1
|
Li YJ, Yu ZY, Zhang D, Zhang FR, Zhang DM, Chen M. Extracellular vesicles for the treatment of ulcerative colitis: A systematic review and meta-analysis of animal studies. Heliyon 2024; 10:e36890. [PMID: 39281542 PMCID: PMC11400994 DOI: 10.1016/j.heliyon.2024.e36890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Extracellular vesicles (EVs) are being considered as a potential therapeutic option for ulcerative colitis (UC), and numerous preclinical studies have been conducted on the use of EVs for UC. Methods A systematic review was conducted to compare the therapeutic effects of mammalian EVs and placebo on UC in animal models, along with a meta-analysis comparing naïve (unmodified) EVs and placebo. The search was performed in four databases (PubMed, Web of Science, Scopus, and EMBASE) up to September 13th, 2023. The primary outcomes included disease activity index (DAI), colonic mucosal damage index (CMDI), and adverse effects (PROSPERO ID: CRD42023458039). Results A total of 69 studies were included based on pre-determined criteria, involving 1271 animals. Of these studies, 51 measured DAI scores, with 98 % reporting that EVs could reduce DAI scores. Additionally, 5 studies reported CMDI and all showed that EVs could significantly reduce CMDI. However, only 3 studies assessed adverse effects and none reported any significant adverse effects. The meta-analysis of these studies (40 studies involving 1065 animals) revealed that naïve EVs could significantly decrease the DAI score (SMD = -3.00; 95 % CI: -3.52 to -2.48) and CMDI (SMD = -2.10; 95 % CI: -2.85 to -1.35). Conclusion The results indicate that mammalian EVs have demonstrated therapeutic benefits in animal models of UC; however, the safety profile of EVs remains inadequate which highlights the need for further research on safety outcomes.
Collapse
Affiliation(s)
- Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Ze-Yu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
2
|
Murayama M, Chow SK, Lee ML, Young B, Ergul YS, Shinohara I, Susuki Y, Toya M, Gao Q, Goodman SB. The interactions of macrophages, lymphocytes, and mesenchymal stem cells during bone regeneration. Bone Joint Res 2024; 13:462-473. [PMID: 39237112 PMCID: PMC11377107 DOI: 10.1302/2046-3758.139.bjr-2024-0122.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes - the main cellular components in BMAC - interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.
Collapse
Affiliation(s)
- Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Max L Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Bill Young
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yasemin S Ergul
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Taira Y, Suzuki R, Matsumoto H. Effective enhancement of the immunomodulatory capacity of canine adipose-derived mesenchymal stromal cells on colitis by priming with colon tissue from mice with colitis. Front Vet Sci 2024; 11:1437648. [PMID: 39176394 PMCID: PMC11338805 DOI: 10.3389/fvets.2024.1437648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The therapeutic efficacy of mesenchymal stromal cells (MSCs) in inflammatory bowel disease is not completely known and is not consistent. Priming with inflammatory cytokines has been proposed to adapt MSCs to an inflammatory environment to have them ready to counteract it, but may have undesirable effects on MSCs, such as increased immunogenicity. In this study, we hypothesized that priming MSCs with inflamed intestinal tissue would more effectively enhance their therapeutic effect on intestinal inflammation. Methods The capacity of canine adipose-derived MSCs (cADSCs) primed with colon tissue homogenates from mice with experimentally induced colitis or a combination of tumor necrosis factor-α and interferon-γ to inhibit T-cell proliferation was analyzed, along with their own apoptosis, proliferation, cell surface marker expression, and transcriptome. In addition, colitis mice were treated with the primed cADSCs to assess colitis severity and immune cell profile. Results Priming with cytokines induced apoptosis, decreased cell proliferation, and major histocompatibility complex-II gene expression in cADSCs, but these adverse effects were mild or absent with colitis-tissue priming. cADSCs primed with colitis tissue reduced the severity of colitis via the induction of M2 macrophages and T-regulatory cells and suppression of T-helper (Th)1/Th17-cell responses, and their effects were comparable to those of cytokine-primed cells. Discussion Our results emphasize the importance of the activation of MSCs by the appropriate microenvironment to maximize their therapeutic effect.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
4
|
Govindarasu M, Vaiyapuri M, Kim JC. Protective effect of zinc oxide nanoparticles synthesized using Cassia alata for DSS-induced ulcerative colitis in mice model. Bioprocess Biosyst Eng 2024; 47:1393-1407. [PMID: 38942827 DOI: 10.1007/s00449-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
The most prevalent form of inflammatory bowel disease (IBD), ulcerative colitis (UC), is characterized by persistent inflammation of the colorectal mucosa. It is asymptomatic, whereas Crohn's disease (CD) causes patchy lesions in the gastrointestinal tract. Men and women suffer equally from ulcerative colitis, which usually strikes in the second and third decades of life and becomes more common in senior citizens. In the present study, we produced zinc oxide nanoparticles using the natural herbal plant, Cassia alata. Zinc oxide nanoparticles have remarkable antimicrobial and antitumor benefits in the field of biomedical science. Furthermore, the synthesized zinc oxide nanoparticles (ZnO NPs) were characterized using UV, XRD, FTIR, and SEM analyses. The XRD analysis confirmed the crystallite nature and purity of the synthesized nanoparticles. Zinc oxide nanoparticles with a uniform size and partially agglomerated morphology were verified by SEM analysis. We investigated the protective effects of environmentally friendly zinc oxide nanoparticles in dextran sodium sulfate-induced ulcerative colitis mouse models. Green synthesized Cassia alata zinc oxide nanoparticles (CA ZnO NPs) reversed weight loss, disease activity index, colon shortening, and colon histological damage. Zinc oxide nanoparticles reduce hypersensitivity, oxidative stress, and inflammation, and protect the mucosal layer. Green synthesized CA ZnO NPs demonstrated protection against dextran sodium sulfate-induced ulcerative colitis via anti-inflammatory activity.
Collapse
Affiliation(s)
- Mydhili Govindarasu
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Manju Vaiyapuri
- Department of Biochemistry, Periyar University, Tamil Nadu 636 011, Salem, India
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
6
|
Lee JS, Jeong YH, Kim YH, Yun JH, Ahn JO, Chung JY, An JH. Analyzing small RNA sequences from canine stem cell-derived extracellular vesicles primed with TNF-α and IFN-γ and exploring their potential in lung repair. Front Vet Sci 2024; 11:1411886. [PMID: 39011319 PMCID: PMC11246880 DOI: 10.3389/fvets.2024.1411886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Acute lung injury is an acute inflammation disorder that disrupts the lung endothelial and epithelial barriers. In this study, we investigated the extracellular vesicles (EVs) obtained via priming inflammatory cytokines such as tumor necrosis factor (TNF)-α and interferon (IFN)-γ on canine adipose mesenchymal stem cells in improving their anti-inflammatory and/or immunosuppressive potential, and/or their ability to alleviate lipopolysaccharide-induced lung injury in vitro. We also explored the correlation between epithelial-to-mesenchymal transition and the inflammatory repressive effect of primed EVs. Using small RNA-Seq, we confirmed that miR-16 and miR-502 significantly increased in EVs from TNF-α and IFN-γ-primed canine adipose mesenchymal stem cells. The pro and anti-inflammatory cytokines were analyzed in a lipopolysaccharide-induced lung injury model and we found that the EV anti-inflammatory effect improved on priming with inflammatory cytokines. EVs obtained from primed stem cells effectively suppress endothelial-to-mesenchymal transition in a lung injury model. Our results suggest a potential therapeutic approach utilizing EVs obtained from adipose mesenchymal stem cells primed with TNF-α and IFN-γ against lung inflammation and endothelial to mesenchymal transition.
Collapse
Affiliation(s)
- Ji-Sun Lee
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yun-Ho Jeong
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yo-Han Kim
- Department of Large Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jang-Hyuk Yun
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Koch DW, Froneberger A, Berglund A, Connard S, Souther A, Schnabel LV. IL-1β + TGF-β2 dual-licensed mesenchymal stem cells have reduced major histocompatibility class I expression and positively modulate tenocyte migration, metabolism, and gene expression. J Am Vet Med Assoc 2024; 262:S61-S72. [PMID: 38547589 PMCID: PMC11187728 DOI: 10.2460/javma.23.12.0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/24/2024]
Abstract
OBJECTIVE The study objectives were to 1) determine the mesenchymal stem cell (MSC) surface expression of major histocompatibility complex (MHC) class I and transcriptome-wide gene expression changes following IL-1β + TGF-β2 dual licensing and 2) evaluate if IL-1β + TGF-β2 dual-licensed MSCs had a greater ability to positively modulate tenocyte function compared to naive MSCs. SAMPLE Equine bone marrow-derived MSCs from 6 donors and equine superficial digital flexor tenocytes from 3 donors. METHODS Experiments were performed in vitro. Flow cytometry and bulk RNA sequencing were utilized to determine naive and dual-licensed MSC phenotype and transcriptome-wide changes in gene expression. Conditioned media were generated from MSCs and utilized in tenocyte cell culture assays as a method to determine the effect of MSC paracrine factors on tenocyte function. RESULTS Dual-licensed MSCs have a reduced expression of MHC class I and exhibit enrichment in functional pathways associated with the extracellular matrix, cell signaling, and tissue development. Additionally, dual-licensed MSC-conditioned media significantly improved in vitro tenocyte migration and metabolism to a greater degree than naive MSC-conditioned media. In tenocytes exposed to IL-1β, dual-licensed conditioned media also positively modulated tenocyte gene expression. CLINICAL RELEVANCE Our data indicate that conditioned media containing paracrine factors secreted from dual-licensed MSCs significantly modulates in vitro tenocyte function, which may confer benefits in vivo to healing tendons following injury. Additionally, due to reduced MHC class I expression in dual-licensed MSCs, this technique may also provide an avenue to provide an effective "off-the-shelf" allogenic source of MSCs.
Collapse
Affiliation(s)
- Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Anna Froneberger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Alix Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Shannon Connard
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Alexis Souther
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
8
|
Saba E, Sandhu MA, Pelagalli A. Canine Mesenchymal Stromal Cell Exosomes: State-of-the-Art Characterization, Functional Analysis and Applications in Various Diseases. Vet Sci 2024; 11:187. [PMID: 38787159 PMCID: PMC11126113 DOI: 10.3390/vetsci11050187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells. With a significant increase in basic research over the last two decades, there has been a tremendous expansion in research in MSC exosomes and their potential applications in canine disease models. The characterization of exosomes has demonstrated considerable variations in terms of source, culture conditions of MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore, the amalgamation of exosomes with various nano-materials has become a novel approach to the fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes and their potential use in human and canine research. As discussed, exosomes have the ability to control lethal vertebrate diseases by administration directly at the injury site or through specific drug delivery mechanisms.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| |
Collapse
|
9
|
Teshima T. Heterogeneity of mesenchymal stem cells as a limiting factor in their clinical application to inflammatory bowel disease in dogs and cats. Vet J 2024; 304:106090. [PMID: 38417670 DOI: 10.1016/j.tvjl.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Inflammatory bowel disease (IBD) is a major subtype of chronic enteropathies in dogs and cats. Conventional drugs such as immunomodulatory medicines as glucocorticoids and/or other anti-inflammatory are mainly applied for treatment. However, these drugs are not always effective to maintain remission from IBD and are limited by unacceptable side effects. Hence, more effective and safe therapeutic options need to be developed. Mesenchymal stem cells (MSCs) are multipotent stem cells with a self-renewal capacity, and have immunomodulatory, anti-inflammatory, anti-fibrotic, and tissue repair properties. Therefore, the application of MSCs as an alternative therapy for IBD has great potential in veterinary medicine. The efficacy of adipose tissue-derived MSC (ADSC) therapy for IBD in dogs and cats has been reported, including numerous studies in animal models. However, treatment outcomes in clinical trials of human IBD patients have not been consistent with preclinical studies. MSC-based therapy for various diseases has received widespread attention, but various problems in such therapy remain, among which no consensus has been reached on the preparation and treatment procedures for MSCs, and cellular heterogeneity of MSCs may be an issue. This review describes the current status of ADSC therapy for canine and feline IBD and summarizes the cellular heterogeneity of canine ADSCs, to highlight the necessity for further reduction or elimination of MSCs heterogeneity and standardization of MSC-based therapies.
Collapse
Affiliation(s)
- Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
10
|
Herger N, Heggli I, Mengis T, Devan J, Arpesella L, Brunner F, Distler O, Dudli S. Impacts of priming on distinct immunosuppressive mechanisms of mesenchymal stromal cells under translationally relevant conditions. Stem Cell Res Ther 2024; 15:65. [PMID: 38443999 PMCID: PMC10916130 DOI: 10.1186/s13287-024-03677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms. METHODS Functional in vitro T cell suppressive potency measurements were conducted to assess the impact of pro-inflammatory, hypoxic, and 3D culture priming on the immunosuppressive potential of human bone marrow-derived MSCs. Primed MSCs were either cultured under standard cell culture conditions or translationally relevant culture conditions, and their transcriptomic adaptations were monitored over time. Next-generation sequencing was performed to assess if different priming strategies activate distinct immunosuppressive mechanisms. RESULTS (i) Pro-inflammatory, hypoxic, and 3D culture priming induced profound transcriptomic changes in MSCs resulting in a significantly enhanced T cell suppressive potential of pro-inflammatory and 3D culture primed MSCs. (ii) Priming effects rapidly faded under standard cell culture conditions but were partially preserved under translationally relevant conditions. Interestingly, continuous 3D culture priming of MSCs maintained the immunosuppressive potency of MSCs. (iii) Next-generation sequencing revealed that priming strategy-specific differentially expressed genes are involved in the T cell suppressive capacity of MSCs, indicating that different priming strategies engage distinct immunosuppressive mechanisms. CONCLUSION Priming can be a useful approach to improve the immunosuppressive potency of MSCs. However, future studies involving primed MSCs should carefully consider the significant impact of translationally relevant conditions on the preservation of priming effects. Continuous 3D culture could act as a functionalized formulation, supporting the administration of MSC spheroids for a sustainably improved immunosuppressive potency.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| | - Irina Heggli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Tamara Mengis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Jan Devan
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Leonardo Arpesella
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| |
Collapse
|
11
|
Liu Y, Wu J, Tan L, Li Z, Gao P, He S, Wang Q, Tang D, Wang C, Wang F, Li P, Liu J. (-)-Syringaresinol attenuates ulcerative colitis by improving intestinal epithelial barrier function and inhibiting inflammatory responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155292. [PMID: 38190784 DOI: 10.1016/j.phymed.2023.155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/02/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.
Collapse
Affiliation(s)
- Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Peng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
dos Santos CC, Lopes-Pacheco M, English K, Rolandsson Enes S, Krasnodembskaya A, Rocco PRM. The MSC-EV-microRNAome: A Perspective on Therapeutic Mechanisms of Action in Sepsis and ARDS. Cells 2024; 13:122. [PMID: 38247814 PMCID: PMC10813908 DOI: 10.3390/cells13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) have emerged as innovative therapeutic agents for the treatment of sepsis and acute respiratory distress syndrome (ARDS). Although their potential remains undisputed in pre-clinical models, this has yet to be translated to the clinic. In this review, we focused on the role of microRNAs contained in MSC-derived EVs, the EV microRNAome, and their potential contribution to therapeutic mechanisms of action. The evidence that miRNA transfer in MSC-derived EVs has a role in the overall therapeutic effects is compelling. However, several questions remain regarding how to reconcile the stochiometric issue of the low copy numbers of the miRNAs present in the EV particles, how different miRNAs delivered simultaneously interact with their targets within recipient cells, and the best miRNA or combination of miRNAs to use as therapy, potency markers, and biomarkers of efficacy in the clinic. Here, we offer a molecular genetics and systems biology perspective on the function of EV microRNAs, their contribution to mechanisms of action, and their therapeutic potential.
Collapse
Affiliation(s)
- Claudia C. dos Santos
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Keenan Center for Biomedical Research, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT9 7BL, UK;
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-599, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
13
|
Margiana R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool. Cell Biochem Funct 2024; 42:e3908. [PMID: 38269498 DOI: 10.1002/cbf.3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Preeclampsia (PE) is a major gestational disorder that causes both long- and short-term damage to both the mother and the fetus. Endometrium decidualization and the formation of the placenta are orchestrated by mesenchymal stem cells (MSCs). MSCs obtained from patients with PE exhibit an elevated rate of aging and apoptosis, which impairs the interplay between MSCs and endothelium, trophoblast, and immune cells in the placenta, accelerating the onset of PE. Preclinical and clinical evidence imply that the MSC-based therapy approach for PE is prospective. Importantly, as a novel cell-free approach, MSC-derived exosomes can improve symptoms and maternal-fetal survival in PE models by raising cell metabolism, encouraging angiogenesis balance, and regulating immune responses. Even following allogeneic administration, the likelihood of immune rejection is very limited as a result of the small quantity of exosome membrane-bound proteins. Furthermore, because exosomes do not expand, developing tumors is not probable. As a result, MSC-derived exosomes show superiority over MSCs in terms of safety. For the first time, we outline the properties of MSC-exosomes and highlight their functions and potential as a new paradigm for PE therapy in this review.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
14
|
Park S, Lim J, Kim S, Jeon M, Baek H, Park W, Park J, Kim SN, Kang NG, Park CG, Kim JW. Anti-Inflammatory Artificial Extracellular Vesicles with Notable Inhibition of Particulate Matter-Induced Skin Inflammation and Barrier Function Impairment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59199-59208. [PMID: 37983083 DOI: 10.1021/acsami.3c14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Particulate matter (PM) exposure disrupts the skin barrier, causing cutaneous inflammation that may eventually contribute to the development of various skin diseases. Herein, we introduce anti-inflammatory artificial extracellular vesicles (AEVs) fabricated through cell extrusion using the biosurfactant PEGylated mannosylerythritol lipid (P-MEL), hereafter named AEVP-MEL. The P-MEL has anti-inflammatory abilities with demonstrated efficacy in inhibiting the secretion of pro-inflammatory mediators. Mechanistically, AEVP-MEL enhanced anti-inflammatory response by inhibiting the mitogen-activated protein kinase (MAPK) pathway and decreasing the release of inflammatory mediators such as reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in human keratinocytes. Moreover, AEVP-MEL promoted increased expression levels of skin barrier proteins (e.g., involucrin, IVL) and water-proteins (e.g., aquaporin 3, AQP3). In vivo studies revealed that repeated PM exposure to intact skin resulted in cutaneous inflammatory responses, including increased skin thickness (hyperkeratosis) and mast cell infiltration. Importantly, our data showed that the AEVP-MEL treatment significantly restored immune homeostasis in the skin affected by PM-induced inflammation and enhanced the intrinsic skin barrier function. This study highlights the potential of the AEVP-MEL in promoting skin health against PM exposure and its promising implications for the prevention and treatment of PM-related skin disorders.
Collapse
Affiliation(s)
- Simon Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minha Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu 96813, United States
| | - Se Na Kim
- Research and Development Center, MediArk Inc.,Cheongju 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nae-Gyu Kang
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Zhang K, Guo J, Yan W, Xu L. Macrophage polarization in inflammatory bowel disease. Cell Commun Signal 2023; 21:367. [PMID: 38129886 PMCID: PMC10734116 DOI: 10.1186/s12964-023-01386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023] Open
Abstract
The growing prevalence of inflammatory bowel disease (IBD) has encouraged research efforts, which have contributed to gradual improvements in our understanding of IBD diagnosis and therapeutic approaches. The pathogenesis of IBD has not been fully elucidated; however, the combined actions of environmental, genetic, immune factors, and microbial organisms are believed to cause IBD. In the innate immune system, macrophages play important roles in maintaining intestinal health and in the development of IBD. Macrophages can be polarized from M0 into several phenotypes, among which M1 and M2 play critical roles in IBD development and the repair of intestinal homeostasis and damage. Certain macrophage-related IBD studies already exist; however, the functions of each phenotype have not been fully elucidated. As technology develops, understanding the link between macrophages and IBD has increased, including the growing knowledge of the developmental origins of intestinal macrophages and their performance of comprehensive functions. This review describes macrophage polarization in IBD from the perspectives of macrophage development and polarization, macrophage changes in homeostasis and IBD, metabolic changes, and the mechanisms of macrophage polarization in IBD. The discussion of these topics provides new insights into immunotherapy strategies for IBD. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wenlong Yan
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Lingfen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
16
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Takano T, Taira Y, Suzuki R, Matsumoto H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells Maintain the Immunomodulatory Capacity of the Original Primary Cells. Int J Mol Sci 2023; 24:17484. [PMID: 38139314 PMCID: PMC10743981 DOI: 10.3390/ijms242417484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising cell source for stem cell therapy of intractable diseases in veterinary medicine, but donor-dependent cellular heterogeneity is an issue that influences therapeutic efficacy. Thus, we previously established immortalized cells that maintain the fundamental properties of primary cells, but functional evaluation had not been performed. Therefore, we evaluated the immunomodulatory capacity of the immortalized canine adipose-derived MSCs (cADSCs) in vitro and in vivo to investigate whether they maintain primary cell functions. C57BL/6J mice were treated with dextran sulfate sodium (DSS) to induce colitis, injected intraperitoneally with immortalized or primary cADSCs on day 2 of DSS treatment, and observed for 10 days. Administration of immortalized cADSCs improved body weight loss and the disease activity index (DAI) in DSS-induced colitic mice by shifting peritoneal macrophage polarity from the M1 to M2 phenotype, suppressing T helper (Th) 1/Th17 cell responses and inducing regulatory T (Treg) cells. They also inhibited the proliferation of mouse and canine T cells in vitro. These immunomodulatory effects were comparable with primary cells. These results highlight the feasibility of our immortalized cADSCs as a cell source for stem cell therapy with stable therapeutic efficacy because they maintain the immunomodulatory capacity of primary cells.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Takashi Takano
- Laboratory of Veterinary Public Health, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| |
Collapse
|
17
|
Merlo B, Iacono E. Beyond Canine Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Transplantation: An Update on Their Secretome Characterization and Applications. Animals (Basel) 2023; 13:3571. [PMID: 38003188 PMCID: PMC10668816 DOI: 10.3390/ani13223571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
A dog is a valuable animal model and concomitantly a pet for which advanced therapies are increasingly in demand. The characteristics of mesenchymal stem/stromal cells (MSCs) have made cell therapy more clinically attractive. During the last decade, research on the MSC therapeutic effectiveness has demonstrated that tissue regeneration is primarily mediated by paracrine factors, which are included under the name of secretome. Secretome is a mixture of soluble factors and a variety of extracellular vesicles. The use of secretome for therapeutic purposes could have some advantages compared to cell-based therapies, such as lower immunogenicity and easy manufacturing, manipulation, and storage. The conditioned medium and extracellular vesicles derived from MSCs have the potential to be employed as new treatments in veterinary medicine. This review provides an update on the state-of-the-art characterization and applications of canine adipose tissue-derived MSC secretome.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
de Pedro MÁ, López E, González-Nuño FM, Pulido M, Álvarez V, Marchena AM, Preußer C, Szymański W, Pogge von Strandmann E, Graumann J, Sánchez-Margallo FM, Casado JG, Gómez-Serrano M. Menstrual blood-derived mesenchymal stromal cells: impact of preconditioning on the cargo of extracellular vesicles as potential therapeutics. Stem Cell Res Ther 2023; 14:187. [PMID: 37507751 PMCID: PMC10386225 DOI: 10.1186/s13287-023-03413-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have been shown to exert their therapeutic effects through the secretion of broad spectrum of paracrine factors, including extracellular vesicles (EVs). Accordingly, EVs are being pursued as a promising alternative to cell-based therapies. Menstrual blood-derived stromal cells (MenSCs) are a type of MSC that, due to their immunomodulatory and regenerative properties, have emerged as an innovative source. Additionally, new strategies of cell priming may potentially alter the concentration and cargo of released EVs, leading to modification of their biological properties. In this study, we aimed to characterize the EVs released by MenSCs and compare their therapeutic potential under three different preconditioning conditions (proinflammatory stimuli, physioxia, and acute hypoxia). METHODS MenSCs were isolated from five healthy women. Following culturing to 80% confluence, MenSCs were exposed to different priming conditions: basal (21% O2), proinflammatory stimuli (IFNγ and TNFα, 21% O2), physioxia (1-2% O2), and acute hypoxia (< 1% O2) for 48-72 h. Conditioned media from MenSCs was collected after 48 h and EVs were isolated by a combination of ultra-filtration and differential centrifugation. An extensive characterization ranging from nano-flow cytometry (nFC) to quantitative high-throughput shotgun proteomics was performed. Bioinformatics analyses were used to derive hypotheses on their biological properties. RESULTS No differences in the morphology, size, or number of EVs released were detected between priming conditions. The proteome analysis associated with basal MenSC-EVs prominently revealed their immunomodulatory and regenerative capabilities. Furthermore, quantitative proteomic analysis of differentially produced MenSC-EVs provided sufficient evidence for the utility of the differential preconditioning in purpose-tailoring EVs for their therapeutic application: proinflammatory priming enhanced the anti-inflammatory, regenerative and immunomodulatory capacity in the innate response of EVs, physioxia priming also improves tissue regeneration, angiogenesis and their immunomodulatory capacity targeting on the adaptive response, while acute hypoxia priming, increased hemostasis and apoptotic processes regulation in MenSC-EVs, also by stimulating immunomodulation mainly through the adaptive response. CONCLUSIONS Priming of MenSCs under proinflammatory and hypoxic conditions affected the cargo proteome of EVs released, resulting in different therapeutic potential, and thus warrants experimental exploration with the aim to generate better-defined MSC-derived bioproducts.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain.
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain.
| | | | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Ana María Marchena
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
- Immunology Unit, University of Extremadura, 10003, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Cáceres, Spain
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany.
| |
Collapse
|
19
|
Kim K, An JH, Park SM, Lim G, Seo KW, Youn HY. Amelioration of DSS-induced colitis in mice by TNF-α-stimulated mesenchymal stem cells derived from feline adipose tissue via COX-2/PGE 2 activation. J Vet Sci 2023; 24:e52. [PMID: 37532297 PMCID: PMC10404709 DOI: 10.4142/jvs.23106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been investigated as therapeutic agents for inflammatory bowel disease (IBD). Stimulation of MSCs with pro-inflammatory cytokines is an approach to enhance their immunomodulatory effects. However, further investigation is required to support their application in immune-mediated disorders and companion animals. OBJECTIVES This study aimed to assess the therapeutic effect of tumor necrosis factor (TNF)-α-stimulated feline adipose tissue-derived MSCs (fAT-MSCs) in a dextran sulfate sodium (DSS)-induced colitis mouse model. METHODS Colitis mice was made by drinking water with 3% DSS and fAT-MSCs were injected intraperitoneally. Colons were collected on day 10. The severity of the disease was evaluated and compared. Raw 264.7 cells were cultured with the conditioned medium to determine the mechanism, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS TNF-α-stimulated fAT-MSCs more improved severity of DSS-induced colitis in disease activity, colon length, histologic score, and inflammatory cytokine. In sectionized colon tissues, the group comprising TNF-α-stimulated fAT-MSCs had higher proportion of CD11b+CD206+ macrophages than in the other groups. In vitro, TNF-α-stimulation increased cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) secretion from fAT-MSCs. The conditioned medium from TNF-α-stimulated fAT-MSCs enhanced the expression of interleukin-10 and arginase-1 in LPS-activated Raw 264.7 cells. CONCLUSIONS These results represent that TNF-α-stimulated fat-mscs ameliorate the inflamed colon more effectively. Furthermore, we demonstrated that the effectiveness was interlinked with the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Kyeongbo Kim
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - GaHyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kyung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
20
|
Liu X, Wei Q, Lu L, Cui S, Ma K, Zhang W, Ma F, Li H, Fu X, Zhang C. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Front Immunol 2023; 14:1094685. [PMID: 36860847 PMCID: PMC9968735 DOI: 10.3389/fimmu.2023.1094685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Various intractable inflammatory diseases caused by disorders of immune systems have pressed heavily on public health. Innate and adaptive immune cells as well as secreted cytokines and chemokines are commanders to mediate our immune systems. Therefore, restoring normal immunomodulatory responses of immune cells is crucial for the treatment of inflammatory diseases. Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are nano-sized double-membraned vesicles acting as paracrine effectors of MSCs. MSC-EVs, containing a variety of therapeutic agents, have shown great potential in immune modulation. Herein, we discuss the novel regulatory functions of MSC-EVs from different sources in the activities of innate and adaptive immune cells like macrophages, granulocytes, mast cells, natural killer (NK) cells, dendritic cells (DCs) and lymphocytes. Then, we summarize the latest clinical trials of MSC-EVs in inflammatory diseases. Furthermore, we prospect the research trend of MSC-EVs in the field of immune modulation. Despite the fact that the research on the role of MSC-EVs in regulating immune cells is in infancy, this cell-free therapy based on MSC-EVs still offers a promising solution for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Lu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Small Extracellular Vesicles as a New Class of Medicines. Pharmaceutics 2023; 15:pharmaceutics15020325. [PMID: 36839647 PMCID: PMC9961868 DOI: 10.3390/pharmaceutics15020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles that are naturally released from cells in a lipid bilayer-bound form. A subset population with a size of 200 nm, small EVs (sEVs), is enticing in many ways. Initially perceived as mere waste receptacles, sEVs have revealed other biological functions, such as cell-to-cell signal transduction and communication. Besides their notable biological functions, sEVs have profound advantages as future drug modalities: (i) excellent biocompatibility, (ii) high stability, and (iii) the potential to carry undruggable macromolecules as cargo. Indeed, many biopharmaceutical companies are utilizing sEVs, not only as diagnostic biomarkers but as therapeutic drugs. However, as all inchoate fields are challenging, there are limitations and hindrances in the clinical translation of sEV therapeutics. In this review, we summarize different types of sEV therapeutics, future improvements, and current strategies in large-scale production.
Collapse
|
22
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
The Intersection of Human and Veterinary Medicine-A Possible Direction towards the Improvement of Cell Therapy Protocols in the Treatment of Perianal Fistulas. Int J Mol Sci 2022; 23:ijms232213917. [PMID: 36430390 PMCID: PMC9696944 DOI: 10.3390/ijms232213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of perianal fistulizing Crohn's disease is still a challenge. Local administration of mesenchymal stromal cells (MSCs) is becoming a part of accepted treatment options. However, as a fledgling technique, it still can be optimized. A new trend in translational research, which is in line with "One Health" approach, bases on exploiting parallels between naturally occurring diseases affecting humans and companion animals. Canine anal furunculosis (AF) has been indicated as condition analogous to human perianal Crohn's disease (pCD). This narrative review provides the first comprehensive comparative analysis of these two diseases based on the published data. The paper also outlines the molecular mechanisms of action of MSCs which are likely to have a role in modulating the perianal fistula niche in humans, and refers them to the current knowledge on the immunomodulatory properties of canine MSCs. Generally, the pathogenesis of both diseases shares main determinants such as the presence of genetic predispositions, dysregulation of immune response and the relation to intestine microbiota. However, we also identified many aspects which should be further specified, such as determining the frequency of true fistulas formation in AF patients, elucidating the role of TNF and Th17 pathway in the pathogenesis of AF, or clarifying the role of epithelial-to-mesenchymal transition phenomenon in the formation of canine fistulae. Nevertheless, the available data support the hypothesis that the results from testing cell therapies in dogs with anal furunculosis have a significant translational value in optimizing MSC transplants procedures in pCD patients.
Collapse
|
24
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
25
|
Huang Y, Wu Q, Tam PKH. Immunomodulatory Mechanisms of Mesenchymal Stem Cells and Their Potential Clinical Applications. Int J Mol Sci 2022; 23:ijms231710023. [PMID: 36077421 PMCID: PMC9456387 DOI: 10.3390/ijms231710023] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity of self-renewal, homing, and low immunogenicity. These distinct biological characteristics have already shown immense potential in regenerative medicine. MSCs also possess immunomodulatory properties that can maintain immune homeostasis when the immune response is over-activated or under-activated. The secretome of MSCs consists of cytokines, chemokines, signaling molecules, and growth factors, which effectively contribute to the regulation of immune and inflammatory responses. The immunomodulatory effects of MSCs can also be achieved through direct cell contact with microenvironmental factors and immune cells. Furthermore, preconditioned and engineered MSCs can specifically improve the immunomodulation effects in diverse clinical applications. These multifunctional properties of MSCs enable them to be used as a prospective therapeutic strategy to treat immune disorders, including autoimmune diseases and incurable inflammatory diseases. Here we review the recent exploration of immunomodulatory mechanisms of MSCs and briefly discuss the promotion of the genetically engineered MSCs. Additionally, we review the potential clinical applications of MSC-mediated immunomodulation in four types of immune diseases, including systemic lupus erythematosus, Crohn’s disease, graft-versus-host disease, and COVID-19.
Collapse
Affiliation(s)
- Yutong Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (Q.W.); (P.K.H.T.)
| | - Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (Q.W.); (P.K.H.T.)
| |
Collapse
|
26
|
Műzes G, Sipos F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells 2022; 11:cells11152300. [PMID: 35892597 PMCID: PMC9367576 DOI: 10.3390/cells11152300] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass several entities such as "classic" autoimmune disorders or immune-mediated diseases with autoinflammatory characteristics. Adult stem cells including mesenchymal stem cells (MSCs) are by far the most commonly used type in clinical practice. However, due to the possible side effects of MSC-based treatments, there is an increase in interest in the MSC-secretome (containing large extracellular vesicles, microvesicles, and exosomes) as an alternative therapeutic option in IMIDs. A wide spectrum of MSC-secretome-related biological activities has been proven thus far including anti-inflammatory, anti-apoptotic, and immunomodulatory properties. In comparison with MSCs, the secretome is less immunogenic but exerts similar biological actions, so it can be considered as an ideal cell-free therapeutic alternative. Additionally, since the composition of the MSC-secretome can be engineered, for a future perspective, it could also be viewed as part of a potential delivery system within nanomedicine, allowing us to specifically target dysfunctional cells or tissues. Although many encouraging results from pre-clinical studies have recently been obtained that strongly support the application of the MSC-secretome in IMIDs, human studies with MSC-secretome administration are still in their infancy. This article reviews the immunomodulatory effects of the MSC-secretome in IMIDs and provides insight into the interpretation of its beneficial biological actions.
Collapse
|
27
|
Wu D, Chen S, Ye X, Ahmadi S, Hu W, Yu C, Zhu K, Cheng H, Linhardt RJ, He Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Li HL, Wei YY, Li XH, Zhang SS, Zhang RT, Li JH, Ma BW, Shao SB, Lv ZW, Ruan H, Zhou HG, Yang C. Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis. Acta Pharmacol Sin 2022; 43:919-932. [PMID: 34262136 PMCID: PMC8976001 DOI: 10.1038/s41401-021-00726-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diosmetin (3',5,7 -trihydroxy-4'-methoxy flavone) is a natural flavonoid compound in the citrus species, it exhibits a variety of pharmacological activities, but little is known of its effects on colitis. In this study we evaluated the therapeutic effects of diosmetin on mouse models of chronic and acute colitis. Chronic colitis was induced in mice by drinking water containing 3% dextran sulfate sodium (DSS) from D0 to D8, followed by administration of diosmetin (25, 50 mg · kg-1 · d-1) for another 8 days. Acute colitis was induced by drinking water containing 5% DSS from D0 to D7, the mice concomitantly received diosmetin (25, 50 mg · kg-1 · d-1) from D1 to D7. During the experiments, body weight and disease activity index (DAI) were assessed daily. After the mice were sacrificed, colon tissue and feces samples were collected, and colon length was measured. We showed that in both models, diosmetin administration significantly decreased DAI score and ameliorated microscopic colon tissue damage; increased the expression of tight junction proteins (occludin, claudin-1, and zonula occludens-1), and reduced the secretion of proinflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2 in colon tissue. We found that diosmetin administration remarkably inhibited colon oxidative damage by adjusting the levels of intracellular and mitochondrial reactive oxygen species, GSH-Px, SOD, MDA and GSH in colon tissue. The protection of diosmetin against intestinal epithelial barrier damage and oxidative stress were also observed in LPS-treated Caco-2 and IEC-6 cells in vitro. Furthermore, we demonstrated that diosmetin markedly increased the expression of Nrf2 and HO-1 and reduced the ratio of acetylated NF-κB and NF-κB by activating the circ-Sirt1/Sirt1 axis, which inhibited oxidative stress and inflammation in vivo and in vitro. Diosmetin reversed the effects of si-circSirt1 and si-Sirt1 in LPS-treated Caco-2 and IEC-6 cells. When the gut microbiota was analyzed in the mouse model of colitis, we found that diosmetin administration modulated the abundance of Bacteroidetes, Actinobacteria, Cyanobacteria and Firmicutes, which were crucial for inflammatory bowel disease. Our results have linked colitis to the circ-Sirt1/Sirt1 signaling pathway, which is activated by diosmetin. The results imply that diosmetin may be a novel candidate to alleviate DSS-induced colitis and can be a lead compound for future optimization and modification.
Collapse
Affiliation(s)
- Hai-long Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Yi-ying Wei
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Xiao-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shan-shan Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Ruo-tong Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Jin-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Bo-wei Ma
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shuai-bo Shao
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Zi-wei Lv
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hao Ruan
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hong-gang Zhou
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Cheng Yang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| |
Collapse
|
29
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
30
|
Jang HW, An JH, Kim KB, Lee JH, Oh YI, Park SM, Chae HK, Youn HY. Canine peripheral blood mononuclear cell-derived B lymphocytes pretreated with lipopolysaccharide enhance the immunomodulatory effect through macrophage polarization. PLoS One 2021; 16:e0256651. [PMID: 34807933 PMCID: PMC8608335 DOI: 10.1371/journal.pone.0256651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Preconditioning with lipopolysaccharide (LPS) is used to improve the secretion of anti-inflammatory agents in B cells. However, there are only a few studies on canine B cells. OBJECTIVE This study aimed to evaluate the immune regulatory capacity of canine peripheral blood mononuclear cell-derived B cells pretreated with LPS. METHODS Canine B cells were isolated from canine peripheral blood mononuclear cells, which were obtained from three healthy canine donors. The B cells were preconditioned with LPS, and then cell viability and the expression of the regulatory B cell marker were assessed. Finally, RNA extraction and immunofluorescence analysis were performed. RESULTS LPS primed B cells expressed the interleukin (IL)-10 surface marker and immunoregulatory gene expression, such as IL-10, programmed death-ligand 1, and transforming growth factor beta. Macrophages in the inflammatory condition cocultured with primed B cells were found to have significantly down-regulated pro-inflammatory cytokine, such as tumor necrosis factor-α, and up-regulated anti-inflammatory cytokines such as IL-10. Additionally, it was revealed that co-culture with primed B cells re-polarized M1 macrophages to M2 macrophages. CONCLUSIONS This study revealed that LPS-primed B cells have an anti-inflammatory effect and can re-polarize macrophages, suggesting the possibility of using LPS-primed B cells as a therapeutic agent for its anti-inflammatory effects and immune modulation.
Collapse
Affiliation(s)
- Hee-Won Jang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyeong Bo Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
de Pedro MÁ, Gómez-Serrano M, Marinaro F, López E, Pulido M, Preußer C, Pogge von Strandmann E, Sánchez-Margallo FM, Álvarez V, Casado JG. IFN-Gamma and TNF-Alpha as a Priming Strategy to Enhance the Immunomodulatory Capacity of Secretomes from Menstrual Blood-Derived Stromal Cells. Int J Mol Sci 2021; 22:12177. [PMID: 34830067 PMCID: PMC8618369 DOI: 10.3390/ijms222212177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs. Our results revealed that the optimal condition for priming MenSCs was the combination of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) that produced a synergistic and additive effect on IDO1 release and immune-related molecule expression. The analyses of MenSC-derived secretomes after IFNγ and TNFα priming also revealed an increase in EV release and in the differentially expressed miRNAs involved in the immune response and inflammation. Proliferation assays on lymphocyte subsets demonstrated a decrease in CD4+ T cells and CD8+ T cells co-cultured with secretomes, especially in the lymphocytes co-cultured with secretomes from primed cells. Additionally, the expression of immune checkpoints (PD-1 and CTLA-4) was increased in the CD4+ T cells co-cultured with MenSC-derived secretomes. These findings demonstrate that the combination of IFNγ and TNFα represents an excellent priming strategy to enhance the immunomodulatory capacity of MenSCs. Moreover, the secretome derived from primed MenSCs may be postulated as a therapeutic option for the regulation of adverse inflammatory reactions.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Javier G. Casado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| |
Collapse
|
32
|
Becerra J, Duran I. Inflammation, a common mechanism in frailty and COVID-19, and stem cells as a therapeutic approach. Stem Cells Transl Med 2021; 10:1482-1490. [PMID: 34164948 PMCID: PMC8550702 DOI: 10.1002/sctm.21-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022] Open
Abstract
As our life expectancy increases, specific medical conditions appear, and new challenges are met in terms of global health. Frailty has become a medical and scientific concept to define pathologies where inflammation, depressed immune system, cellular senescence, and molecular aging converge. But more importantly, frailty is the ultimate cause of death that limits our life span and deteriorates health in an increasing proportion of the world population. The difficulty of tackling this problem is the combination of factors that influence frailty appearance, such as stem cells exhaustion, inflammation, loss of regeneration capability, and impaired immunomodulation. To date, multiple research fields have found mechanisms participating in this health condition, but to make progress, science will need to investigate frailty with an interdisciplinary approach. This article summarizes the current efforts to understand frailty from their processes mediated by inflammation, aging, and stem cells to provide a new perspective that unifies the efforts in producing advanced therapies against medical conditions in the context of frailty. We believe this approach against frailty is particularly relevant to COVID-19, since people in a state of frailty die more frequently due to the hyperinflammatory process associated with this infection.
Collapse
Affiliation(s)
- José Becerra
- Department of Cell Biology, Genetics, and PhysiologyFaculty of Sciences, University of Málaga, IBIMAMálagaSpain
- Networking Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
| | - Ivan Duran
- Department of Cell Biology, Genetics, and PhysiologyFaculty of Sciences, University of Málaga, IBIMAMálagaSpain
- Networking Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
| |
Collapse
|
33
|
Munoz-Perez E, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics 2021; 13:pharmaceutics13111802. [PMID: 34834217 PMCID: PMC8617629 DOI: 10.3390/pharmaceutics13111802] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.
Collapse
Affiliation(s)
- Elena Munoz-Perez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (E.M.-P.); (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.)
| |
Collapse
|
34
|
Improving the Efficacy of Mesenchymal Stem/Stromal-Based Therapy for Treatment of Inflammatory Bowel Diseases. Biomedicines 2021; 9:biomedicines9111507. [PMID: 34829736 PMCID: PMC8615066 DOI: 10.3390/biomedicines9111507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed. Mesenchymal stem/stromal cell (MSCs) therapy is an innovative therapeutic alternative currently under investigation for IBD. MSCs have the inherent capacity of modulating inflammatory immune responses as well as regenerating damaged tissues and are therefore a prime candidate to use as cell therapy in patients with IBD. At present, MSC-based therapy has been shown preclinically to modulate intestinal inflammation, whilst the safety of MSC-based therapy has been demonstrated in clinical trials. However, the successful results in preclinical studies have not been replicated in clinical trials. In this review, we will summarize the protocols used in preclinical and clinical trials and the novel approaches currently under investigation which aim to increase the beneficial effects of MSC-based therapy for IBD.
Collapse
|
35
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
36
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z, Deng C, Zhang M. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021; 12:514. [PMID: 34563249 PMCID: PMC8466748 DOI: 10.1186/s13287-021-02579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. METHODS By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. RESULTS IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6ChighCD11b+ monocytes and boosting the proportion of CD4+Foxp3+ regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. CONCLUSION In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Xinning Zhu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, Hubei, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51008, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|
37
|
Immunomodulatory Effects of Canine Adipose Tissue Mesenchymal Stem Cell-Derived Extracellular Vesicles on Stimulated CD4 + T Cells Isolated from Peripheral Blood Mononuclear Cells. J Immunol Res 2021; 2021:2993043. [PMID: 34447855 PMCID: PMC8384509 DOI: 10.1155/2021/2993043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) have anti-inflammatory and immunomodulatory characteristics. Many studies have suggested that the immunomodulation of ADSCs is largely mediated by secreted paracrine factors. Various factors are secreted from ADSCs, among which extracellular vesicles are considered to play a major role in the communication between ADSCs and target cells. Several studies have reported the function of canine ADSC-derived extracellular vesicles (cADSC-EVs), but few studies have reported the immunomodulatory effects of cADSC-EVs on immune cells. The purpose of this study was to investigate the effects of cADSC-EVs on in vitro-stimulated CD4+ T cells isolated from peripheral blood mononuclear cells (PBMCs). cADSC-EVs were isolated from cADSCs under naive conditions or primed conditions by tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). The expression levels of several microRNAs in cADSC-EVs were altered by priming with TNFα and IFNγ. Culturing PBMCs stimulated with concanavalin A in the presence of naive or primed cADSC-EVs inhibited the differentiation of PBMCs and CD4+ T cells and promoted apoptosis of PBMCs. CD4+, CD8+, and CD4+CD8+ T cells were decreased, while CD3+CD4-CD8- T cells were increased. T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells were analyzed by flow cytometry. cADSC-EVs inhibited the proliferation of Th1 and Th17 cells and enhanced Th2 and Treg cell proliferation. However, CD4+ T cells that had incorporated labeled cADSC-EVs comprised only a few percent of all cells. Therefore, these responses of stimulated CD4+ T cells may be due to not only direct effects of cADSC-EVs but also to indirect effects through interactions between cADSC-EVs and other immune cells. In conclusion, cADSC-EVs exert immunosuppressive effects on stimulated CD4+ T cells in vitro. These findings may be useful for further studies of immune diseases.
Collapse
|
38
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
39
|
Efimenko AY, Kalinina NI, Rubina KA, Semina EV, Sysoeva VY, Akopyan ZA, Tkachuk VA. Secretome of Multipotent Mesenchymal Stromal Cells as a Promising Treatment and for Rehabilitation of Patients with the Novel Coronaviral Infection. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2021; 91:170-175. [PMID: 34131372 PMCID: PMC8192105 DOI: 10.1134/s101933162102012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
As a rule, coronavirus infections are mild in healthy adults and do not require special approaches to treatment. However, highly pathogenic strains, particularly the recently isolated SARS-CoV2, which causes COVID-19 infection, in about 15% of cases lead to severe complications, including acute respiratory distress syndrome, which causes high patient mortality. In addition, a common complication of COVID-19 is the development of pulmonary fibrosis. Why is the novel coronavirus so pathogenic? What new treatments can be proposed to speed up the recovery and subsequent rehabilitation of the organism? In 2020, over 34 000 scientific articles were published on the structure, distribution, pathogenesis, and possible approaches to the treatment of infection caused by the novel SARS-CoV2 coronavirus. However, there are still no definitive answers to these questions, while the number of the diseased is increasing daily. One of the comprehensive approaches to the treatment of the consequences of the infection is the use of multipotent human mesenchymal stromal cells and products of their secretion (secretome). Acting at several stages of the development of the infection, the components of the secretome can suppress the interaction of the virus with endothelial cells, regulate inflammation, and stimulate lung tissue regeneration, preventing the development of fibrosis. The results of basic and clinical research on this topic are summarized, including our own experimental data, indicating that cell therapy approaches can be successfully applied to treat patients with COVID-19.
Collapse
Affiliation(s)
- A. Yu. Efimenko
- Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Moscow State University, Moscow, Russia
| | | | | | - E. V. Semina
- Moscow State University, Moscow, Russia
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | | | - Zh. A. Akopyan
- Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Moscow State University, Moscow, Russia
| | - V. A. Tkachuk
- Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Moscow State University, Moscow, Russia
| |
Collapse
|
40
|
Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M, Hu TY. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B 2021; 11:1493-1512. [PMID: 34221864 PMCID: PMC8245807 DOI: 10.1016/j.apsb.2020.12.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
Macrophages are typically identified as classically activated (M1) macrophages and alternatively activated (M2) macrophages, which respectively exhibit pro- and anti-inflammatory phenotypes, and the balance between these two subtypes plays a critical role in the regulation of tissue inflammation, injury, and repair processes. Recent studies indicate that tissue cells and macrophages interact via the release of small extracellular vesicles (EVs) in processes where EVs released by stressed tissue cells can promote the activation and polarization of adjacent macrophages which can in turn release EVs and factors that can promote cell stress and tissue inflammation and injury, and vice versa. This review discusses the roles of such EVs in regulating such interactions to influence tissue inflammation and injury in a number of acute and chronic inflammatory disease conditions, and the potential applications, advantage and concerns for using EV-based therapeutic approaches to treat such conditions, including their potential role of drug carriers for the treatment of infectious diseases.
Collapse
Key Words
- ADSCs, adipose-derived stem cells
- AKI, acute kidney injury
- ALI, acute lung injury
- AMs, alveolar macrophages
- BMSCs, bone marrow stromal cells
- CLP, cecal ligation and puncture
- DSS, dextran sodium sulphate
- EVs, extracellular vesicles
- Extracellular vesicles
- HSPA12B, heat shock protein A12B
- HUCMSCs, human umbilical cord mesenchymal stem cells
- IBD, inflammatory bowel disease
- ICAM-1, intercellular adhesion molecule 1
- IL-1β, interleukin-1β
- Inflammatory disease
- Interaction loop
- KCs, Kupffer cells
- KLF4, krüppel-like factor 4
- LPS, lipopolysaccharides
- MHC, major histocompatibility complex
- MSCs, mesenchymal stromal cells
- MVs, microvesicles
- Macrophage
- PEG, polyethylene glycol
- PMFA, 5,7,30,40,50-pentamethoxyflavanone
- PPARγ, peroxisome proliferator-activated receptor γ
- SIRPα, signal regulatory protein α
- Sepsis
- Stem cell
- TECs, tubular epithelial cells
- TNF, tumor necrosis factor
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- Targeted therapy
- Tissue injury
- iNOS, inducible nitrogen oxide synthase
Collapse
|
41
|
Yang S, An J, Park S, Lee J, Chae H, Lee K, Song W, Youn H. Enhanced expression of cyclooxygenase-2 related multi-drug resistance gene in melanoma and osteosarcoma cell lines by TSG-6 secreted from canine adipose-derived mesenchymal stem/stromal cells. Vet Med Sci 2021; 7:968-978. [PMID: 33570264 PMCID: PMC8136926 DOI: 10.1002/vms3.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple drug resistance (MDR) of cancer cells is the main cause of intrinsic or acquired desensitization to chemotherapy in many cancers. A number of studies have found high expression of COX-2 to be a factor for expression of MDR gene in several cancer. Furthermore, adipose tissue derived mesenchymal stem/stromal cells (ADSC) have been found to increase cyclo-oxygenase-2 (COX-2) expression in some tumour cells. The mechanism for this, however, is not yet clear and needs further study. OBJECTIVE The purpose of this study was to determine whether tumour necrosis factor-alpha stimulated gene/protein 6 (TSG-6) secreted from ADSCs is associated with an increase in MDR genes by inducing COX-2 gene expression in melanoma and osteosarcoma cell lines. METHODS ADSCs were transfected with TSG-6 siRNA or Control RNA respected, and cancer cell line were transfected with COX-2 siRNA or Control RNA respected. Using trans well coculture system, the interactions of ADSCs with tumour cells were investigated. RESULTS Increased COX-2 expression was observed in cancer cell co-cultured with ADSCs. Additionally, we identified that COX-2 expression was related to drug resistance genes (P-glycoprotein, multidrug resistance-associated protein). Transfecting canine ADSCs with small interfering RNA, TSG-6 secreted from ADSCs was found to be a major factor in the regulation of COX-2 expression and drug resistance genes in osteosarcoma and melanoma cell lines. CONCLUSION TSG-6 mediated COX-2 up-regulation is a possible mechanism of chemoresistance development induced by ADSCs. These findings provide better understanding about the mechanism associated with ADSC-induced chemoresistance in cancer.
Collapse
Affiliation(s)
- Se‐Jin Yang
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Ju‐Hyun An
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Su‐Min Park
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Jeong‐Hwa Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Hyung‐Kyu Chae
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Kyung‐Mi Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Woo‐Jin Song
- Department of Veterinary Internal MedicineCollege of Veterinary MedicineJeju National UniversityJeju‐SiKorea
| | - Hwa‐Young Youn
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
42
|
Kuwahara Y, Yoshizaki K, Nishida H, Kamishina H, Maeda S, Takano K, Fujita N, Nishimura R, Jo JI, Tabata Y, Akiyoshi H. Extracellular Vesicles Derived From Canine Mesenchymal Stromal Cells in Serum Free Culture Medium Have Anti-inflammatory Effect on Microglial Cells. Front Vet Sci 2021; 8:633426. [PMID: 33996963 PMCID: PMC8113404 DOI: 10.3389/fvets.2021.633426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been used as cell sources for treating dogs with naturally-occurring diseases. Extracellular vesicles (EVs) derived from MSCs are now recognized as pivotal to modulating the immune response and supporting tissue repair. Manufacture of MSC-EVs for clinical application mandates removal of the xeno-proteins, including fetal bovine serum. The objective of this study was to examine whether canine MSCs survived and secreted EVs in serum-free medium (SFM) conditions and to assess the immunomodulatory effect of EVs in vitro. Canine MSCs were found to survive and secrete EVs under SFM conditions. The surface markers of MSCs in the SFM were similar to MSCs in complete culture medium. Canine MSC-EVs had a diameter of ~300 nm and were positive for EV markers. MSC-derived EVs from the serum-free condition reduced the levels of IL-1β by BV-2 cells in response to LPS stimulation. These results warrant further studies of the use of SFM for producing EVs derived from canine MSCs.
Collapse
Affiliation(s)
- Yukina Kuwahara
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Karin Yoshizaki
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Hidetaka Nishida
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Hiroaki Kamishina
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Sadatoshi Maeda
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Katsura Takano
- Department of Integrative Physiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Naoki Fujita
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hideo Akiyoshi
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| |
Collapse
|
43
|
Extracellular Vesicles from Thapsigargin-Treated Mesenchymal Stem Cells Ameliorated Experimental Colitis via Enhanced Immunomodulatory Properties. Biomedicines 2021; 9:biomedicines9020209. [PMID: 33670708 PMCID: PMC7922639 DOI: 10.3390/biomedicines9020209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Therapeutic applications of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have attracted considerable attention because of their immunomodulatory properties against immune-mediated, inflammatory diseases. Here, we demonstrated enhanced immunomodulatory properties of EVs secreted from endoplasmic reticulum (ER) stress inducer thapsigargin (TSG)-primed human Wharton's jelly-derived MSCs (WJ-MSCs). EVs from TSG-primed WJ-MSCs (TSG-EV) showed increased yield and expression of immunomodulatory factors, such as transforming growth factor-β1 (TGFβ), cyclooxygenase-2 (COX2), and especially indoleamine 2,3-dioxygenase (IDO), compared to control EVs. TSG-EV showed a significantly enhanced immunosuppressive effect on human peripheral blood-derived T cell proliferation and Th1 and Th17 differentiation, whereas Treg and M2-type macrophage were enriched compared to a control EV-treated group. Furthermore, TSG-EV substantially mitigated mouse experimental colitis by reducing the inflammatory response and maintaining intestinal barrier integrity. A significant increase of Tregs and M2-type macrophages in colitic colons of a TSG-EV-treated mouse suggests an anti-inflammatory effect of TSG-EV in colitis model, possibly mediated by Treg and macrophage polarization. These data indicate that TSG treatment promoted immunomodulatory properties of EVs from WJ-MSCs, and TSG-EV may provide a new therapeutic approach for treatment of colitis.
Collapse
|
44
|
Gao Y, Xu A, Shen Q, Xie Y, Liu S, Wang X. Graphene oxide aggravated dextran sulfate sodium-induced colitis through intestinal epithelial cells autophagy dysfunction. J Toxicol Sci 2021; 46:43-55. [PMID: 33408300 DOI: 10.2131/jts.46.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Graphene oxide (GO) is one of the most promising nanomaterials used in biomedicine. However, studies about its adverse effects on the intestine in state of inflammation remain limited. This study aimed to explore the underlying effects of GO on intestinal epithelial cells (IECs) in vitro and colitis in vivo. We found that GO could exert toxic effects on NCM460 cells in a dose- and time-dependent manner and promote inflammation. Furthermore, GO caused lysosomal dysfunction and then blockaded autophagy flux. Moreover, pharmacological autophagy inhibitor 3-Methyladenine could reverse GO-induced LC3B and p62 expression levels, reduce expression levels of IL-6, IL-8, TLR4, and CXCL2, and increase the level of IL-10. In vivo, C57BL/6 mice were treated with 2.5% dextran sulfate sodium (DSS) in drinking water for five consecutive days to induce colitis. Then, GO at 60 mg/kg dose was administered through the oral route every two days from day 2 to day 8. These results showed that GO aggravated DSS-induced colitis, characterized by shortening of the colon and severe pathological changes, and induced autophagy. In conclusion, GO caused the abnormal autophagy in IECs and exacerbated DSS-induced colitis in mice. Our research indicated that GO may contribute to the development of intestinal inflammation by inducing IECs autophagy dysfunction.
Collapse
Affiliation(s)
- Yanfei Gao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Angao Xu
- Huizhou Medicine Institute, China
| | - Qiong Shen
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Yue Xie
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Siliang Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| |
Collapse
|
45
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|