1
|
Li W, Liu Z, Song M, Shi Z, Zhang J, Zhou J, Liu Y, Qiao Y, Liu D. Mechanism of Yi-Qi-Bu-Shen Recipe for the Treatment of Diabetic Nephropathy Complicated with Cognitive Dysfunction Based on Network Pharmacology and Experimental Validation. Diabetes Metab Syndr Obes 2024; 17:3943-3963. [PMID: 39465123 PMCID: PMC11512782 DOI: 10.2147/dmso.s481740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
Context Diabetic nephropathy (DN) and cognitive dysfunction (CD) are common complications of diabetes. Yi-Qi-Bu-Shen Recipe (YQBS) can effectively reduce blood glucose, improve insulin resistance, and delay the progression of diabetic complications. The underlying mechanisms of its effects need to be further studied. Objective This study elucidates the mechanism of YQBS in DN with CD through network pharmacology and experimental validation. Materials and Methods Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Male Sprague-Dawley (SD) rats were divided into 6 groups: model, YQBS (2, 4, 8 g/kg), positive control (metformin, 200 mg/kg), and control; the DN model was established by high sugar and high fat diet combined with intraperitoneal streptozotocin injection. After the DN model was established, the rats were gavaged for 10 weeks. Serum, kidneys, and hippocampus tissues were collected to measure the expression levels of TLR4, NF-κB, TNF-α, and IL-6. Results The network pharmacology analysis showed that quercetin and kaempferol were the main active components of YQBS. TNF and IL-6 were the key targets, and TLR4/NF-κB pathway was crucial to YQBS in treating DN complicated with CD. Experimental validation showed that the intervention of YQBS can reduce TNF-α and IL-6 in serum, and also significantly decreases the protein expression of TLR4 and NF-κB. Conclusion YQBS exerts anti-inflammatory effects on DN with CD through TLR4/NF-κB pathway. This study provides a biological basis for the scientific usage of YQBS in inflammation diseases and supplies experimental evidence for future traditional Chinese medicine development.
Collapse
Affiliation(s)
- Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jihang Zhang
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yidan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
2
|
Garg M, Hejazi S, Fu S, Vassilaki M, Petersen RC, St Sauver J, Sohn S. Characterizing the progression from mild cognitive impairment to dementia: a network analysis of longitudinal clinical visits. BMC Med Inform Decis Mak 2024; 24:305. [PMID: 39425117 PMCID: PMC11488361 DOI: 10.1186/s12911-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND With the recent surge in the utilization of electronic health records for cognitive decline, the research community has turned its attention to conducting fine-grained analyses of dementia onset using advanced techniques. Previous works have mostly focused on machine learning-based prediction of dementia, lacking the analysis of dementia progression and its associations with risk factors over time. The black box nature of machine learning models has also raised concerns regarding their uncertainty and safety in decision making, particularly in sensitive domains like healthcare. OBJECTIVE We aimed to characterize the progression of health conditions, such as chronic diseases and neuropsychiatric symptoms, of the participants in Mayo Clinic Study of Aging (MCSA) from initial mild cognitive impairment (MCI) diagnosis to dementia onset through network analysis. METHODS We used the data from the MCSA, a prospective population-based cohort study of cognitive aging, and examined the changing association among variables (i.e., participants' health conditions) from the first visit of MCI diagnosis to the visit of dementia onset using network analysis. The number of participants for this study are 97 with the number of visits ranging from 2 visits (30 months) to 7 visits (105 months). We identified the network communities among variables from three-fold collection of instances: (i) the first MCI diagnosis, (ii) progression to dementia, and (iii) dementia diagnosis. We determine the variables that play a significant role in the dementia onset, aiming to identify and prioritize specific variables that prominently contribute towards developing dementia. In addition, we explore the sex-specific impact of variables in relation to dementia, aiming to investigate potential differences in the influence of certain variables on dementia onset between males and females. RESULTS We found correlation among certain variables, such as neuropsychiatric symptoms and chronic conditions, throughout the progression from MCI to dementia. Our findings, based on patterns and changing variables within specific communities, reveal notable insights about the time-lapse before dementia sets in, and the significance of progression of correlated variables contributing towards dementia onset. We also observed more changes due to certain variables, such as cognitive and functional scores, in the network communities for the people who progressed to dementia compared to those who does not. Most changes for sex-specific analysis are observed in clinical dementia rating and functional activities questionnaire during MCI onset are followed by chronic diseases, and then by NPI-Q scores. CONCLUSIONS Network analysis has shown promising potential to capture significant longitudinal changes in health conditions, spanning from the MCI diagnosis to dementia progression. It can serve as a valuable analytic approach for monitoring the health status of individuals in cognitive impairment assessment. Furthermore, our findings indicate a notable sex difference in the impact of specific health conditions on the progression of dementia.
Collapse
Affiliation(s)
- Muskan Garg
- Department of Artificial Intelligence & Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Sara Hejazi
- Department of Artificial Intelligence & Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Sunyang Fu
- Department of Artificial Intelligence & Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- University of Texas Health Science Center, Houston, TX, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer St Sauver
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sunghwan Sohn
- Department of Artificial Intelligence & Informatics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Pérez-González AP, García-Kroepfly AL, Pérez-Fuentes KA, García-Reyes RI, Solis-Roldan FF, Alba-González JA, Hernández-Lemus E, de Anda-Jáuregui G. The ROSMAP project: aging and neurodegenerative diseases through omic sciences. Front Neuroinform 2024; 18:1443865. [PMID: 39351424 PMCID: PMC11439699 DOI: 10.3389/fninf.2024.1443865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Alejandra P Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomedicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City, Mexico
- Facultad de Estudios Superiores Iztacala UNAM, Mexico City, Mexico
| | | | | | | | | | | | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Investigadoras e Investigadores por México Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| |
Collapse
|
4
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
5
|
Bai X, Zhao X, Liu K, Yang X, He Q, Gao Y, Li W, Han W. Mulberry Leaf Compounds and Gut Microbiota in Alzheimer's Disease and Diabetes: A Study Using Network Pharmacology, Molecular Dynamics Simulation, and Cellular Assays. Int J Mol Sci 2024; 25:4062. [PMID: 38612872 PMCID: PMC11012793 DOI: 10.3390/ijms25074062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 μM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Xinyi Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.B.); (X.Z.); (K.L.); (X.Y.); (Q.H.); (Y.G.)
| |
Collapse
|
6
|
Maiese K. Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms. Curr Neurovasc Res 2024; 21:229-233. [PMID: 38910427 DOI: 10.2174/1567202621999240621122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
7
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
8
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Sánchez Y, Castillo C, Fuentealba J, Sáez-Orellana F, Burgos CF, López JJ, F de la Torre A, Jiménez CA. New Benzodihydrofuran Derivatives Alter the Amyloid β Peptide Aggregation: Strategies To Develop New Anti-Alzheimer Drugs. ACS Chem Neurosci 2023; 14:2590-2602. [PMID: 37480555 DOI: 10.1021/acschemneuro.2c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder that is the leading cause of dementia in elderly patients. Amyloid-β peptide (1-42 oligomers) has been identified as a neurotoxic factor, triggering many neuropathologic events. In this study, 15 chalcones were synthesized employing the Claisen-Schmidt condensation reaction, starting from a compound derived from fomannoxine, a natural benzodihydrofuran whose neuroprotective activity has been proven and reported, and methyl aromatic ketones with diverse patterns of halogenated substitution. As a result, chalcones were obtained, with good to excellent reaction yields from 50 to 98%. Cytotoxicity of the compounds was assessed, and their cytoprotective effect against the toxicity associated with Aβ was evaluated on PC-12 cells. Out of the 15 chalcones obtained, only the 4-bromo substituted was cytotoxic at most tested concentrations. Three synthesized chalcones showed a cytoprotective effect against Aβ toxicity (over 37%). The 2,4,5-trifluoro substituted chalcone was the most promising series since it showed a cytoprotective impact with more than 60 ± 5% of recovery of cellular viability; however, 3-fluoro substituted compound also exhibited important values of recovery (50 ± 6%). The fluorine substitution pattern was shown to be more effective for cytoprotective activity. Specifically, substitution with fluorine in the 3,5-positions turned out to be particularly effective for cytoprotection. Furthermore, fluorinated compounds inhibited the aggregation rate of Aβ, suggesting a dual effect that can be the starting point of new molecules with therapeutic potential.
Collapse
Affiliation(s)
- Yaíma Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Carolina Castillo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Francisco Sáez-Orellana
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Carlos Felipe Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Jhon J López
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| | - Claudio A Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepcion 4130000, Chile
| |
Collapse
|
10
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
11
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
12
|
Banman A, Sakhanenko NA, Kunert-Graf J, Galas DJ. ApoE Modifier Alleles for Alzheimer's Disease Discovered by Information Theory Dependency Measures: MIST Software Package. J Comput Biol 2023; 30:323-336. [PMID: 36322888 PMCID: PMC9993164 DOI: 10.1089/cmb.2022.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Information theory-based measures of variable dependency (previously published) have been implemented into a software package, MIST. The design of the software and its potential uses are described, and a demonstration is presented in the discovery of modifier alleles of the ApoE gene in affecting Alzheimer's disease (AD) by analyzing the UK Biobank dataset. The modifier genes uncovered overlap strongly with genes found to be associated with AD. Others include many known to influence AD. We discuss a range of uses of the dependency calculations using MIST that can uncover additional genetic effects in similar complex datasets, like higher degrees of interaction and phenotypic pleiotropy.
Collapse
Affiliation(s)
- Andrew Banman
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | | | | | - David J Galas
- Pacific Northwest Research Institute, Seattle, Washington, USA
| |
Collapse
|
13
|
Beadell AV, Zhang Z, Capuano AW, Bennett DA, He C, Zhang W, Arvanitakis Z. Genome-Wide Mapping Implicates 5-Hydroxymethylcytosines in Diabetes Mellitus and Alzheimer's Disease. J Alzheimers Dis 2023; 93:1135-1151. [PMID: 37182870 PMCID: PMC10490934 DOI: 10.3233/jad-221113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is a recognized risk factor for dementia. Because DM is a potentially modifiable condition, greater understanding of the mechanisms linking DM to the clinical expression of Alzheimer's disease dementia may provide insights into much needed dementia therapeutics. OBJECTIVE In this feasibility study, we investigated DM as a dementia risk factor by examining genome-wide distributions of the epigenetic DNA modification 5-hydroxymethylcytosine (5hmC). METHODS We obtained biologic samples from the Rush Memory and Aging Project and used the highly sensitive 5hmC-Seal technique to perform genome-wide profiling of 5hmC in circulating cell-free DNA (cfDNA) from antemortem serum samples and in genomic DNA from postmortem prefrontal cortex brain tissue from 80 individuals across four groups: Alzheimer's disease neuropathologically defined (AD), DM clinically defined, AD with DM, and individuals with neither disease (controls). RESULTS Distinct 5hmC signatures and biological pathways were enriched in persons with both AD and DM versus AD alone, DM alone, or controls, including genes inhibited by EGFR signaling in oligodendroglia and those activated by constitutive RHOA. We also demonstrate the potential diagnostic value of 5hmC profiling in circulating cfDNA. Specifically, an 11-gene weighted model distinguished AD from non-AD/non-DM controls (AUC = 91.8%; 95% CI, 82.9-100.0%), while a 4-gene model distinguished DM-associated AD from AD alone (AUC = 87.9%; 95% CI, 77.5-98.3%). CONCLUSION We demonstrate in this small sample, the feasibility of detecting and characterizing 5hmC in DM-associated AD and of using 5hmC information contained in circulating cfDNA to detect AD in high-risk individuals, such as those with diabetes.
Collapse
Affiliation(s)
- Alana V Beadell
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
15
|
Clark C, Rabl M, Dayon L, Popp J. The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease. Front Aging Neurosci 2022; 14:1065904. [PMID: 36570537 PMCID: PMC9768448 DOI: 10.3389/fnagi.2022.1065904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,*Correspondence: Christopher Clark,
| | - Miriam Rabl
- Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Singh DD, Shati AA, Alfaifi MY, Elbehairi SEI, Han I, Choi EH, Yadav DK. Development of Dementia in Type 2 Diabetes Patients: Mechanisms of Insulin Resistance and Antidiabetic Drug Development. Cells 2022; 11:cells11233767. [PMID: 36497027 PMCID: PMC9738282 DOI: 10.3390/cells11233767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Dementia is reported to be common in those with type 2 diabetes mellitus. Type 2 diabetes contributes to common molecular mechanisms and an underlying pathology with dementia. Brain cells becoming resistant to insulin leads to elevated blood glucose levels, impaired synaptic plasticity, microglial overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient deprivation, TAU (Tubulin-Associated Unit) phosphorylation, and cholinergic dysfunction. If insulin has neuroprotective properties, insulin resistance may interfere with those properties. Risk factors have a significant impact on the development of diseases, such as diabetes, obesity, stroke, and other conditions. Analysis of risk factors of importance for the association between diabetes and dementia is important because they may impede clinical management and early diagnosis. We discuss the pathological and physiological mechanisms behind the association between Type 2 diabetes mellitus and dementia, such as insulin resistance, insulin signaling, and sporadic forms of dementia; the relationship between insulin receptor activation and TAU phosphorylation; dementia and mRNA expression and downregulation of related receptors; neural modulation due to insulin secretion and glucose homeostasis; and neuronal apoptosis due to insulin resistance and Type 2 diabetes mellitus. Addressing these factors will offer clinical outcome-based insights into the mechanisms and connection between patients with type 2 diabetes and cognitive impairment. Furthermore, we will explore the role of brain insulin resistance and evidence for anti-diabetic drugs in the prevention of dementia risk in type 2 diabetes.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | | | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (E.-H.C.); (D.K.Y.); Tel.: +82-32-820-4947 (D.K.Y.)
| | - Dharmendra K. Yadav
- Department of Pharmacy, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Gachon University, Incheon 21924, Republic of Korea
- Correspondence: (E.-H.C.); (D.K.Y.); Tel.: +82-32-820-4947 (D.K.Y.)
| |
Collapse
|
17
|
Lee BC, Choe YM, Suh GH, Choi IG, Lee JH, Kim HS, Hwang J, Yi D, Kim JW. A combination of midlife diabetes mellitus and the apolipoprotein E ε4 allele increase risk for cognitive decline. Front Aging Neurosci 2022; 14:1065117. [PMID: 36466611 PMCID: PMC9715424 DOI: 10.3389/fnagi.2022.1065117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND It has been suggested that diabetes mellitus (DM) and the apolipoprotein E (APOE) ε4 allele (APOE4) increase the risk for Alzheimer's disease (AD) and cognitive decline. However, the evidence is sparse. We explored whether APOE4 status modulated the effects of midlife and late-life DM on global cognition of non-demented older adults. METHODS In all, 176 non-demented adults (age 65-90 years) were enrolled. All the participants underwent comprehensive clinical assessments including midlife and late-life DM evaluation and APOE genotyping. The global cognitive performance index was assessed by the total score (TS) of the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery. RESULTS We found a significant midlife DM × APOE4 interaction effect on the global cognitive performance. Subgroup analyses indicated that an association between midlife DM and decreased global cognitive performance was apparent only in older adults who were APOE4-positive, and not in those with APOE4-negative. CONCLUSION Our findings from non-demented older adults suggest that midlife DM increases the risk for AD and cognitive decline, and this risk is modulated by APOE4 status. To prevent AD and cognitive decline, physicians should check for the possible coexistence of midlife DM and APOE4-positive status.
Collapse
Affiliation(s)
- Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Young Min Choe
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Guk-Hee Suh
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Psychiatry, Seoul W Psychiatric Office, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jee Wook Kim
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| |
Collapse
|
18
|
Li Z, Li S, Xiao Y, Zhong T, Yu X, Wang L. Nutritional intervention for diabetes mellitus with Alzheimer's disease. Front Nutr 2022; 9:1046726. [DOI: 10.3389/fnut.2022.1046726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The combined disease burden of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing, and the two diseases share some common pathological changes. However, the pharmacotherapeutic approach to this clinical complexity is limited to symptomatic rather than disease-arresting, with the possible exception of metformin. Whether nutritional intervention might extend or synergize with these effects of metformin is of interest. In particular, dietary patterns with an emphasis on dietary diversity shown to affect cognitive function are of growing interest in a range of food cultural settings. This paper presents the association between diabetes and AD. In addition, the cross-cultural nutritional intervention programs with the potential to mitigate both insulin resistance (IR) and hyperglycemia, together with cognitive impairment are also reviewed. Both dietary patterns and nutritional supplementation showed the effects of improving glycemic control and reducing cognitive decline in diabetes associated with AD, but the intervention specificity remained controversial. Multi-nutrient supplements combined with diverse diets may have preventive and therapeutic potential for DM combined with AD, at least as related to the B vitamin group and folate-dependent homocysteine (Hcy). The nutritional intervention has promise in the prevention and management of DM and AD comorbidities, and more clinical studies would be of nutritional scientific merit.
Collapse
|
19
|
Hou Y, Wei W, Li G, Sang N. Prenatal PM 2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114151. [PMID: 36228359 DOI: 10.1016/j.ecoenv.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The epidemiological evidence has linked prenatal exposure to fine particulate matter (PM2.5) pollution with neurological diseases in offspring. However, the biological process and toxicological mechanisms remain unclear. Tau protein is a neuronal microtubule-associated protein expressed in fetal brain and plays a critical role in mediating neuronal development. Aberrant expression of tau is associated with adverse neurodevelopmental outcomes. To study whether prenatal exposure to PM2.5 pollution induce tau lesion in mice offspring and elucidate the underlying pathogenic mechanism, we exposed pregnant mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day. The results indicate that prenatal PM2.5 exposure induced hyperphosphorylation of tau in the cortex of postnatal male offspring, which was accompanied by insulin resistance through the IRS-1/PI3K/AKT signaling pathway. Importantly, we further found that prenatal PM2.5 exposure induced mitochondrial dysfunction by disrupting mitochondrial ultrastructure and decreasing the expression of rate-limiting enzymes (CS, IDH2 and FH) in the Krebs cycle and the subunits of mitochondrial complex IV and V (CO1, CO4, ATP6, and ATP8) during postnatal neurodevelopment. The findings suggest that prenatal PM2.5 exposure could induce tauopathy-like changes in male offspring, in which mitochondrial dysfunction-induced insulin resistance might play an important role.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
20
|
Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022; 12:18332. [PMID: 36316461 PMCID: PMC9622874 DOI: 10.1038/s41598-022-22822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.
Collapse
|
21
|
Li H, Wei M, Ye T, Liu Y, Qi D, Cheng X. Identification of the molecular subgroups in Alzheimer's disease by transcriptomic data. Front Neurol 2022; 13:901179. [PMID: 36204002 PMCID: PMC9530954 DOI: 10.3389/fneur.2022.901179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is a heterogeneous pathological disease with genetic background accompanied by aging. This inconsistency is present among molecular subtypes, which has led to diagnostic ambiguity and failure in drug development. We precisely distinguished patients of AD at the transcriptome level.MethodsWe collected 1,240 AD brain tissue samples collected from the GEO dataset. Consensus clustering was used to identify molecular subtypes, and the clinical characteristics were focused on. To reveal transcriptome differences among subgroups, we certificated specific upregulated genes and annotated the biological function. According to RANK METRIC SCORE in GSEA, TOP10 was defined as the hub gene. In addition, the systematic correlation between the hub gene and “A/T/N” was analyzed. Finally, we used external data sets to verify the diagnostic value of hub genes.ResultsWe identified three molecular subtypes of AD from 743 AD samples, among which subtypes I and III had high-risk factors, and subtype II had protective factors. All three subgroups had higher neuritis plaque density, and subgroups I and III had higher clinical dementia scores and neurofibrillary tangles than subgroup II. Our results confirmed a positive association between neurofibrillary tangles and dementia, but not neuritis plaques. Subgroup I genes clustered in viral infection, hypoxia injury, and angiogenesis. Subgroup II showed heterogeneity in synaptic pathology, and we found several essential beneficial synaptic proteins. Due to presenilin one amplification, Subgroup III was a risk subgroup suspected of familial AD, involving abnormal neurogenic signals, glial cell differentiation, and proliferation. Among the three subgroups, the highest combined diagnostic value of the hub genes were 0.95, 0.92, and 0.83, respectively, indicating that the hub genes had sound typing and diagnostic ability.ConclusionThe transcriptome classification of AD cases played out the pathological heterogeneity of different subgroups. It throws daylight on the personalized diagnosis and treatment of AD.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meiqi Wei
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiduan Liu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaorui Cheng
| |
Collapse
|
22
|
Gungabissoon U, Broadbent M, Perera G, Ashworth M, Galwey N, Stewart R. The Impact of Dementia on Diabetes Control: An Evaluation of HbA 1c Trajectories and Care Outcomes in Linked Primary and Specialist Care Data. J Am Med Dir Assoc 2022; 23:1555-1563.e4. [PMID: 35661655 DOI: 10.1016/j.jamda.2022.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Diabetes self-care may become increasingly challenging as cognition declines. We sought to characterize glycated hemoglobin A1c (HbA1c) trajectories, markers of diabetes-related management, health care utilization, and mortality in people with preexisting type 2 diabetes (T2D) with and without dementia and based on the extent of cognitive impairment at the time of dementia diagnosis. DESIGN Retrospective matched cohort study. SETTING AND PARTICIPANTS Using a linkage between a primary care (Lambeth DataNet) and a secondary mental healthcare database, up to 5 individuals aged ≥65 y with preexisting T2D without dementia were matched to each individual with dementia based on age, sex, and general practice. METHODS Comparisons were made for HbA1c trajectories (linear mixed effects models), markers of diabetes-related management and severity at dementia diagnosis (logistic regression), mortality (Cox regression), and health care utilization (multilevel mixed effects binomial regression). RESULTS In 725 incident dementia and 3154 matched comparators, HbA1c trajectories differed by dementia status; HbA1c increased over time for mild dementia and non-dementia, but the increase was greater in the mild dementia group; for those with moderate-severe dementia, HbA1c decreased over time. Despite individuals with dementia having increased health care utilization around the time of dementia diagnosis, they were less likely to have had routine diabetes-related management. Patients with dementia had a higher prevalence of macrovascular complications and diabetes foot morbidity at dementia diagnosis and a higher mortality risk than those without dementia; these relationships were most marked in those with moderate-severe dementia. CONCLUSIONS AND IMPLICATIONS Our study has highlighted important differences in the monitoring, management, and control of diabetes in people with dementia. The effects of frailty and the extent of cognitive impairment on the ability to self-manage diabetes and on glycemic control may need to be considered in treatment guidelines and by primary care.
Collapse
Affiliation(s)
- Usha Gungabissoon
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Epidemiology, Value, Evidence and Outcomes, Global Medical, GlaxoSmithKline (GSK) R&D, London, United Kingdom.
| | - Matthew Broadbent
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Gayan Perera
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Mark Ashworth
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | | | - Robert Stewart
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14:955461. [PMID: 36092798 PMCID: PMC9451601 DOI: 10.3389/fnagi.2022.955461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer’s Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords “Alzheimer’s” and “Diabetes Mellitus.” After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.
Collapse
Affiliation(s)
- Shokoofeh Ghiam
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Changiz Eslahchi,
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Mehran Habibi-Rezaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Sajjad Gharaghani,
| |
Collapse
|
24
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
25
|
Xue F, Gao L, Chen T, Chen H, Zhang H, Wang T, Han Z, Gao S, Wang L, Hu Y, Tang J, Huang L, Liu G, Zhang Y. Parkinson's Disease rs117896735 Variant Regulates INPP5F Expression in Brain Tissues and Increases Risk of Alzheimer's Disease. J Alzheimers Dis 2022; 89:67-77. [PMID: 35848021 DOI: 10.3233/jad-220086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Both INPP5D and INPP5F are members of INPP5 family. INPP5F rs117896735 variant was associated with Parkinson's disease (PD) risk, and INPP5D was an Alzheimer's disease (AD) risk gene. However, it remains unclear about the roles of INPP5F rs117896735 variant in AD. OBJECTIVE We aim to investigate the roles of rs117896735 in AD. METHODS First, we conducted a candidate variant study to evaluate the association of rs117896735 variant with AD risk using the large-scale AD GWAS dataset. Second, we conducted a gene expression analysis of INPP5F to investigate the expression difference of INPP5F in different human tissues using two large-scale gene expression datasets. Third, we conducted an expression quantitative trait loci analysis to evaluate whether rs117896735 variant regulate the expression of INPP5F. Fourth, we explore the potentially differential expression of INPP5F in AD and control using multiple AD-control gene expression datasets in human brain tissues and whole blood. RESULTS We found that 1) rs117896735 A allele was associated with the increased risk of AD with OR = 1.15, 95% CI 1.005-1.315, p = 0.042; 2) rs117896735 A allele could increase INPP5F expression in multiple human tissues; 3) INPP5F showed different expression in different human tissues, especially in brain tissues; 4) INPP5F showed significant expression dysregulation in AD compared with controls in human brain tissues. CONCLUSION Conclusion: We demonstrate that PD rs117896735 variant could regulate INPP5F expression in brain tissues and increase the risk of AD. These finding may provide important information about the role of rs117896735 in AD.
Collapse
Affiliation(s)
- Feng Xue
- Department of Neurosurgery, Tianjin Hospital of ITCWM Nan Kai Hospital, Tianjin, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - TingTing Chen
- Department of Oncology, Tianjin Hospital of ITCWM Nan Kai Hospital, Tianjin, China
| | - Hongyuan Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Tao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- School of Medicine, School of Pharmaceutical Sciences, THU-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiangwei Tang
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Lei Huang
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
26
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
27
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
28
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
29
|
Jeong SH, Kim HR, Kim J, Kim H, Hong N, Jung JH, Baik K, Cho H, Lyoo CH, Ye BS, Sohn YH, Seong JK, Lee PH. Association of Dipeptidyl Peptidase-4 Inhibitor Use and Amyloid Burden in Diabetic Patients With AD-Related Cognitive Impairment. Neurology 2021; 97:e1110-e1122. [PMID: 34380754 DOI: 10.1212/wnl.0000000000012534] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To investigate whether dipeptidyl peptidase-4 inhibitors (DPP-4i) have beneficial effects on amyloid aggregation and longitudinal cognitive outcome in diabetic Alzheimer's disease-related cognitive impairment (ADCI). METHODS We retrospectively reviewed 282 patients with ADCI who had positive scan of 18F-florbetaben amyloid PET images were classified into three groups according to a prior diagnosis of diabetes and DPP-4i use: diabetic patients being treated with (ADCI-DPP-4i+, n=70) or without DPP-4i (ADCI-DPP-4i-, n=71), and non-diabetic patients (n=141). Multiple linear regression analyses were performed to determine inter-group differences in global and regional amyloid retention using standardized uptake value ratios calculated from cortical areas. We assessed the longitudinal changes in Mini-Mental State Examination (MMSE) score using a linear mixed model. RESULTS The ADCI-DPP-4i+ group had lower global amyloid burden than the ADCI-DPP-4i- group (β = 0.075, SE = 0.024, p = 0.002) and the non-diabetic ADCI group (β = 0.054, SE = 0.021, p = 0.010) after adjusting for age, sex, education, cognitive status, and APOE ε4 carrier status. Additionally, the ADCI-DPP-4i+ group had lower regional amyloid burden in temporo-parietal areas than either the ADCI-DPP-4i- group or the non-diabetic ADCI group. The ADCI-DPP-4i+ group showed a slower longitudinal decrease in MMSE score (β = 0.772, SE = 0.272, p = 0.005) and memory recall sub-score (β = 0.291, SE = 0.116, p = 0.012) than the ADCI-DPP-4i- group. CONCLUSIONS These findings suggest that DPP-4i use is associated with low amyloid burden and favorable long-term cognitive outcome in diabetic patients with ADCI.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Hye Ryun Kim
- Global Health Technology Research Center, College of Health Science, Korea University, Seoul, South Korea
| | - Jeonghun Kim
- Medical & Health Device Division, Korea Testing Laboratory, Seoul, South Korea
| | - Hankyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Namki Hong
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, South Korea.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11:1002. [PMID: 34356626 PMCID: PMC8301848 DOI: 10.3390/biom11071002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
31
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
32
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
33
|
Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 Diabetes Mellitus: A Link Between Alzheimer's Disease and Type 2 Diabetes Mellitus. Cureus 2020; 12:e11703. [PMID: 33391936 PMCID: PMC7769816 DOI: 10.7759/cureus.11703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic diseases, as their name suggests, are progressive and can have overlapping features. Similar to this, Alzheimer's disease (AD) and diabetes mellitus (DM) fall into the category of chronic degenerative diseases. The global burden of these two ailments is manifold; hence, it seems important to view the pathophysiologic mechanisms of DM in the worsening of AD. Genetic as well as environmental factors are seen to play a role in the disease pathogenesis. Several genes, metabolic pathways, electrolytes, and dietary habits are seen to hasten brain atrophy. Lying behind this is the accumulation of amyloid precursor and tau - the misfolded proteins - within the brain substance. This mechanism is usually innate to AD itself, but the impact of insulin resistance, disturbing the homeostatic milieu, is seen as a powerful contributing factor aggravating the neuronal loss impairing an individual's memory. Since this neuronal loss is permanent, it may lead to complications as seen with AD. To reach a consensus, we conducted an electronic literature review search using different databases. This aided us in understanding the common aspects between AD and DM on genetic, molecular, cellular levels, as well as the impact of minerals and diet on the disease manifestation. We also found that despite exceptional work, additional efforts are needed to explore the relationship between the two entities. This will help physicians, researchers, and pharmaceuticals to frame remedies targeting the cause and avoid the progression of AD.
Collapse
Affiliation(s)
- Omar Nisar
- Internal Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | - Hira Pervez
- Internal Medicine/Cardiology, Dow University of Health Sciences, Karachi, PAK
| | | | - Muhammad Waqas
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| | | |
Collapse
|
34
|
Deng Y, Zhang J, Sun X, Ma G, Luo G, Miao Z, Song L. miR-132 improves the cognitive function of rats with Alzheimer's disease by inhibiting the MAPK1 signal pathway. Exp Ther Med 2020; 20:159. [PMID: 33093897 PMCID: PMC7571341 DOI: 10.3892/etm.2020.9288] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a common worldwide progressive neurodegenerative disease. The dysregulation of miRNA is crucial in neurodegenerative diseases and neuron apoptosis during AD and is closely associated with the MAPK pathway. By bioinformatic website, we found that there was target inhibiting relationship between microRNA (miR)-132 and MAPK1. Therefore, the current study speculated that miR-132 could improve the cognitive function of rats with AD by inhibiting MAPK1 expression. To verify our hypothesis, 10 normal rats and 60 rats with AD were selected and divided into model, Ad-miR-132 negative control (NC), Ad-miR-132, Ad-small interfering (si)MAPK1 NC, Ad-siMAPK1 and Ad-miR-132 + Ad-MAPK1 groups. Rats were evaluated for learning by performing morris water maze tests and pathological changes of the hippocampus were assessed via HE staining. Additionally, hippocampus cell apoptosis was determined using a TUNEL assay and levels of acetylcholinesterase (AChE), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were evaluated in sera via ELISA. The mRNA and protein expression of miR-132, iNOS, MAPK1 and phosphorylated (p)-MAPK1 was determined in hippocampus tissues via reverse transcription-quantitative PCR and western blotting, respectively. Compared with normal mice, rats with AD had significantly decreased learning abilities, increased cell apoptosis rates, increased levels of AChE, iNOS, ROS, MDA, MAPK1 and p-MAPK1 and decreased levels of SOD, GSH-Px and miR-132. Upregulation of miR-132 group improved the above indictors and silencing MAKP1 worsened the condition of rats. miR-132 upregulation therefore reversed the negative effects caused by MAPK1 silencing in rats with AD. In conclusion, miR-132 inhibited hippocampal iNOS expression and oxidative stress by inhibiting MAPK1expression to improve the cognitive function of rats with AD.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Jingyu Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Gaoting Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Gang Luo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| |
Collapse
|
35
|
Transcriptional Profiling and Biological Pathway(s) Analysis of Type 2 Diabetes Mellitus in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165866. [PMID: 32823525 PMCID: PMC7460550 DOI: 10.3390/ijerph17165866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson's Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.
Collapse
|
36
|
Aref-Eshghi E, Biswas S, Chen C, Sadikovic B, Chakrabarti S. Glucose-induced, duration-dependent genome-wide DNA methylation changes in human endothelial cells. Am J Physiol Cell Physiol 2020; 319:C268-C276. [PMID: 32459505 DOI: 10.1152/ajpcell.00011.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a critical epigenetic mechanism, plays an important role in governing gene expressions during biological processes such as aging, which is well known to be accelerated in hyperglycemia (diabetes). In the present study, we investigated the effects of glucose on whole genome DNA methylation in small [human retinal microvascular endothelial cells (HRECs)] and large [human umbilical vein endothelial cells (HUVECs)] vessel endothelial cell (EC) lines exposed to basal or high glucose-containing media for variable lengths of time. Using the Infinium EPIC array, we obtained 773,133 CpG sites (probes) for analysis. Unsupervised clustering of the top 5% probes identified four distinct clusters within EC groups, with significant methylation differences attributed to EC types and the duration of cell culture rather than glucose stimuli alone. When comparing the ECs incubated for 2 days versus 7 days, hierarchical clustering analyses [methylation change >10% and false discovery rate (FDR) <0.05] identified 17,354 and 128 differentially methylated CpGs for HUVECs and HRECs, respectively. Predominant DNA hypermethylation was associated with the length of culture and was enriched for gene enhancer elements and regions surrounding CpG shores and shelves. We identified 88 differentially methylated regions (DMRs) for HUVECs and 8 DMRs for HRECs (all FDR <0.05). Pathway enrichment analyses of DMRs highlighted involvement of regulators of embryonic development (i.e., HOX genes) and cellular differentiation [transforming growth factor-β (TGF-β) family members]. Collectively, our findings suggest that DNA methylation is a complex process that involves tightly coordinated, cell-specific mechanisms. Such changes in methylation overlap genes critical for cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Charlie Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
37
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|