogenic and Probiotic Strains of Enterococcus faecalis. Front Microbiol 2020; 11:1501. [PMID: 32849320 PMCID: PMC7396564 DOI: 10.3389/fmicb.2020.01501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Enterococcus faecalis has controversial status due to its emerging role in nosocomial infections, while some strains with beneficial effects are used as probiotics and starter cultures in dairy industry. These bacteria can be found as resident or transient germs in the gut or on skin, where they are continually exposed to various eukaryotic molecules. In this context, the aim of our work was to evaluate the effect of the catecholamine stress hormones, epinephrine (Epi), and norepinephrine (NE) on some Enterococcus strains. Four E. faecalis strains were included in this study: E. faecalis MMH594 and E. faecalis V583, pathogenic strains of clinical origin, E. faecalis Symbioflor 1 clone DSM 16431, a pharmaceutical probiotic, and E. faecalis OB15, a probiotic strain previously isolated from Tunisian rigouta (Baccouri et al., 2019). Epi was found to modulate the formation of biofilm (biovolume and thickness) in E. faecalis, whether pathogens or probiotics. NE had less effect on biofilm formation of these bacteria. We also investigated the effect of Epi and NE on adhesion of E. faecalis to eukaryotic cells as it is the first step of colonization of the host. Epi was found to significantly enhance the adhesion of MMH594 and OB15 to Caco-2/TC7 intestinal cells and HaCaT keratinocyte cells, whereas NE significantly increased the adhesion of V583 and Symbioflor 1 DSM 16431 to Caco-2/TC7 cells, the adhesion of MMH594, Symbioflor 1 DSM 16431, and OB15 to HaCaT cells. Analysis of a putative adrenergic sensor of Epi/NE in E. faecalis, compared to QseC, the Escherichia coli adrenergic receptor, allowed the identification of VicK as the nearest protein to QseC with 29% identity and 46% similarity values. Structure modeling and molecular docking of VicK corroborated the hypothesis of possible interactions of this putative adrenergic sensor with Epi and NE, with binding energies of -4.08 and -4.49 kcal/mol, respectively. In conclusion, this study showed for the first time that stress hormones could increase biofilm formation and adhesion to eukaryotic cells in E. faecalis. Future experiments will aim to confirm by in vivo studies the role of VicK as adrenergic sensor in E. faecalis probiotic and pathogen strains. This may help to develop new strategies of antagonism/competition in the gut or skin ecological niches, and to prevent the colonization by opportunistic pathogens.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Flore Nilly
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Pierre-Jean Racine
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Olfa Baccouri
- Laboratory of Protein Engineering and Bioactive Molecules, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Valérie Borrel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Jérome Martel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Florian Fécamp
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | | | - Eugen Domann
- Institute of Medical Microbiology, German Centre for Infection Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|