1
|
Fernández-Blanco C, Pereira A, Veiga MC, Kennes C, Ganigué R. Comprehensive comparative study on n-caproate production by Clostridium kluyveri: batch vs. continuous operation modes. BIORESOURCE TECHNOLOGY 2024; 408:131138. [PMID: 39043275 DOI: 10.1016/j.biortech.2024.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Recently, there has been notable interest in researching and industrially producing medium-chain carboxylic acids (MCCAs) like n-caproate and n-caprylate via chain elongation process. This study presents a comprehensive assessment of the behavior and MCCA production profiles of Clostridium kluyveri in batch and continuous modes, at different ethanol:acetate molar ratios (1.5:1, 3.5:1 and 5.5:1). The highest n-caproate concentration, 12.9 ± 0.67 g/L (92.9 ± 1.39 % MCCA selectivity), was achieved in batch mode at a 3.5:1 ratio. Interestingly, higher ratios favored batch mode selectivity over continuous mode when this was equal or higher to 3.5:1. Steady state operation yielded the highest n-caproate (9.5 ± 0.13 g/L) and n-caprylate (0.35 ± 0.020 g/L) concentrations at the 3.5:1 ratio. Increased ethanol:acetate ratios led to a higher excessive ethanol oxidation (EEO) in both operational modes, potentially limiting n-caproate production and selectivity, especially at the 5.5:1 ratio. Overall, this study reports the efficient MCCA production of both batch and continuous modes by C. kluyveri.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Alexandra Pereira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, Ghent 9052, Belgium
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, Ghent 9052, Belgium.
| |
Collapse
|
2
|
Villegas-Rodríguez SB, Arreola-Vargas J, Buitrón G. Influence of pH and temperature on the performance and microbial community during the production of medium-chain carboxylic acids using winery effluents as substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33103-5. [PMID: 38558339 DOI: 10.1007/s11356-024-33103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Winery effluents containing high ethanol concentrations and diverse organic matter are ideal substrates for producing medium-chain carboxylic acids via fermentation and chain elongation. However, the process needs to be better understood. This study presents novel insights into the bioconversion mechanisms of medium-chain carboxylic acids by correlating fermentation and chain elongation kinetic profiles with the study of microbial communities at different pH (5 to 7) conditions and temperatures (30 to 40 °C). It was found that high productivities of MCCA were obtained using a native culture and winery effluents as a natural substrate. Minor pH variations significantly affected the metabolic pathway of the microorganisms for MCCA production. The maximal productivities of hexanoic (715 mg/L/d) and octanoic (350 mg/L/d) acids were found at pH 6 and 35 °C. Results evidence that the presence of Clostridium, Bacteroides, and Negativicutes promotes the high productions of MCCA. The formation of heptanoic acid was favor when Mogibacterium and Burkholderia were present.
Collapse
Affiliation(s)
- Sharon B Villegas-Rodríguez
- Laboratory for Research On Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Queretaro, Mexico
| | - Jorge Arreola-Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Germán Buitrón
- Laboratory for Research On Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Queretaro, Mexico.
| |
Collapse
|
3
|
Candry P, Flinkstrom Z, Henriikka Winkler MK. Wetlands harbor lactic acid-driven chain elongators. Microbiol Spectr 2024; 12:e0210523. [PMID: 38084977 PMCID: PMC10783096 DOI: 10.1128/spectrum.02105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Wetlands are globally significant carbon cycling hotspots that both sequester large amounts of CO2 as soil carbon as well as emit a third of all CH4 globally. Their outsized role in the global carbon cycle makes it critical to understand microbial processes contributing to carbon breakdown and storage in these ecosystems. Here, we confirm the presence of chain-elongating organisms in freshwater wetland soils. These organisms take small carbon compounds formed during the breakdown of biomass and turn them into larger compounds (six to eight carbon organic acids) that may potentially contribute to the formation of soil organic matter and long-term carbon storage. Moreover, we find that these chain-elongating organisms may be widely distributed in wetlands globally. Future work should identify these organisms' contribution to carbon cycling in wetlands and the potential role of the products they form in carbon sequestration in wetlands.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Zachary Flinkstrom
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
4
|
Camargo FP, Sakamoto IK, Delforno TP, Midoux C, Duarte ICS, Silva EL, Bize A, Varesche MBA. Microbial and functional characterization of granulated sludge from full-scale UASB thermophilic reactor applied to sugarcane vinasse treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:3141-3160. [PMID: 35298346 DOI: 10.1080/09593330.2022.2052361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Considering the scarcity of data in the literature regarding phylogenetic and metabolic composition of different inocula, especially those from thermophilic conditions, this research aimed at characterizing the microbial community and preferable metabolic pathways of an UASB reactor sludge applied to the thermophilic treatment (55°C) of sugarcane vinasse, by means of shotgun metagenomics. After its metabolic potential was depicted, it was possible to observe several genes encoding enzymes that are of great importance to anaerobic digestion processes with different wastes as substrate, especially regarding the biodegradation of carbohydrates and ligninolytic compounds, glycerolypids, volatile fatty acids and alcohols metabolism and biogas (H2 and CH4) production. The genera identified in higher relative abundances for Bacteria domain were Sulfirimonas (37.52 ± 1.8%), possibly related to the sludge endogenic activity due to its strong relation with a peptidoglycan lyase enzymes family, followed by Fluviicola (5.01 ± 1.0%), Defluviitoga (4.36 ± 0.2%), Coprothermobacter (4.32 ± 0.5%), Fervidobacterium (2.93 ± 0.3%), Marinospirillum (2.75 ± 0.2%), Pseudomonas (2.14 ± 0.2%) and Flavobacterium (1.78 ± 0.1%), mostly related with carbohydrates fermentations and/or H2 production. For Archaea domain, Methanosarcina (0.61 ± 0.1%), Methanothermobacter (0.38 ± 0.0%), Methanoculleus (0.30 ± 0.1%), Thermococcus (0.03 ± 0.0%), Methanolobus (0.02 ± 1.8%), Methanobacterium (0.013 ± 0.0%), Aciduliprofundum and Pyrococcus (0.01 ± 0.0%) were the most dominant ones, being Methanosarcina the most related with methanogenesis. It was concluded that the robust inoculum description performed in this study may subside future biotechnological researches by using similar inocula (UASB sludges), focusing on the obtainment of value-added by-products by means of anaerobic digestion, such as volatile fatty acids, alcohols and biogas (H2 and CH4), by using several types of waste as substrate.
Collapse
Affiliation(s)
- Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | | | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement (PROSE), Antony, France
| | | | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos (UFSCar) São Carlos, Brazil
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement (PROSE), Antony, France
| | | |
Collapse
|
5
|
Fuchs W, Rachbauer L, Rittmann SKMR, Bochmann G, Ribitsch D, Steger F. Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms 2023; 11:1514. [PMID: 37375016 DOI: 10.3390/microorganisms11061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.
Collapse
Affiliation(s)
- Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Lydia Rachbauer
- Lawrence Berkeley National Laboratory, Deconstruction Division at the Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria
| | - Günther Bochmann
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Franziska Steger
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
6
|
Parera Olm I, Sousa DZ. Upgrading dilute ethanol to odd-chain carboxylic acids by a synthetic co-culture of Anaerotignum neopropionicum and Clostridium kluyveri. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:83. [PMID: 37194097 DOI: 10.1186/s13068-023-02336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Dilute ethanol streams generated during fermentation of biomass or syngas can be used as feedstocks for the production of higher value products. In this study, we describe a novel synthetic microbial co-culture that can effectively upgrade dilute ethanol streams to odd-chain carboxylic acids (OCCAs), specifically valerate and heptanoate. The co-culture consists of two strict anaerobic microorganisms: Anaerotignum neopropionicum, a propionigenic bacterium that ferments ethanol, and Clostridium kluyveri, well-known for its chain-elongating metabolism. In this co-culture, A. neopropionicum grows on ethanol and CO2 producing propionate and acetate, which are then utilised by C. kluyveri for chain elongation with ethanol as the electron donor. RESULTS A co-culture of A. neopropionicum and C. kluyveri was established in serum bottles with 50 mM ethanol, leading to the production of valerate (5.4 ± 0.1 mM) as main product of ethanol-driven chain elongation. In a continuous bioreactor supplied with 3.1 g ethanol L-1 d-1, the co-culture exhibited high ethanol conversion (96.6%) and produced 25% (mol/mol) valerate, with a steady-state concentration of 8.5 mM and a rate of 5.7 mmol L-1 d-1. In addition, up to 6.5 mM heptanoate was produced at a rate of 2.9 mmol L-1 d-1. Batch experiments were also conducted to study the individual growth of the two strains on ethanol. A. neopropionicum showed the highest growth rate when cultured with 50 mM ethanol (μmax = 0.103 ± 0.003 h-1) and tolerated ethanol concentrations of up to 300 mM. Cultivation experiments with C. kluyveri showed that propionate and acetate were used simultaneously for chain elongation. However, growth on propionate alone (50 mM and 100 mM) led to a 1.8-fold reduction in growth rate compared to growth on acetate. Our results also revealed sub-optimal substrate use by C. kluyveri during odd-chain elongation, where excessive ethanol was oxidised to acetate. CONCLUSIONS This study highlights the potential of synthetic co-cultivation in chain elongation processes to target the production of OCCAs. Furthermore, our findings shed light on to the metabolism of odd-chain elongation by C. kluyveri.
Collapse
Affiliation(s)
- Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
7
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: Towards sustainable biofuels and platform chemicals synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159333. [PMID: 36220479 DOI: 10.1016/j.scitotenv.2022.159333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic materials (LCM) have garnered attention as feedstocks for second-generation biofuels and platform chemicals. With an estimated annual production of nearly 200 billion tons, LCM represent an abundant source of clean, renewable, and sustainable carbon that can be funneled to numerous biofuels and platform chemicals by sustainable microbial bioprocessing. However, the low bioavailability of LCM due to the recalcitrant nature of plant cell components, the complexity and compositional heterogeneity of LCM monomers, and the limited metabolic flexibility of wild-type product-forming microorganisms to simultaneously utilize various LCM monomers are major roadblocks. Several innovative strategies have been proposed recently to counter these issues and expedite the widespread commercialization of biorefineries using LCM as feedstocks. Herein, we critically summarize the recent advances in the biological valorization of LCM to value-added products. The review focuses on the progress achieved in the development of strategies that boost efficiency indicators such as yield and selectivity, minimize carbon losses via integrated biorefinery concepts, facilitate carbon co-metabolism and carbon-flux redirection towards targeted products using recently engineered microorganisms, and address specific product-related challenges, to provide perspectives on future research needs and developments. The strategies and views presented here could guide future studies in developing feasible and economically sustainable LCM-based biorefineries as a crucial node in achieving carbon neutrality.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
8
|
Winkelhorst M, Cabau-Peinado O, Straathof AJ, Jourdin L. Biomass-specific rates as key performance indicators: A nitrogen balancing method for biofilm-based electrochemical conversion. Front Bioeng Biotechnol 2023; 11:1096086. [PMID: 36741763 PMCID: PMC9892193 DOI: 10.3389/fbioe.2023.1096086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Microbial electrochemical technologies (METs) employ microorganisms utilizing solid-state electrodes as either electron sink or electron source, such as in microbial electrosynthesis (MES). METs reaction rate is traditionally normalized to the electrode dimensions or to the electrolyte volume, but should also be normalized to biomass amount present in the system at any given time. In biofilm-based systems, a major challenge is to determine the biomass amount in a non-destructive manner, especially in systems operated in continuous mode and using 3D electrodes. We developed a simple method using a nitrogen balance and optical density to determine the amount of microorganisms in biofilm and in suspension at any given time. For four MES reactors converting CO2 to carboxylates, >99% of the biomass was present as biofilm after 69 days of reactor operation. After a lag phase, the biomass-specific growth rate had increased to 0.12-0.16 days-1. After 100 days of operation, growth became insignificant. Biomass-specific production rates of carboxylates varied between 0.08-0.37 molC molX -1d-1. Using biomass-specific rates, one can more effectively assess the performance of MES, identify its limitations, and compare it to other fermentation technologies.
Collapse
|
9
|
Fu B, Lu Y, Liu H, Zhang X, Ozgun H, Ersahin ME, Liu H. One-stage anaerobic fermentation of excess sludge for caproate production by supplementing chain elongation enrichments with ethanol as electron donor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116723. [PMID: 36403461 DOI: 10.1016/j.jenvman.2022.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Medium chain fatty acids (MCFAs) production from excess sludge have recently received great research interest due to higher energy densities, easy-separation capability and high economic benefits. Here, the addition of chain elongation (CE) enrichments with ethanol as electron donor was used to enhance caproate production from one-stage sludge fermentation. Compared with 0.20 g/L of controls, caproate production reached 9.00 g/L by supplementing CE enrichments with ethanol/acetate ratio of 3:1 after 7 days of acidification of organic matter in pretreated sludge fermentation. Clostridium_sensu_stricto_12, that refers to CE, was enriched in the first and second transfer of the sludge microbial consortium. Maintaining the stability of the microbial consortium would be the key that enables stable and efficient caproate production from sludge fermentation by supplementing CE enrichments.
Collapse
Affiliation(s)
- Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Yujie Lu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Xuedong Zhang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - He Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China.
| |
Collapse
|
10
|
Strik DPBTB, Ganigué R, Angenent LT. Editorial: Microbial Chain Elongation- Close the Carbon Loop by Connecting-Communities. Front Bioeng Biotechnol 2022; 10:894490. [PMID: 35880097 PMCID: PMC9307487 DOI: 10.3389/fbioe.2022.894490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- David P. B. T. B. Strik
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: David P. B. T. B. Strik,
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| | - Largus T. Angenent
- Environmental Biotechnology Group, Center of Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Calvo DC, Luna HJ, Arango JA, Torres CI, Rittmann BE. Determining global trends in syngas fermentation research through a bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114522. [PMID: 35066199 DOI: 10.1016/j.jenvman.2022.114522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Syngas fermentation, in which microorganisms convert H2, CO, and CO2 to acids and alcohols, is a promising alternative for carbon cycling and valorization. The intellectual landscape of the topic was characterized through a bibliometric analysis using a search query (SQ) that included all relevant documents on syngas fermentation available through the Web of Science database up to December 31st, 2021. The SQ was validated with a preliminary analysis in bibliometrix and a review of titles and abstracts of all sources. Although syngas fermentation began in the early 1980s, it grew rapidly beginning in 2008, with 92.5% of total publications and 87.3% of total citations from 2008 to 2021. The field has been steadily moving from fundamentals towards applications, suggesting that the field is maturing scientifically. The greatest number of publications and citations are from the USA, and researchers in China, Germany, and Spain also are highly active. Although collaborations have increased in the past few years, author-cluster analysis shows specialized research domains with little collaboration between groups. Based on topic trends, the main challenges to be address are related to mass-transfer limitations, and researchers are starting to explore mixed cultures, genetic engineering, microbial chain elongation, and biorefineries.
Collapse
Affiliation(s)
- Diana C Calvo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Hector J Luna
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia; Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus University, Campus Universitario, Brazil
| | - Jineth A Arango
- Pontificia Universidad Católica de Valparaíso, Valparaíso, 2362803, Chile.
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| |
Collapse
|
12
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
13
|
Robles A, Yellowman TL, Joshi S, Mohana Rangan S, Delgado AG. Microbial Chain Elongation and Subsequent Fermentation of Elongated Carboxylates as H 2-Producing Processes for Sustained Reductive Dechlorination of Chlorinated Ethenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10398-10410. [PMID: 34283573 DOI: 10.1021/acs.est.1c01319] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In situ anaerobic groundwater bioremediation of trichloroethene (TCE) to nontoxic ethene is contingent on organohalide-respiring Dehalococcoidia, the most common strictly hydrogenotrophic Dehalococcoides mccartyi (D. mccartyi). The H2 requirement for D. mccartyi is fulfilled by adding various organic substrates (e.g., lactate, emulsified vegetable oil, and glucose/molasses), which require fermenting microorganisms to convert them to H2. The net flux of H2 is a crucial controlling parameter in the efficacy of bioremediation. H2 consumption by competing microorganisms (e.g., methanogens and homoacetogens) can diminish the rates of reductive dechlorination or stall the process altogether. Furthermore, some fermentation pathways do not produce H2 or having H2 as a product is not always thermodynamically favorable under environmental conditions. Here, we report on a novel application of microbial chain elongation as a H2-producing process for reductive dechlorination. In soil microcosms bioaugmented with dechlorinating and chain-elongating enrichment cultures, near stoichiometric conversion of TCE (0.07 ± 0.01, 0.60 ± 0.03, and 1.50 ± 0.20 mmol L-1 added sequentially) to ethene was achieved when initially stimulated by chain elongation of acetate and ethanol. Chain elongation initiated reductive dechlorination by liberating H2 in the conversion of acetate and ethanol to butyrate and caproate. Syntrophic fermentation of butyrate, a chain-elongation product, to H2 and acetate further sustained the reductive dechlorination activity. Methanogenesis was limited during TCE dechlorination in soil microcosms and absent in transfer cultures fed with chain-elongation substrates. This study provides critical fundamental knowledge toward the feasibility of chlorinated solvent bioremediation based on microbial chain elongation.
Collapse
Affiliation(s)
- Aide Robles
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, Arizona 85281, United States
| | - Theodora L Yellowman
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, Arizona 85281, United States
| | - Sayalee Joshi
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, Arizona 85281, United States
| | - Srivatsan Mohana Rangan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, Arizona 85281, United States
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
14
|
Ibrahim M, Raajaraam L, Raman K. Modelling microbial communities: Harnessing consortia for biotechnological applications. Comput Struct Biotechnol J 2021; 19:3892-3907. [PMID: 34584635 PMCID: PMC8441623 DOI: 10.1016/j.csbj.2021.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes propagate and thrive in complex communities, and there are many benefits to studying and engineering microbial communities instead of single strains. Microbial communities are being increasingly leveraged in biotechnological applications, as they present significant advantages such as the division of labour and improved substrate utilisation. Nevertheless, they also present some interesting challenges to surmount for the design of efficient biotechnological processes. In this review, we discuss key principles of microbial interactions, followed by a deep dive into genome-scale metabolic models, focussing on a vast repertoire of constraint-based modelling methods that enable us to characterise and understand the metabolic capabilities of microbial communities. Complementary approaches to model microbial communities, such as those based on graph theory, are also briefly discussed. Taken together, these methods provide rich insights into the interactions between microbes and how they influence microbial community productivity. We finally overview approaches that allow us to generate and test numerous synthetic community compositions, followed by tools and methodologies that can predict effective genetic interventions to further improve the productivity of communities. With impending advancements in high-throughput omics of microbial communities, the stage is set for the rapid expansion of microbial community engineering, with a significant impact on biotechnological processes.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Lavanya Raajaraam
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| |
Collapse
|
15
|
Joshi S, Robles A, Aguiar S, Delgado AG. The occurrence and ecology of microbial chain elongation of carboxylates in soils. THE ISME JOURNAL 2021; 15:1907-1918. [PMID: 33558687 PMCID: PMC8245554 DOI: 10.1038/s41396-021-00893-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Chain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.
Collapse
Affiliation(s)
- Sayalee Joshi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Aide Robles
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, Tempe, AZ, USA
| | - Samuel Aguiar
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anca G Delgado
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
- Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
16
|
Allaart MT, Stouten GR, Sousa DZ, Kleerebezem R. Product Inhibition and pH Affect Stoichiometry and Kinetics of Chain Elongating Microbial Communities in Sequencing Batch Bioreactors. Front Bioeng Biotechnol 2021; 9:693030. [PMID: 34235138 PMCID: PMC8256265 DOI: 10.3389/fbioe.2021.693030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic microbial communities can produce carboxylic acids of medium chain length (e.g., caproate, caprylate) by elongating short chain fatty acids through reversed β-oxidation. Ethanol is a common electron donor for this process. The influence of environmental conditions on the stoichiometry and kinetics of ethanol-based chain elongation remains elusive. Here, a sequencing batch bioreactor setup with high-resolution off-gas measurements was used to identify the physiological characteristics of chain elongating microbial communities enriched on acetate and ethanol at pH 7.0 ± 0.2 and 5.5 ± 0.2. Operation at both pH-values led to the development of communities that were highly enriched (>50%, based on 16S rRNA gene amplicon sequencing) in Clostridium kluyveri related species. At both pH-values, stably performing cultures were characterized by incomplete substrate conversion and decreasing biomass-specific hydrogen production rates during an operational cycle. The process stoichiometries obtained at both pH-values were different: at pH 7.0, 71 ± 6% of the consumed electrons were converted to caproate, compared to only 30 ± 5% at pH 5.5. Operating at pH 5.5 led to a decrease in the biomass yield, but a significant increase in the biomass-specific substrate uptake rate, suggesting that the organisms employ catabolic overcapacity to deal with energy losses associated to product inhibition. These results highlight that chain elongating conversions rely on a delicate balance between substrate uptake- and product inhibition kinetics.
Collapse
Affiliation(s)
| | | | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
17
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:80-89. [PMID: 33932853 DOI: 10.1016/j.wasman.2021.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Coma
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David J Leak
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
18
|
Candry P, Ganigué R. Chain elongators, friends, and foes. Curr Opin Biotechnol 2021; 67:99-110. [PMID: 33529974 DOI: 10.1016/j.copbio.2021.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Bioproduction of medium chain carboxylic acids has recently emerged as an alternative strategy to valorize low-value organic waste and side-streams. Key to this route is chain elongation, an anaerobic microbial process driven by ethanol, lactic acid, or carbohydrates. Because these technologies use wastes as feedstocks, mixed microbial communities are often considered as biocatalysts. Understanding and steering these microbiomes is key to optimize bioprocess performance. From a meta-analysis of publicly available sequencing data, we (i) explore how the current collection of isolated chain elongators compares to microbiome members, (ii) discuss the main beneficial and antagonistic interactions with community partners, and (iii) identify the key research gaps and needs to help understand chain elongation microbiomes, and design/steer these novel bioproduction processes.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, USA
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Candry P, Ulcar B, Petrognani C, Rabaey K, Ganigué R. Ethanol:propionate ratio drives product selectivity in odd-chain elongation with Clostridium kluyveri and mixed communities. BIORESOURCE TECHNOLOGY 2020; 313:123651. [PMID: 32540193 DOI: 10.1016/j.biortech.2020.123651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Microbial production of valerate, a five-carbon carboxylate, can occur from propionate and ethanol through a process called odd-chain elongation. The generation of even-chain compounds in this process lowers product selectivity, forming a key challenge. This study investigated factors determining product selectivity during odd-chain elongation in an odd-chain elongating mixed community and the pure culture Clostridium kluyveri DSM555. Incubations at different ratios of ethanol:propionate showed that increasing ratios (from 0.5 to 7) lowered product specificity, as evidenced by a decrease in the odd:even product ratio from 5.5 to 1.5 for C. kluyveri and from 15 to 0.8 for the mixed community. The consistency of these observations with literature data suggests that control of ethanol:propionate ratio offers a robust tool for process control in odd-chain elongation, while the flexible metabolism can also have implications for efficient use of ethanol during even-chain elongation processes.
Collapse
Affiliation(s)
- Pieter Candry
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium
| | - Barbara Ulcar
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium
| | - Camille Petrognani
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|