1
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Kumar H, Dasika S, Mangat M, Tallur S, Saha K. High dynamic-range and portable magnetometer using ensemble nitrogen-vacancy centers in diamond. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:075002. [PMID: 38995153 DOI: 10.1063/5.0205105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Nitrogen vacancy (NV) centers in diamonds have been explored for a wide range of sensing applications in the last decade due to their unique quantum properties. In this work, we report a compact and portable magnetometer with an ensemble of NV centers, which we call the Quantum MagPI (Quantum Magnetometer with Proportional Integral control). Our fully integrated compact sensor assembly and control electronics fit inside a 10 × 10 × 7 cm3 box and a 30 × 25 × 5 cm3 rack-mountable box, respectively. We achieve a bandwidth normalized sensitivity of ∼10 nT/Hz. Using closed-loop feedback for locking to the resonance frequency, we extend the linear dynamic range to 200 μT (20× improvement compared to the intrinsic dynamic range) without compromising the sensitivity. We report a detailed performance analysis of the magnetometer through measurements of noise spectra, Allan deviation, and tracking of nT-level magnetic fields in real-time. In addition, we demonstrate the utility of such a magnetometer by real-time tracking of the movement of an elevator car and door opening events by measuring the projection of the magnetic field along one of the NV-axes under ambient temperature and humidity conditions.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Shishir Dasika
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Maheshwar Mangat
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Siddharth Tallur
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence Semiconductor Technologies (SemiX), Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Kasturi Saha
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence Semiconductor Technologies (SemiX), Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence in Quantum Information, Computing Science and Technology, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
3
|
Zhang Z, Wen HF, Gao Z, Liu Y, Cao B, Guo H, Li Z, Ma Z, Li X, Tang J, Liu J. Investigation of zero-phonon line characteristics in ensemble nitrogen-vacancy centers at 1.6 K-300 K. OPTICS EXPRESS 2024; 32:17336-17344. [PMID: 38858919 DOI: 10.1364/oe.518322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
The ensemble of nitrogen-vacancy (NV) centers is widely used in quantum information transmission, high-precision magnetic field, and temperature sensing due to their advantages of long-lived state and the ability to be pumped by optical cycling. In this study, we investigate the zero-phonon line behavior of the two charge states of NV centers by measuring the photoluminescence of the NV center at 1.6 K-300 K. The results demonstrate a positional redshift, an increase in line width, and a decrease in fluorescence intensity for the ZPL of NV0 and NV- as the temperature increased. In the range of 10 K to 140 K, the peak shift with high concentrations of NV- revealed an anomaly of bandgap reforming. The peak position undergoes a blueshift and then a redshift as temperature increases. Furthermore, the transformation between NV0 and NV- with temperature changes has been obtained in diamonds with different nitrogen concentrations. This study explored the ZPL characteristics of NV centers in various temperatures, and the findings are significant for the development of high-resolution temperature sensing and high-precision magnetic field sensing in ensemble NV centers.
Collapse
|
4
|
Mathes N, Comas M, Bleul R, Everaert K, Hermle T, Wiekhorst F, Knittel P, Sperling RA, Vidal X. Nitrogen-vacancy center magnetic imaging of Fe 3O 4 nanoparticles inside the gastrointestinal tract of Drosophila melanogaster. NANOSCALE ADVANCES 2023; 6:247-255. [PMID: 38125606 PMCID: PMC10729879 DOI: 10.1039/d3na00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Widefield magnetometry based on nitrogen-vacancy centers enables high spatial resolution imaging of magnetic field distributions without a need for spatial scanning. In this work, we show nitrogen-vacancy center magnetic imaging of Fe3O4 nanoparticles within the gastrointestinal tract of Drosophila melanogaster larvae. Vector magnetic field imaging based on optically detected magnetic resonance is carried out on dissected larvae intestine organs containing accumulations of externally loaded magnetic nanoparticles. The distribution of the magnetic nanoparticles within the tissue can be clearly deduced from the magnetic stray field measurements. Spatially resolved magnetic imaging requires the nitrogen-vacancy centers to be very close to the sample making the technique particularly interesting for thin tissue samples. This study is a proof of principle showing the capability of nitrogen-vacancy center magnetometry as a technique to detect magnetic nanoparticle distributions in Drosophila melanogaster larvae that can be extended to other biological systems.
Collapse
Affiliation(s)
- Niklas Mathes
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Katrijn Everaert
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
- Department of Solid State Sciences, Ghent University Krijgslaan 281/S1 Ghent Belgium
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
| | - Peter Knittel
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Ralph A Sperling
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Xavier Vidal
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
- TECNALIA, Basque Research and Technology Alliance (BRTA) Derio 48160 Spain
| |
Collapse
|
5
|
Blankenship B, Jones Z, Zhao N, Singh H, Sarkar A, Li R, Suh E, Chen A, Grigoropoulos CP, Ajoy A. Complex Three-Dimensional Microscale Structures for Quantum Sensing Applications. NANO LETTERS 2023; 23:9272-9279. [PMID: 37811908 PMCID: PMC10603797 DOI: 10.1021/acs.nanolett.3c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Indexed: 10/10/2023]
Abstract
We present a novel method for fabricating highly customizable three-dimensional structures hosting quantum sensors based on nitrogen vacancy (NV) centers using two-photon polymerization. This approach overcomes challenges associated with structuring traditional single-crystal quantum sensing platforms and enables the creation of complex, fully three-dimensional, sensor assemblies with submicroscale resolutions (down to 400 nm) and large fields of view (>1 mm). By embedding NV center-containing nanoparticles in exemplary structures, we demonstrate high sensitivity optical sensing of temperature and magnetic fields at the microscale. Our work showcases the potential for integrating quantum sensors with advanced manufacturing techniques, facilitating the incorporation of sensors into existing microfluidic and electronic platforms, and opening new avenues for widespread utilization of quantum sensors in various applications.
Collapse
Affiliation(s)
- Brian
W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zachary Jones
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Advanced
Biofuels and Bioproducts Process Development Unit, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Naichen Zhao
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Harpreet Singh
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adrisha Sarkar
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Runxuan Li
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Erin Suh
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Alan Chen
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Ashok Ajoy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- CIFAR
Azrieli Global Scholars Program, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
6
|
Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S, Yang H. Phase Engineering of 2D Materials. Chem Rev 2023; 123:11230-11268. [PMID: 37589590 DOI: 10.1021/acs.chemrev.3c00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juhi Pandey
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungyeon Lee
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
Gorrini F, Bifone A. Advances in Stabilization and Enrichment of Shallow Nitrogen-Vacancy Centers in Diamond for Biosensing and Spin-Polarization Transfer. BIOSENSORS 2023; 13:691. [PMID: 37504090 PMCID: PMC10377017 DOI: 10.3390/bios13070691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Negatively charged nitrogen-vacancy (NV-) centers in diamond have unique magneto-optical properties, such as high fluorescence, single-photon generation, millisecond-long coherence times, and the ability to initialize and read the spin state using purely optical means. This makes NV- centers a powerful sensing tool for a range of applications, including magnetometry, electrometry, and thermometry. Biocompatible NV-rich nanodiamonds find application in cellular microscopy, nanoscopy, and in vivo imaging. NV- centers can also detect electron spins, paramagnetic agents, and nuclear spins. Techniques have been developed to hyperpolarize 14N, 15N, and 13C nuclear spins, which could open up new perspectives in NMR and MRI. However, defects on the diamond surface, such as hydrogen, vacancies, and trapping states, can reduce the stability of NV- in favor of the neutral form (NV0), which lacks the same properties. Laser irradiation can also lead to charge-state switching and a reduction in the number of NV- centers. Efforts have been made to improve stability through diamond substrate doping, proper annealing and surface termination, laser irradiation, and electric or electrochemical tuning of the surface potential. This article discusses advances in the stabilization and enrichment of shallow NV- ensembles, describing strategies for improving the quality of diamond devices for sensing and spin-polarization transfer applications. Selected applications in the field of biosensing are discussed in more depth.
Collapse
Affiliation(s)
- Federico Gorrini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| |
Collapse
|
8
|
Shao J, Luo Y, Chen J, Huang H, Liu GS, Chen L, Chen Z, Chen Y. High-sensitivity optical-fiber magnetic sensor based on diamond and magnetic flux concentrators. OPTICS EXPRESS 2023; 31:14685-14693. [PMID: 37157327 DOI: 10.1364/oe.488243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnetic field detection exploiting nitrogen-vacancy (NV) centers in diamond has gained increasing attention and development in recent years. Combining diamond NV centers to optical fibers provides a way for achieving magnetic sensors with high integration and portability. Meanwhile, new methods or techniques are urgently desired to improve the detection sensitivity of such sensors. In this paper, we present an optical-fiber magnetic sensor based on the NV ensemble in diamond, and employ the well-designed magnetic flux concentrators to enhance the sensitivity up to 12 pT/Hz1/2, an outstanding level among the diamond-integrated optical-fiber magnetic sensors. The dependence of sensitivity on the key parameters including the size and gap width of the concentrators are investigated by simulations and experiments, based on which the predictions on the further enhancement of sensitivity to fT level are presented.
Collapse
|
9
|
Zhao M, Lin Q, Meng Q, Shan W, Zhu L, Chen Y, Liu T, Zhao L, Jiang Z. All Fiber Vector Magnetometer Based on Nitrogen-Vacancy Center. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:949. [PMID: 36903827 PMCID: PMC10005582 DOI: 10.3390/nano13050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Magnetometers based on nitrogen-vacancy (NV) centers in diamonds have promising applications in fields of living systems biology, condensed matter physics, and industry. This paper proposes a portable and flexible all-fiber NV center vector magnetometer by using fibers to substitute all conventional spatial optical elements, realizing laser excitation and fluorescence collection of micro-diamond with multi-mode fibers simultaneously and efficiently. An optical model is established to investigate multi-mode fiber interrogation of micro-diamond to estimate the optical performance of NV center system. A new analysis method is proposed to extract the magnitude and direction of the magnetic field, combining the morphology of the micro-diamond, thus realizing μm-scale vector magnetic field detection at the tip of the fiber probe. Experimental testing shows our fabricated magnetometer has a sensitivity of 0.73 nT/Hz1/2, demonstrating its feasibility and performance in comparison with conventional confocal NV center magnetometers. This research presents a robust and compact magnetic endoscopy and remote-magnetic measurement approach, which will substantially promote the practical application of magnetometers based on NV centers.
Collapse
Affiliation(s)
- Man Zhao
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qijing Lin
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
- Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qingzhi Meng
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenjun Shan
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liangquan Zhu
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yao Chen
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Liu
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Libo Zhao
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
- Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
10
|
Yan W, Ren X, Zhou M, Hu Z. Precision Magnetic Field Sensing with Dual Multi-Wave Atom Interferometer. SENSORS (BASEL, SWITZERLAND) 2022; 23:173. [PMID: 36616768 PMCID: PMC9823334 DOI: 10.3390/s23010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Precision magnetic field measurement is widely used for practical applications, fundamental research, and medical purposes, etc. We propose a novel quantum magnetometer based on atoms' multi-wave (3-wave and 5-wave) Ramsey interference. Our design features high phase sensitivity and can be applied to in situ measurements of the magnetic field inside vacuum chambers. The final state detection is designed to be achieved by Raman's two-photon transition. The analytical solution for applicable interference fringe is presented. Fringe contrast decay due to atom temperature and magnetic field gradient is simulated to estimate reasonable experimental conditions. Sensitivity functions for phase noise and magnetic field noise in a multi-wave system are derived to estimate the noise level required to reach the expected resolution. The validity of the model, dual-channel features on bias estimation, and the quasi-non-destructive detection feature are discussed.
Collapse
|
11
|
Wang Z, Zhang J, Feng X, Xing L. Microwave Heating Effect on Diamond Samples of Nitrogen-Vacancy Centers. ACS OMEGA 2022; 7:31538-31543. [PMID: 36092553 PMCID: PMC9453975 DOI: 10.1021/acsomega.2c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Diamond samples of defects with negatively charged nitrogen-vacancy (NV) centers are promising solid-state spin sensors suitable for quantum information processing and highly sensitive measurements of magnetic, electric, and thermal fields at the nanoscale. A diamond defect with an NV center is unique for its robust temperature-dependent zero-field splitting D gs of the triplet ground state. This property enables the optical readout of electron spin states through manipulation of the ground triplet state using microwave resonance with D gs from 100 K to approximately 600 K. Thus, prohibiting D gs from external thermal disturbances is crucial for an accurate measurement using NV-diamond sensors. Nevertheless, the external microwave field probably exerts a heating effect on the diamond sample of NV centers. To our knowledge, the microwave heating effect on the diamond samples of NV centers has yet to be quantitatively and systematically addressed. Our observation demonstrates the existence of a prominent microwave heating effect on the diamond samples of NV centers with the microwave irradiation in a continuous mode and some pulse sequence modes. The zero-field splitting D gs is largely red-shifted by the temperature rises of the diamond samples. The effect will inevitably cause NV-diamond sensors to misread the true temperature of the target and disturb magnetic field detection by perturbing the spin precession of NV centers. Our observation demonstrates that such a phenomenon is negligible for the quantum lock-in XY8-N method.
Collapse
Affiliation(s)
- Zheng Wang
- Department
of Precision Instrument, Tsinghua University, Beijing 100084, China
- National
Institute of Metrology, Beijing 100029, China
| | - Jintao Zhang
- National
Institute of Metrology, Beijing 100029, China
| | - Xiaojuan Feng
- National
Institute of Metrology, Beijing 100029, China
| | - Li Xing
- National
Institute of Metrology, Beijing 100029, China
| |
Collapse
|
12
|
Dix S, Gutsche J, Waller E, von Freymann G, Widera A. Fiber-tip endoscope for optical and microwave control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:095104. [PMID: 36182466 DOI: 10.1063/5.0100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
We present a robust, fiber-based endoscope with a silver direct-laser-written structure for radio frequency (RF) emission next to the optical fiber facet. Thereby, we are able to excite and probe a sample, such as nitrogen-vacancy (NV) centers in diamond, with RF and optical signals simultaneously and specifically measure the fluorescence of the sample fully through the fiber. At our targeted frequency range of around 2.9 GHz, the facet of the fiber core is in the near-field of the RF-guiding silver structure, which comes with the advantage of an optimal RF intensity decreasing rapidly with the distance. By creating a silver structure on the cladding of the optical fiber, we achieve the minimal possible distance between an optically excited and detected sample and an antenna structure without affecting the optical performance of the fiber. This allows us to realize a high RF amplitude at the sample's position when considering an endoscope solution with integrated optical and RF access. The capabilities of the endoscope are quantified by optically detected magnetic resonance (ODMR) measurements of an NV-doped microdiamond that we probe as a practical use case. We demonstrate a magnetic sensitivity of our device of 17.8 nT/Hz when measuring the ODMR exclusively through our fiber and compare the sensitivity to a measurement using a confocal microscope. Moreover, the application of our device is not limited to NV centers in diamonds. Similar endoscope-like devices combining optical excitation and detection with radio frequency or microwave antenna could be used as a powerful tool for measuring a variety of fluorescent particles that have so far only been investigated with bulky and large optical setups. Furthermore, our endoscope points toward precise distance measurements based on Rabi oscillations.
Collapse
Affiliation(s)
- Stefan Dix
- Department of Physics and State Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Str. 46, 67663 Kaiserslautern, Germany
| | - Jonas Gutsche
- Department of Physics and State Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Str. 46, 67663 Kaiserslautern, Germany
| | - Erik Waller
- Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
| | - Georg von Freymann
- Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
| | - Artur Widera
- Department of Physics and State Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Str. 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Keppler MA, Steelman ZA, Coker ZN, Nesládek M, Hemmer PR, Yakovlev VV, Bixler JN. Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy. PHOTONICS RESEARCH 2022; 10:2147-2156. [PMID: 37303834 PMCID: PMC10256238 DOI: 10.1364/prj.455634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 06/13/2023]
Abstract
Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images. Here, for the first time, to our knowledge, we extend those measurements to high-speed imaging, which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale. To overcome detector acquisition rate limitations, we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms. We demonstrate magnetic field wave imaging with micro-scale spatial extent and ~400 μs temporal resolution. In validating this system, we detected magnetic fields down to 10 μT for 40 Hz magnetic fields using single-shot imaging and captured the spatial transit of an electromagnetic needle at streak rates as high as 110 μm/ms. This design has the capability to be readily extended to full 3D video acquisition by utilizing compressed sensing techniques and a potential for further improvement of spatial resolution, acquisition speed, and sensitivity. The device opens opportunities to many potential applications where transient magnetic events can be isolated to a single spatial axis, such as acquiring spatially propagating action potentials for brain imaging and remotely interrogating integrated circuits.
Collapse
Affiliation(s)
- Mark A. Keppler
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- SAIC, JBSA Fort Sam Houston, Texas 78234, USA
| | - Zachary A. Steelman
- National Research Council Research Associateship Program, Washington, DC 20001, USA
| | | | - Miloš Nesládek
- IMOMEC Division, IMEC, B-3590 Diepenbeek, Belgium
- Institute for Materials Research (IMO), Hasselt University, B-3590 Diepenbeek, Belgium
- Czech Technical University in Prague, 27201 Kladno, Czech Republic
| | - Philip R. Hemmer
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Joel N. Bixler
- Bioeffects Division, Airman System Directorate, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| |
Collapse
|
14
|
Iyengar SA, Puthirath AB, Swaminathan V. Realizing Quantum Technologies in Nanomaterials and Nanoscience. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2107839. [PMID: 35119138 DOI: 10.1002/adma.202107839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A brief overview of quantum materials and their prospects for applications, in the near, mid, and far-term in the areas of quantum information science, spintronics, valleytronics, and twistronics and those involving topology are covered in this perspective. The material and processing challenges that will modulate the realism of the applications will be discussed as well.
Collapse
Affiliation(s)
- Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | | |
Collapse
|
15
|
Abstract
For the first time, lasing at NV− centers in an optically pumped diamond sample is achieved. A nanosecond train of 150-ps 532-nm laser pulses was used to pump the sample. The lasing pulses have central wavelength at 720 nm with a spectrum width of 20 nm, 1-ns duration and total energy around 10 nJ. In a pump-probe scheme, we investigate lasing conditions and gain saturation due to NV− ionization and NV0 concentration growth under high-power laser pulse pumping of diamond crystal. Diamond is a promising host material for color-center photon source. Here the authors provide the experimental evidence of lasing in (NV−) centers in diamond. Through a rational fine-tuning of the pump condition they decrease the photoionization, ultimately increasing the laser efficiency.
Collapse
|
16
|
Žurauskas M, Alex A, Park J, Hood SR, Boppart SA. Fluorescent nanodiamonds for characterization of nonlinear microscopy systems. PHOTONICS RESEARCH 2021; 9:2309-2318. [PMID: 37181134 PMCID: PMC10174270 DOI: 10.1364/prj.434236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Characterizing the performance of fluorescence microscopy and nonlinear imaging systems is an essential step required for imaging system optimization and quality control during longitudinal experiments. Emerging multimodal nonlinear imaging techniques require a new generation of microscopy calibration targets that are not susceptible to bleaching and can provide a contrast across the multiple modalities. Here, we present a nanodiamond-based calibration target for microscopy, designed for facilitating reproducible measurements at the object plane. The target is designed to support day-to-day instrumentation development efforts in microscopy laboratories. The images of a phantom contain information about the imaging performance of a microscopy system across multiple spectral windows and modalities. Since fluorescent nanodiamonds are not prone to bleaching, the proposed imaging target can serve as a standard, shelf-stable sample to provide rapid reference measurements for ensuring consistent performance of microscopy systems in microscopy laboratories and imaging facilities.
Collapse
Affiliation(s)
- Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steve R. Hood
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding author:
| |
Collapse
|
17
|
Mishra U, Bayat A. Driving Enhanced Quantum Sensing in Partially Accessible Many-Body Systems. PHYSICAL REVIEW LETTERS 2021; 127:080504. [PMID: 34477423 DOI: 10.1103/physrevlett.127.080504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The ground-state criticality of many-body systems is a resource for quantum-enhanced sensing, namely, the Heisenberg precision limit, provided that one has access to the whole system. We show that, for partial accessibility, the sensing capabilities of a block of spins in the ground state reduces to the sub-Heisenberg limit. To compensate for this, we drive the Hamiltonian periodically and use a local steady state for quantum sensing. Remarkably, the steady-state sensing shows a significant enhancement in precision compared to the ground state and even achieves super-Heisenberg scaling for low frequencies. The origin of this precision enhancement is related to the closing of the Floquet quasienergy gap. It is in close correspondence with the vanishing of the energy gap at criticality for ground-state sensing with global accessibility. The proposal is general to all the integrable models and can be implemented on existing quantum devices.
Collapse
Affiliation(s)
- Utkarsh Mishra
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Abolfazl Bayat
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
18
|
Precision Magnetometers for Aerospace Applications: A Review. SENSORS 2021; 21:s21165568. [PMID: 34451010 PMCID: PMC8402258 DOI: 10.3390/s21165568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Aerospace technologies are crucial for modern civilization; space-based infrastructure underpins weather forecasting, communications, terrestrial navigation and logistics, planetary observations, solar monitoring, and other indispensable capabilities. Extraplanetary exploration—including orbital surveys and (more recently) roving, flying, or submersible unmanned vehicles—is also a key scientific and technological frontier, believed by many to be paramount to the long-term survival and prosperity of humanity. All of these aerospace applications require reliable control of the craft and the ability to record high-precision measurements of physical quantities. Magnetometers deliver on both of these aspects and have been vital to the success of numerous missions. In this review paper, we provide an introduction to the relevant instruments and their applications. We consider past and present magnetometers, their proven aerospace applications, and emerging uses. We then look to the future, reviewing recent progress in magnetometer technology. We particularly focus on magnetometers that use optical readout, including atomic magnetometers, magnetometers based on quantum defects in diamond, and optomechanical magnetometers. These optical magnetometers offer a combination of field sensitivity, size, weight, and power consumption that allows them to reach performance regimes that are inaccessible with existing techniques. This promises to enable new applications in areas ranging from unmanned vehicles to navigation and exploration.
Collapse
|
19
|
Jaufenthaler A, Kornack T, Lebedev V, Limes ME, Körber R, Liebl M, Baumgarten D. Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:1212. [PMID: 33572285 PMCID: PMC7915455 DOI: 10.3390/s21041212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023]
Abstract
Magnetic nanoparticles (MNP) offer a large variety of promising applications in medicine thanks to their exciting physical properties, e.g., magnetic hyperthermia and magnetic drug targeting. For these applications, it is crucial to quantify the amount of MNP in their specific binding state. This information can be obtained by means of magnetorelaxometry (MRX), where the relaxation of previously aligned magnetic moments of MNP is measured. Current MRX with optically pumped magnetometers (OPM) is limited by OPM recovery time after the shut-off of the external magnetic field for MNP alignment, therewith preventing the detection of fast relaxing MNP. We present a setup for OPM-MRX measurements using a commercially available pulsed free-precession OPM, where the use of a high power pulsed pump laser in the sensor enables a system recovery time in the microsecond range. Besides, magnetometer raw data processing techniques for Larmor frequency analysis are proposed and compared in this paper. Due to the high bandwidth (≥100 kHz) and high dynamic range of our OPM, a software gradiometer in a compact enclosure allows for unshielded MRX measurements in a laboratory environment. When operated in the MRX mode with non-optimal pumping performance, the OPM shows an unshielded gradiometric noise floor of about 600 fT/cm/Hz for a 2.3 cm baseline. The noise floor is flat up to 1 kHz and increases then linearly with the frequency. We demonstrate that quantitative unshielded MRX measurements of fast relaxing, water suspended MNP is possible with the novel OPM-MRX concept, confirmed by the accurately derived iron amount ratios of MNP samples. The detection limit of the current setup is about 1.37 μg of iron for a liquid BNF-MNP-sample (Bionized NanoFerrite) with a volume of 100 μL.
Collapse
Affiliation(s)
- Aaron Jaufenthaler
- Institute of Electrical and Biomedical Engineering, UMIT—Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria;
| | - Thomas Kornack
- Twinleaf LLC, Plainsboro Township, NJ 08536, USA; (T.K.); (M.E.L.)
| | - Victor Lebedev
- Department Biosignals, Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (V.L.); (R.K.); (M.L.)
| | - Mark E. Limes
- Twinleaf LLC, Plainsboro Township, NJ 08536, USA; (T.K.); (M.E.L.)
| | - Rainer Körber
- Department Biosignals, Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (V.L.); (R.K.); (M.L.)
| | - Maik Liebl
- Department Biosignals, Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (V.L.); (R.K.); (M.L.)
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT—Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria;
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
20
|
|