1
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
2
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
3
|
D'Amario D, Galli M, Restivo A, Canonico F, Vergallo R, Migliaro S, Trani C, Burzotta F, Aurigemma C, Laborante R, Romagnoli E, Francese F, Ceccarelli I, Borovac JA, Angiolillo DJ, Tavazzi B, Leone AM, Crea F, Patti G, Porto I. Ticagrelor enhances the cardioprotective effects of ischemic preconditioning in stable patients undergoing percutaneous coronary intervention: the TAPER-S randomized study. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:190-200. [PMID: 38006237 DOI: 10.1093/ehjcvp/pvad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Ticagrelor improves clinical outcomes in patients with acute coronary syndromes compared with clopidogrel. Ticagrelor also inhibits cell uptake of adenosine and has been associated with cardioprotective effects in animal models. We sought to investigate the potential cardioprotective effects of ticagrelor, as compared with clopidogrel, in stable patients undergoing percutaneous coronary intervention (PCI). METHODS AND RESULTS This was a Prospective Randomized Open Blinded End-points (PROBE) trial enrolling stable patients with coronary artery disease (CAD) requiring fractional flow reserve-guided PCI of intermediate epicardial coronary lesions. ST-segment elevation at intracoronary electrocardiogram (IC-ECG) during a two-step sequential coronary balloon inflations in the reference vessel during PCI was used as an indirect marker of cardioprotection induced by ischemic preconditioning (IPC). The primary endpoint of the study was the comparison of the delta (Δ) (difference) ST-segment elevation measured by IC-ECG during two-step sequential coronary balloon inflations. RESULTS Fifty-three patients were randomized to either clopidogrel or ticagrelor. The study was stopped earlier because the primary endpoint was met at a pre-specified interim analysis. ΔST-segment elevation was significantly higher in ticagrelor as compared to clopidogrel arms (P < 0.0001). Ticagrelor was associated with lower angina score during coronary balloon inflations. There was no difference in coronary microvascular resistance between groups. Adenosine serum concentrations were increased in patients treated with ticagrelor as compared to those treated with clopidogrel. CONCLUSIONS Ticagrelor enhances the cardioprotective effects of IPC compared with clopidogrel in stable patients with CAD undergoing PCI. Further studies are warranted to fully elucidate the mechanisms through which ticagrelor may exert cardioprotective effects in humans. CLINICAL TRIAL REGISTRATION http://www.clinicaltrials.gov. Unique Identifier: NCT02701140.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di MedicinaTraslazionale, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, 48032 Cotignola, Italy
| | - Attilio Restivo
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Canonico
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Stefano Migliaro
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Burzotta
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Cristina Aurigemma
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Renzo Laborante
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Enrico Romagnoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Francese
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Ceccarelli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine (USSM) and Cardiovascular Diseases Department, University Hospital of Split (KBC Split), 2100 Split, Croatia
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, 32211 Jacksonville, FL, USA
| | - Barbara Tavazzi
- UniCamillus - Saint Camillus International University of Health Sciences, 00100 Rome, Italy
| | - Antonio M Leone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Patti
- Dipartimento di MedicinaTraslazionale, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Italo Porto
- IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiovascular Network, 16132 Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università di Genova, 16132 Genova, Italy
| |
Collapse
|
4
|
Ponchia PI, Ahmed R, Farag M, Alkhalil M. Antiplatelet Therapy in End-stage Renal Disease Patients on Maintenance Dialysis: a State-of-the-art Review. Cardiovasc Drugs Ther 2023; 37:975-987. [PMID: 35867319 DOI: 10.1007/s10557-022-07366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Patients with end-stage renal disease (ESRD) on maintenance dialysis have an increased risk of ischaemic events, such as recurrent myocardial infarction (MI) and stroke. Potent antiplatelet therapy may help mitigate this risk. Nonetheless, ERSD patients are also at increased risk of bleeding due to their complex vascular milieu, which limits the routine use of potent P2Y12 inhibitors. Moreover, these patients are often underrepresented or excluded from major clinical trials leaving a significant gap in existing knowledge. Understanding the mechanisms of this paradox may serve as a benchmark for the development of ESRD trials. The present review aims to provide an overview of the pathophysiological nature of increased bleeding and ischaemic risks in ERSD patients as well as summarize available evidence of antiplatelet use and propose new concepts to guide physicians in selecting appropriate drug regimes for this high-risk cohort.
Collapse
Affiliation(s)
| | | | - Mohamed Farag
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Mohammad Alkhalil
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE7 7DN, UK.
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK.
| |
Collapse
|
5
|
Sareen N, Srivastava A, Alagarsamy KN, Lionetti V, Dhingra S. Stem cells derived exosomes and biomaterials to modulate autophagy and mend broken hearts. Biochim Biophys Acta Mol Basis Dis 2023:166806. [PMID: 37437748 DOI: 10.1016/j.bbadis.2023.166806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada; Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada.
| |
Collapse
|
6
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
7
|
Chaemsaithong P, Luewan S, Taweevisit M, Chiangjong W, Pongchaikul P, Thorner PS, Tongsong T, Chutipongtanate S. Placenta-Derived Extracellular Vesicles in Pregnancy Complications and Prospects on a Liquid Biopsy for Hemoglobin Bart's Disease. Int J Mol Sci 2023; 24:5658. [PMID: 36982732 PMCID: PMC10055877 DOI: 10.3390/ijms24065658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-scaled vesicles released from all cell types into extracellular fluids and specifically contain signature molecules of the original cells and tissues, including the placenta. Placenta-derived EVs can be detected in maternal circulation at as early as six weeks of gestation, and their release can be triggered by the oxygen level and glucose concentration. Placental-associated complications such as preeclampsia, fetal growth restriction, and gestational diabetes have alterations in placenta-derived EVs in maternal plasma, and this can be used as a liquid biopsy for the diagnosis, prediction, and monitoring of such pregnancy complications. Alpha-thalassemia major ("homozygous alpha-thalassemia-1") or hemoglobin Bart's disease is the most severe form of thalassemia disease, and this condition is lethal for the fetus. Women with Bart's hydrops fetalis demonstrate signs of placental hypoxia and placentomegaly, thereby placenta-derived EVs provide an opportunity for a non-invasive liquid biopsy of this lethal condition. In this article, we introduced clinical features and current diagnostic markers of Bart's hydrops fetalis, extensively summarize the characteristics and biology of placenta-derived EVs, and discuss the challenges and opportunities of placenta-derived EVs as part of diagnostic tests for placental complications focusing on Bart's hydrop fetalis.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
9
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Lionetti V. The Role of Exosomes in Health and Disease. Int J Mol Sci 2022; 23:ijms231911011. [PMID: 36232305 PMCID: PMC9569976 DOI: 10.3390/ijms231911011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Who would have thought that the discovery made by researchers at Washington University [...]
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana “Gabriele Monasterio”, 56124 Pisa, Italy
| |
Collapse
|
11
|
Yang S, Li J, Tang M, Gao X, Liu W, Wei S. Mesenchymal Stem Cell-Derived Exosomes in Cardioprotection: A Novel Application to Prevent Myocardial Injury. Rev Cardiovasc Med 2022; 23:310. [PMID: 39077717 PMCID: PMC11262356 DOI: 10.31083/j.rcm2309310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 07/31/2024] Open
Abstract
Perioperative myocardial injury is a common complication caused by major surgery. Many pharmacological and nonpharmacological studies have investigated perioperative cardioprotection. However, the methods are insufficient to meet the increasing clinical needs for cardioprotection. The application of Mesenchymal Stem Cell-Derived Exosomes (MSC-Exos) is a novel cell-free therapeutic strategy and has significantly benefitted patients suffering from various diseases. In this review, we comprehensively analyzed the application of MSC-Exos to prevent myocardial infarction/injury by regulating inflammatory reactions, inhibiting cardiomyocyte apoptosis and autophagy, promoting angiogenesis, and mediating cardiac remodeling. Finally, we assessed the therapeutic effects and the challenges associated with the application of MSC-Exos from a clinical perspective.
Collapse
Affiliation(s)
- Shaokang Yang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Shixiong Wei
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| |
Collapse
|
12
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
13
|
Pizzino F, Furini G, Casieri V, Mariani M, Bianchi G, Storti S, Chiappino D, Maffei S, Solinas M, Aquaro GD, Lionetti V. Late plasma exosome microRNA-21-5p depicts magnitude of reverse ventricular remodeling after early surgical repair of primary mitral valve regurgitation. Front Cardiovasc Med 2022; 9:943068. [PMID: 35966562 PMCID: PMC9373041 DOI: 10.3389/fcvm.2022.943068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Primary mitral valve regurgitation (MR) results from degeneration of mitral valve apparatus. Mechanisms leading to incomplete postoperative left ventricular (LV) reverse remodeling (Rev-Rem) despite timely and successful surgical mitral valve repair (MVR) remain unknown. Plasma exosomes (pEXOs) are smallest nanovesicles exerting early postoperative cardioprotection. We hypothesized that late plasma exosomal microRNAs (miRs) contribute to Rev-Rem during the late postoperative period. Methods Primary MR patients (n = 19; age, 45-71 years) underwent cardiac magnetic resonance imaging and blood sampling before (T0) and 6 months after (T1) MVR. The postoperative LV Rev-Rem was assessed in terms of a decrease in LV end-diastolic volume and patients were stratified into high (HiR-REM) and low (LoR-REM) LV Rev-Rem subgroups. Isolated pEXOs were quantified by nanoparticle tracking analysis. Exosomal microRNA (miR)-1, -21-5p, -133a, and -208a levels were measured by RT-qPCR. Anti-hypertrophic effects of pEXOs were tested in HL-1 cardiomyocytes cultured with angiotensin II (AngII, 1 μM for 48 h). Results Surgery zeroed out volume regurgitation in all patients. Although preoperative pEXOs were similar in both groups, pEXO levels increased after MVR in HiR-REM patients (+0.75-fold, p = 0.016), who showed lower cardiac mass index (-11%, p = 0.032). Postoperative exosomal miR-21-5p values of HiR-REM patients were higher than other groups (p < 0.05). In vitro, T1-pEXOs isolated from LoR-REM patients boosted the AngII-induced cardiomyocyte hypertrophy, but not postoperative exosomes of HiR-REM. This adaptive effect was counteracted by miR-21-5p inhibition. Summary/Conclusion High levels of miR-21-5p-enriched pEXOs during the late postoperative period depict higher LV Rev-Rem after MVR. miR-21-5p-enriched pEXOs may be helpful to predict and to treat incomplete LV Rev-Rem after successful early surgical MVR.
Collapse
Affiliation(s)
- Fausto Pizzino
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
14
|
Carotti V, Rigalli JP, van Asbeck-van der Wijst J, G J Hoenderop J. Interplay between purinergic signalling and extracellular vesicles in health and disease. Biochem Pharmacol 2022; 203:115192. [PMID: 35905971 DOI: 10.1016/j.bcp.2022.115192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Purinergic signalling is a receptor-mediated process characterized by the binding of extracellular nucleotides and nucleosides to purinergic receptors, which results in the activation intracellular signalling pathways, and, ultimately, leads to changes in cell physiology. Purinergic signalling has been related to the regulation of important physiological processes (e.g., renal electrolyte reabsorption; platelet aggregation; immune response). In addition, it has been associated with pathophysiological situations such as cancer and inflammation. Extracellular vesicles (EVs) are nanoparticles released by all cells of the organism, which play a key role in cell-cell communication. In this regard, EVs can mediate effects on target cells located at distant locations. Within their cargo, EVs contain molecules with the potential to affect purinergic signalling at the target cells and tissues. Here, we review the studies addressing the regulation of purinergic signalling by EVs based on the cell type or tissue where the regulation takes place. In this regard, EVs are found to play a major role in modulating the extracellular ATP levels and, specially, adenosine. This has a clear impact on, for instance, the inflammatory and immune response against cancer cells. Furthermore, we discuss the data available on the regulation of EV secretion and its cargo by purinergic signalling. Here, a major role of the purinergic receptor P2X7 and again, an impact on processes such as inflammation, immune response and cancer pathogenesis has been established. Finally, we highlight uninvestigated aspects of these two regulatory networks and address their potential as therapeutic targets.
Collapse
Affiliation(s)
- Valentina Carotti
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Juan P Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jenny van Asbeck-van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Romano V, Belviso I, Sacco AM, Cozzolino D, Nurzynska D, Amarelli C, Maiello C, Sirico F, Di Meglio F, Castaldo C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front Physiol 2022; 13:879046. [PMID: 35669580 PMCID: PMC9163838 DOI: 10.3389/fphys.2022.879046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Although human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into ischemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, and proliferation of recipient cells. We hypothesize that EVs are involved in the paracrine effects elicited by hCPCs and held accountable for the response of the infarcted myocardium to hCPC-based cell therapy. To test this theory, we collected EVs released by hCPCs isolated from healthy myocardium and evaluated the effects they elicited when administered to resident hCPC and cardiac fibroblasts (CFs) isolated from patients with post-ischemic end-stage heart failure. Evidence emerging from our study indicated that hCPC-derived EVs impacted upon proliferation and survival of hCPCs residing in the ischemic heart and regulated the synthesis and deposition of extracellular-matrix by CFs. These findings suggest that beneficial effects exerted by hCPC injection are, at least to some extent, ascribable to the delivery of signals conveyed by EVs.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Domenico Cozzolino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"/DIPMED, University of Salerno, Baronissi, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Fernando H, McFadyen JD, Wang X, Shaw J, Stub D, Peter K. P2Y12 Antagonists in Cardiovascular Disease—Finding the Best Balance Between Preventing Ischemic Events and Causing Bleeding. Front Cardiovasc Med 2022; 9:854813. [PMID: 35647068 PMCID: PMC9133423 DOI: 10.3389/fcvm.2022.854813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Dual antiplatelet therapy comprising of aspirin and oral P2Y12 receptor antagonists are an established cornerstone of therapy in acute coronary syndromes and percutaneous coronary intervention. As a result, the platelet P2Y12 receptor remains a key therapeutic target in cardiovascular medicine since pharmacological antagonists were first developed in the 1990’s. With a greater understanding of platelet biology and the role played by the P2Y12 receptor in the amplification of platelet activation and thrombus formation, there has been progressive refinement in the development of P2Y12 receptor antagonists with greater potency and consistency of antiplatelet effect. However, challenges remain in the utilization of these agents particularly in balancing the need for greater protection from ischemic events whilst minimizing the bleeding risk and present a real opportunity for the institution of individualized medicine. Future drug developments will provide clinicians with greater avenues to achieve this.
Collapse
Affiliation(s)
- Himawan Fernando
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - James D. McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Thrombosis and Hemostasis Unit, Department of Clinical Hematology, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - James Shaw
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Dion Stub
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
- *Correspondence: Karlheinz Peter,
| |
Collapse
|
17
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
18
|
Lionetti V, Sareen N, Dhingra S. Editorial: The Analysis of Nanovesicles, Biomaterials and Chemical Compounds: Assisting the Promotion of Angiogenesis and Enhancing Tissue Engineering Strategies. Front Cardiovasc Med 2022; 9:904738. [PMID: 35557531 PMCID: PMC9089304 DOI: 10.3389/fcvm.2022.904738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Vincenzo Lionetti
| | - Niketa Sareen
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Sanjiv Dhingra
| |
Collapse
|
19
|
Cardioprotective effect of extracellular vesicles derived from ticagrelor-pretreated cardiomyocyte on hyperglycemic cardiomyocytes through alleviation of oxidative and endoplasmic reticulum stress. Sci Rep 2022; 12:5651. [PMID: 35383227 PMCID: PMC8983723 DOI: 10.1038/s41598-022-09627-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) play important roles in diabetes mellitus (DM) via connecting the immune cell response to tissue injury, besides stimulation to muscle insulin resistance, while DM is associated with increased risks for major cardiovascular complications. Under DM, chronic hyperglycemia, and subsequent increase in the production of reactive oxygen species (ROS) further lead to cardiac growth remodeling and dysfunction. The purinergic drug ticagrelor is a P2Y12 receptor antagonist. Although it is widely used in cardioprotection, the underlying molecular mechanism of its inhibitory effect on diabetic cardiomyopathy is poorly elucidated. Here, we aimed to understand how ticagrelor exerts its cardio-regulatory effects. For this purpose, we investigated the anti-oxidative and cardioprotective effect of EVs derived from ticagrelor-pretreated cardiomyocytes under DM conditions. To mimic DM in cardiomyocytes, we used high glucose incubated H9c2-cells (HG). HG cells were treated with EVs, which were derived from either ticagrelor-pretreated or untreated H9c2-cells. Our results demonstrated that ticagrelor-pretreated H9c2-derived EVs significantly decreased the hyperglycemia-induced aberrant ROS production, prevented the development of apoptosis and ER stress, and alleviated oxidative stress associated miRNA-expression profile. Importantly, EVs derived from ticagrelor-pretreated H9c2-cells enhanced endothelial cell migration and tube formation, suggesting a modulation of the EV profile in cardiomyocytes. Our data, for the first time, indicate that ticagrelor can exert an important regulatory effect on diabetic cardiomyopathy through extracellular vesicular modulation behind its receptor-inhibition-related effects.
Collapse
|
20
|
Liu C, Bayado N, He D, Li J, Chen H, Li L, Li J, Long X, Du T, Tang J, Dang Y, Fan Z, Wang L, Yang PC. Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Front Cardiovasc Med 2021; 8:758050. [PMID: 34957249 PMCID: PMC8695616 DOI: 10.3389/fcvm.2021.758050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of human death worldwide. Drug thrombolysis, percutaneous coronary intervention, coronary artery bypass grafting and other methods are used to restore blood perfusion for coronary artery stenosis and blockage. The treatments listed prolong lifespan, however, rate of mortality ultimately remains the same. This is due to the irreversible damage sustained by myocardium, in which millions of heart cells are lost during myocardial infarction. The lack of pragmatic methods of myocardial restoration remains the greatest challenge for effective treatment. Exosomes are small extracellular vesicles (EVs) actively secreted by all cell types that act as effective transmitters of biological signals which contribute to both reparative and pathological processes within the heart. Exosomes have become the focus of many researchers as a novel drug delivery system due to the advantages of low toxicity, little immunogenicity and good permeability. In this review, we discuss the progress and challenges of EVs in myocardial repair, and review the recent development of extracellular vesicle-loading systems based on their unique nanostructures and physiological functions, as well as the application of engineering modifications in the diagnosis and treatment of myocardial repair.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nathan Bayado
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longmei Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Ge L, Xun C, Li W, Jin S, Liu Z, Zhuo Y, Duan D, Hu Z, Chen P, Lu M. Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. J Nanobiotechnology 2021; 19:380. [PMID: 34802444 PMCID: PMC8607643 DOI: 10.1186/s12951-021-01126-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSC-EVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3′-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1α)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1α-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer. ![]()
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Shengyu Jin
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Zuo Liu
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Da Duan
- Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China. .,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China. .,Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, People's Republic of China.
| |
Collapse
|
22
|
Olgar Y, Durak A, Degirmenci S, Tuncay E, Billur D, Ozdemir S, Turan B. Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum-mitochondria miscommunication. Mol Cell Biochem 2021; 476:3827-3844. [PMID: 34114148 DOI: 10.1007/s11010-021-04205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)-mitochondria (Mit) miscommunication. Tica treatment of MetS rats (150 mg/kg/day for 15 days) significantly reversed the altered parameters of action potentials by reversing sarcolemmal ionic currents carried by voltage-dependent Na+ and K+ channels, and Na+/Ca2+-exchanger in the cells, expressed P2Y12 receptors. The increased basal-cytosolic Ca2+ level and depressed SR Ca2+ load were also reversed in Tica-treated cells, at most, though recoveries in the phosphorylation levels of ryanodine receptors and phospholamban. Moreover, there were marked recoveries in Mit structure and function (including increases in both autophagosomes and fragmentations) together with recoveries in Mit proteins and the factors associated with Ca2+ transfer between SR-Mit. There were further significant recoveries in markers of both ER stress and oxidative stress. Taken into consideration the Tica-induced prevention of ER stress and mitochondrial dysfunction, our data provided an important document on the pleiotropic effects of Tica in the electrical activity of the cardiomyocytes from MetS rats. This protective effect seems through recoveries in SR-Mit miscommunication besides modulation of different sarcolemmal ion-channel activities, independent of P2Y12 receptor antagonism.
Collapse
Affiliation(s)
- Yusuf Olgar
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Sinan Degirmenci
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey.
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
23
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
24
|
Analysis of Spatial and Temporal Distribution of Purinergic P2 Receptors in the Mouse Hippocampus. Int J Mol Sci 2021; 22:ijms22158078. [PMID: 34360844 PMCID: PMC8348931 DOI: 10.3390/ijms22158078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
ATP and other nucleotides are important glio-/neurotransmitters in the central nervous system. They bind to purinergic P2X and P2Y receptors that are ubiquitously expressed in various brain regions modulating various physiological and pathophysiological processes. P2X receptors are ligand-gated ion channels mediating excitatory postsynaptic responses whereas P2Y receptors are G protein-coupled receptors mediating slow synaptic transmission. A variety of P2X and P2Y subtypes with distinct neuroanatomical localization provide the basis for a high diversity in their function. There is increasing evidence that P2 receptor signaling plays a prominent role in learning and memory and thus, in hippocampal neuronal plasticity. Learning and memory are time-of-day-dependent. Moreover, extracellular ATP shows a diurnal rhythm in rodents. However, it is not known whether P2 receptors have a temporal variation in the hippocampus. This study provides a detailed systematic analysis on spatial and temporal distribution of P2 in the mouse hippocampus. We found distinct spatial and temporal distribution patterns of the P2 receptors in different hippocampal layers. The temporal distribution of P2 receptors can be segregated into two large time domains, the early to mid-day and the mid to late night. This study provides an important basis for understanding dynamic P2 purinergic signaling in the hippocampal glia/neuronal network.
Collapse
|
25
|
Alfì E, Thairi C, Femminò S, Alloatti G, Moccia F, Brizzi MF, Pagliaro P, Penna C. Extracellular vesicles (EVs) in ischemic conditioning and angiogenesis: Focus on endothelial derived EVs. Vascul Pharmacol 2021; 140:106873. [PMID: 33992781 DOI: 10.1016/j.vph.2021.106873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. However, reperfusion further exacerbates the damage of the ischemic heart. This type of injury is known as ischemia-reperfusion injury (IRI). Ischemic conditioning is a procedure which consists of brief cycles of ischemia and reperfusion in order to protect the myocardium against IRI. Remote ischemic conditioning (RIC), namely transient brief episodes of ischemia at a remote site before a subsequent damaging ischemia/reperfusion procedure of the target organ (e.g., the heart), protects against IRI. However, how the stimulus of RIC is transduced from the remote organ to the ischemic heart is still unknown. Recently, extracellular vesicles (EVs) have been proposed to have a role in the RIC procedure. The endothelium releases EVs and is also one of the tissues mostly exposed to EVs during their journey to the target organ. Moreover, EVs may have important roles in angiogenesis and, therefore, in the remodeling of post-ischemic organs. Here we analyze how EVs may contribute to the overall cardioprotective effect and the implication of the endothelium and its EVs in RIC mediated acute cardioprotection as well as in angiogenesis.
Collapse
Affiliation(s)
- Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Laboratory of General Physiology, 27100 Pavia, Italy
| | - Maria F Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| |
Collapse
|
26
|
Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021; 168:105581. [PMID: 33781873 PMCID: PMC7997688 DOI: 10.1016/j.phrs.2021.105581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Raffaele Coppini
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, Bari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabio Mangiacapra
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Teresa Pasqua
- Department of Health Science, University of Magna Graecia, Catanzaro, Italy
| | - Claudia Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Laura Sartiani
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Gabriele Tocchetti
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
27
|
Baroni C, Lionetti V. The impact of sex and gender on heart-brain axis dysfunction: current concepts and novel perspectives. Can J Physiol Pharmacol 2021; 99:151-160. [PMID: 33002366 DOI: 10.1139/cjpp-2020-0391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heart-brain axis (HBA) recapitulates all the circuits that regulate bidirectional flow of communication between heart and brain. Several mechanisms may underlie the interdependent relationship involving heterogeneous tissues at rest and during specific target organ injury such as myocardial infarction, heart failure, arrhythmia, stroke, mood disorders, or dementia. In-depth translational studies of the HBA dysfunction under single-organ injury should include both male and female animals to develop sex- and gender-oriented prevention, diagnosis, and treatment strategies. Indeed, sex and gender are determining factors as females and males exhibit significant differences in terms of susceptibility to risk factors, age of onset, severity of symptoms, and outcome. Despite most studies having focused on the male population, we have conducted a careful appraisal of the literature investigating HBA in females. In particular, we have (i) analyzed sex-related heart and brain illnesses, (ii) recapitulated the most significant studies simultaneously conducted on cardio- and cerebro-vascular systems in female populations, and (iii) hypothesized future perspectives for the development of a gender-based approach to HBA dysfunction. Although sex- and gender-oriented research is at its infancy, the impact of sex on HBA dysfunction is opening unexpected new avenues for managing the health of female subjects exposed to risk of lifestyle multi-organ disease.
Collapse
Affiliation(s)
- Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
28
|
Nguyen BY, Azam T, Wang X. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy. Am J Physiol Heart Circ Physiol 2021; 320:H1213-H1234. [PMID: 33513083 DOI: 10.1152/ajpheart.00718.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes are a subgroup of extracellular bilayer membrane nanovesicles that are enriched in a variety of bioactive lipids, receptors, transcription factors, surface proteins, DNA, and noncoding RNAs. They have been well recognized to play essential roles in mediating intercellular signaling by delivering bioactive molecules from host cells to regulate the physiological processes of recipient cells. In the context of heart diseases, accumulating studies have indicated that exosome-carried cellular proteins and noncoding RNA derived from different types of cardiac cells, including cardiomyocytes, fibroblasts, endothelial cells, immune cells, adipocytes, and resident stem cells, have pivotal roles in cardiac remodeling under disease conditions such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial infarction. In addition, exosomal contents derived from stem cells have been shown to be beneficial for regenerative potential of the heart. In this review, we discuss current understanding of the role of exosomes in cardiac communication, with a focus on cardiovascular pathophysiology and perspectives for their potential uses as cardiac therapies.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tayyiba Azam
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
29
|
Purinergic Regulation of Endothelial Barrier Function. Int J Mol Sci 2021; 22:ijms22031207. [PMID: 33530557 PMCID: PMC7865261 DOI: 10.3390/ijms22031207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Increased vascular permeability is a hallmark of several cardiovascular anomalies, including ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and inflammation, massive amounts of various nucleotides, particularly adenosine 5'-triphosphate (ATP) and adenosine, are released that can induce a plethora of signalling pathways via activation of several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on endothelial barrier function may depend on the prevalence and type of purinergic receptors activated in a particular tissue. In this review, we discuss the influence of the activation of various purinergic receptors and downstream signalling pathways on vascular permeability during pathological conditions.
Collapse
|
30
|
Stem cell-derived exosomes: Role in the pathogenesis and treatment of atherosclerosis. Int J Biochem Cell Biol 2020; 130:105884. [PMID: 33227391 DOI: 10.1016/j.biocel.2020.105884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease characterized by the accumulation of lipids and inflammatory debris in large arteries, high morbidity, and AS-related disease mortality. AS is a complex process, involving endothelial cell dysfunction and inflammation, smooth muscle cell proliferation, and macrophage activation. However, the currently available therapies for AS are not ideal, thus requiring development of novel treatment strategies. Exosomes are bi-lipid membranous extracellular containing multifarious cargo, such as proteins, lipids, micro ribonucleic acid (miRNAs), messenger RNAs, and long non-coding RNAs. Moreover, exosomes reportedly participate in various AS processes. Specifically, stem cell-derived exosomes can regulate the occurrence and development of AS, exhibiting the ability to overcome the limitations associated with AS treatment and stem cell therapy. In this paper, we review the pathological mechanism of AS and discuss the role of exosomes and stem cell-derived exosomes in AS progression. We conclude by suggesting new therapeutic strategies for treating AS with stem cell-derived exosomes in the hope of improving the clinical treatment of AS.
Collapse
|
31
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
32
|
Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol 2020; 135:106790. [PMID: 32861822 DOI: 10.1016/j.vph.2020.106790] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
In the last few decades extracellular vesicles (EVs), which include exosomes and microvesicles, have attracted significant interest in cardiovascular pathophysiology due to their intrinsic properties. Indeed, EVs by transferring their cargo, which contains miRNA, DNA, proteins and lipids, were found effective in preventive and regenerative medicine and in protecting the heart against an array of pathological conditions, including myocardial infarction and arrhythmias. EVs can attenuate cellular senescence, inflammation and myocardial injury. Cardiovascular structures may be targeted by circulating EVs derived by extra-cardiac cells and platelets, as well by EVs locally released from all major cardiovascular cell types, including endothelial cells, cardiomyocytes, macrophages and fibroblasts. Yet, EVs of cardiovascular origin can be also transferred to distant tissues by circulation. Therefore, EVs have been proposed not only as promising diagnostic tools (early disease biomarkers), but also as therapeutics. This review focuses on the protective effects exerted by EVs, released by different cell types in the cardiovascular system. Physical exercise is considered as a natural mechanism of EV production involved in preventive medicine. Particular attention will be devoted to describe the impact of EVs in cardioprotection after ischemia/reperfusion injury.
Collapse
|
33
|
Plasma exosomes characterization reveals a perioperative protein signature in older patients undergoing different types of on-pump cardiac surgery. GeroScience 2020; 43:773-789. [PMID: 32691393 PMCID: PMC8110632 DOI: 10.1007/s11357-020-00223-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Although exosomes are extracellular nanovesicles mainly involved in cardioprotection, it is not known whether plasma exosomes of older patients undergoing different types of on-pump cardiac surgery protect cardiomyocytes from apoptosis. Since different exosomal proteins confer pro-survival effects, we have analyzed the protein cargo of exosomes circulating early after aortic unclamping. Plasma exosomes and serum cardiac troponin I levels were measured in older cardiac surgery patients (NYHA II-III) who underwent first-time on-pump coronary artery bypass graft (CABG; n = 15) or minimally invasive heart valve surgery (mitral valve repair, n = 15; aortic valve replacement, n = 15) at induction of anesthesia (T0, baseline), 3 h (T1) and 72 h (T2) after aortic unclamping. Anti-apoptotic role of exosomes was assessed in HL-1 cardiomyocytes exposed to hypoxia/re-oxygenation (H/R) by TUNEL assay. Protein exosomal cargo was characterized by mass spectrometry approach. Exosome levels increased at T1 (P < 0.01) in accord with troponin values in all groups. In CABG group, plasma exosomes further increased at T2 (P < 0.01) whereas troponin levels decreased. In vitro, all T1-exosomes prevented H/R-induced apoptosis. A total of 340 exosomal proteins were identified in all groups, yet 10% of those proteins were unique for each surgery type. In particular, 22 and 12 pro-survival proteins were detected in T1-exosomes of heart valve surgery and CABG patients, respectively. Our results suggest that endogenous intraoperative cardioprotection in older cardiac surgery patients is early mediated by distinct exosomal proteins regardless of surgery type.
Collapse
|
34
|
Advances in Exosomes Derived from Different Cell Sources and Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7298687. [PMID: 32724810 PMCID: PMC7364237 DOI: 10.1155/2020/7298687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Exosomes can reach distant tissues through blood circulation to communicate directly with target cells and rapidly regulate intracellular signals. Exosomes play an important role in cardiovascular pathophysiology. Different exosomes derived from different sources, and their cargos have different mechanisms of action. In addition to being biomarkers, exosomes also have a certain significance in the diagnosis, treatment, and even prevention of cardiovascular diseases. Here, we provide a review of the up-to-date applications of exosomes, derived from various sources, in the prognosis and diagnosis of cardiovascular diseases.
Collapse
|
35
|
Roles and Clinical Applications of Exosomes in Cardiovascular Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5424281. [PMID: 32596327 PMCID: PMC7303764 DOI: 10.1155/2020/5424281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Despite substantial improvements in therapeutic strategies, cardiovascular disease (CVD) is still among the leading causes of mortality and morbidity worldwide. Exosomes, extracellular vesicles with a lipid bilayer membrane of endosomal origin, have been the focus of a large body of research in CVD. Exosomes not only serve as carriers for signal molecules responsible for intercellular and interorgan communication underlying CVD pathophysiology but also are bioactive agents which are partly responsible for the therapeutic effect of stem cell therapy of CVD. We here review recent insights gained into the role of exosomes in apoptosis, hypertrophy, angiogenesis, fibrosis, and inflammation in CVD pathophysiology and progression and the application and mechanisms of exosomes as therapeutic agents for CVD.
Collapse
|
36
|
Wei J, Hollabaugh C, Miller J, Geiger PC, Flynn BC. Molecular Cardioprotection and the Role of Exosomes: The Future Is Not Far Away. J Cardiothorac Vasc Anesth 2020; 35:780-785. [PMID: 32571657 DOI: 10.1053/j.jvca.2020.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/20/2023]
Abstract
Heart disease is the leading cause of death in men and women in the United States. During the past several decades, research into the role of specific intracellular mediators, called exosomes, has advanced the understanding of molecular cardioprotection. Exosomes and the micro-RNAs within them may be potential targets for the development of genetically engineered or biosimilar medications for patients in heart failure or with ischemic cardiac disease. This review discusses anesthetic implications of exosome production and the future micro-RNA applications for cardioprotection.
Collapse
Affiliation(s)
- Johnny Wei
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS
| | | | - Joshua Miller
- University of Kansas Medical Center, Kansas City, KS
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Brigid C Flynn
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|