1
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Chen ST, Chang KS, Lin YH, Hou CP, Lin WY, Hsu SY, Sung HC, Feng TH, Tsui KH, Juang HH. Glucose Upregulates ChREBP via Phosphorylation of AKT and AMPK to Modulate MALT1 and WISP1 Expression. J Cell Physiol 2025; 240:e31478. [PMID: 39530300 DOI: 10.1002/jcp.31478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP. Results showed that high glucose (30 mM) increased the phosphorylation of AKT at S473 and AMP-activated protein kinase (AMPK) at S485 in human prostate fibroblast (HPrF) cells and prostate cancer PC-3 cells. High glucose enhanced the expression of ChREBP, which increased the expressions of fibronectin, alpha-smooth muscle actin (α-SMA), and WNT1 inducible signaling pathway protein 1 (WISP1), magnifying the cell growth and contraction in HPrF cells in vitro. The cell proliferation, invasion, and tumor growth in prostate cancer PC-3 cells were enhanced by inducing the expressions of ChREBP, mucosa-associated lymphoid tissue 1 (MALT1), and epithelial-mesenchymal transition markers with high glucose treatment. Moreover, ectopic ChREBP overexpression induced NF-κB signaling activities via upregulating MALT1 expression in PC-3 cells. Our findings illustrated that ChREBP is an oncogene in the human prostate. High glucose condition induces a glucose/ChREBP/MALT1/NF-κB axis which links the glucose metabolism to the NF-κB activation in prostate cancer cells, and a glucose/ChREBP/WISP1 axis mediating autocrine and paracrine signaling between fibroblasts and cancer cells to promote cell migration, contraction, growth, and invasion of the human prostate.
Collapse
Affiliation(s)
- Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Medicine, College of Medicine, Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taiwan
| |
Collapse
|
3
|
Hansen K, Peters K, Burkert CK, Brose E, Calvisi DF, Ehricke K, Engeler M, Knuth E, Kröger N, Lohr A, Prey J, Sonke J, Vakeel P, Wladasch J, Zimmer J, Dombrowski F, Ribback S. Knockout of the Carbohydrate Responsive Element Binding Protein Enhances Proliferation and Tumorigenesis in Renal Tubules of Mice. Int J Mol Sci 2024; 25:11438. [PMID: 39518998 PMCID: PMC11545909 DOI: 10.3390/ijms252111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glycogen-storing so-called clear cell kidney tubules (CCTs), precursor lesions of renal cell carcinoma, have been described in diabetic rats and in humans. The lesions show upregulation of the Akt/mTOR-pathway and the related transcription factor carbohydrate responsive element binding protein (ChREBP), which is supposedly pro-oncogenic. We investigated the effect of ChREBP-knockout on nephrocarcinogenesis in streptozotocin-induced diabetic and normoglycemic mice. Diabetic, but not non-diabetic mice, showed CCTs at 3, 6 and 12 months of age. Glycogenosis was confirmed by periodic acid schiff reaction and transmission electron microscopy. CCTs in ChREBP-knockout mice consisted of larger cells and occurred more frequently compared to wildtype mice. Progression towards kidney tumors was observed in both diabetic groups but occurred earlier in ChREBP-knockout mice. Proliferative activity assessed by BrdU-labeling was lower in 1-week-old but higher in 12-month-old diabetic ChREBP-knockout mice. Surprisingly, renal neoplasms occurred spontaneously in non-diabetic ChREBP-knockout, but not non-diabetic wildtype mice, indicating an unexpected tumor-suppressive function of ChREBP. Immunohistochemistry showed upregulated glycolysis and lipogenesis, along with activated Akt/mTOR-signaling in tumors of ChREBP-knockout groups. Immunohistochemistry of human clear cell renal cell carcinomas revealed reduced ChREBP expression compared to normal kidney tissue. However, the molecular mechanisms by which loss of ChREBP might facilitate tumorigenesis require further investigation.
Collapse
Affiliation(s)
- Kerrin Hansen
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Kristin Peters
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Christian K. Burkert
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Eric Brose
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Diego F. Calvisi
- Institut für Pathologie, Universität Regensburg, DE-93053 Regensburg, Germany;
| | - Katrina Ehricke
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Maren Engeler
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Elisa Knuth
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Nils Kröger
- Klinik und Poliklinik für Urologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany
| | - Andrea Lohr
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Jessica Prey
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Jenny Sonke
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Padmanabhan Vakeel
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Juliane Wladasch
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Jenny Zimmer
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Frank Dombrowski
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| | - Silvia Ribback
- Institut für Pathologie, Universitaetsmedizin Greifswald, DE-17489 Greifswald, Germany; (K.P.); (M.E.); (J.P.); (P.V.); (J.W.); (F.D.); (S.R.)
| |
Collapse
|
4
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
5
|
Banerjee A, Das D, Mukherjee S, Maji BK. Comprehensive study of the interplay between immunological and metabolic factors in hepatic steatosis. Int Immunopharmacol 2024; 133:112091. [PMID: 38657500 DOI: 10.1016/j.intimp.2024.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The pathophysiology of hepatic steatosis is thoroughly reviewed in this comprehensive report, with particular attention to the complex interactions between inflammatory pathways, insulin resistance, lipid metabolism, metabolic dysregulation, and immunological responses in the liver including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). The study highlights the role of immune cell regulation in disease progression and explores the potential of immune cell-specific treatments for treating hepatic disorders. The development of liver disorders is significantly influenced by immune cells, including dendritic cells, T cells, and natural killer cells. Clinical investigations show that immune cell-specific treatments can effectively reduce liver fibrosis and inflammation. Future research should focus on finding new immunological targets for therapeutic interventions, as well as addressing the management challenges associated with NAFLD/NASH. Hepatic immune microorganisms also impact liver homeostasis and disorders. Improvements in immune cell regulation and liver transplantation methods give patients hope for better prognoses. Important phases include optimizing the selection of donors for malignancy of the liver, using machine perfusion for organ preservation, and fine-tuning immunosuppressive strategies. For focused treatments in hepatic steatosis, it is imperative to understand the intricate interactions between immune and metabolic variables. Understanding the liver's heterogeneous immune profile, encompassing a range of immune cell subpopulations, is crucial for formulating focused therapeutic interventions. To improve patient care and outcomes in hepatic illnesses, there is an urgent need for further research and innovation. Therefore, to effectively treat hepatic steatosis, it is important to enhance therapeutic techniques and maximize liver transplantation strategies.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| |
Collapse
|
6
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
7
|
Chang X, Tian C, Jia Y, Cai Y, Yan P. MLXIPL promotes the migration, invasion, and glycolysis of hepatocellular carcinoma cells by phosphorylation of mTOR. BMC Cancer 2023; 23:176. [PMID: 36809979 PMCID: PMC9945719 DOI: 10.1186/s12885-023-10652-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is associated with a high occurrence, mortality, and poor prognosis. MLX interacting protein like (MLXIPL) is an important regulator of glucolipid metabolism and is involved in tumor progression. We aimed to clarify the role of MLXIPL in HCC and its underlying mechanisms. METHODS The level of MLXIPL was predicted using bioinformatic analysis and verified using quantitative real-time PCR (qPCR), immunohistochemical analysis, and western blot. We assessed the effects of MLXIPL on biological behaviors using the cell counting kit-8, colony formation, and Transwell assay. Glycolysis was evaluated using the Seahorse method. The interaction between MLXIPL and mechanistic target of rapamycin kinase (mTOR) was confirmed using RNA immunoprecipitation and co-immunoprecipitation. mTOR expression was detected in HCC cells using qPCR, immunofluorescence analysis, and western blot. RESULTS The results showed that MLXIPL levels were elevated in both HCC tissues and HCC cell lines. Knockdown of MLXIPL impeded HCC cell growth, invasion, migration, and glycolysis. Moreover, MLXIPL combined with mTOR to induce phosphorylation of mTOR. Activated mTOR abrogated the effects on cellular processes induced by MLXIPL. CONCLUSION MLXIPL promoted the malignant progression of HCC by activating phosphorylation of mTOR, suggesting an important role of the combination of MLXIPL and mTOR in HCC.
Collapse
Affiliation(s)
- Xiaowei Chang
- grid.508540.c0000 0004 4914 235XDepartment of General Surgery, The First Affiliated Hospital of Xi’an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077 Xi’an, Shaanxi China
| | - Chang Tian
- grid.508540.c0000 0004 4914 235XDepartment of Clinical Laboratory, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi China
| | - Yuanyuan Jia
- grid.508540.c0000 0004 4914 235XDepartment of Faculty Development and Teaching Evaluation Office, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi China
| | - Yu Cai
- grid.508540.c0000 0004 4914 235XDepartment of General Surgery, The First Affiliated Hospital of Xi’an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077 Xi’an, Shaanxi China
| | - Pu Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Ginsenosides in cancer: A focus on the regulation of cell metabolism. Biomed Pharmacother 2022; 156:113756. [DOI: 10.1016/j.biopha.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
9
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
10
|
An acetylated mannan isolated from Aloe vera induce colorectal cancer cells apoptosis via mitochondrial pathway. Carbohydr Polym 2022; 291:119464. [DOI: 10.1016/j.carbpol.2022.119464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
11
|
Katz LS, Brill G, Zhang P, Kumar A, Baumel-Alterzon S, Honig LB, Gómez-Banoy N, Karakose E, Tanase M, Doridot L, Alvarsson A, Davenport B, Wang P, Lambertini L, Stanley SA, Homann D, Stewart AF, Lo JC, Herman MA, Garcia-Ocaña A, Scott DK. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun 2022; 13:4423. [PMID: 35908073 PMCID: PMC9339008 DOI: 10.1038/s41467-022-32162-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/18/2022] [Indexed: 01/05/2023] Open
Abstract
Preservation and expansion of β-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPβ) is a nuclear effector of hyperglycemic stress occurring in β-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPβ is necessary for adaptive β-cell expansion in response to metabolic challenges. Conversely, chronic excessive β-cell-specific overexpression of ChREBPβ results in loss of β-cell identity, apoptosis, loss of β-cell mass, and diabetes. Furthermore, β-cell "glucolipotoxicity" can be prevented by deletion of ChREBPβ. Moreover, ChREBPβ-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human β-cells. We conclude that ChREBPβ, whether adaptive or maladaptive, is an important determinant of β-cell fate and a potential target for the preservation of β-cell mass in diabetes.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Gabriel Brill
- Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA
| | - Pili Zhang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Anil Kumar
- Metabolic Phenotyping Core, University of Utah, 15N 2030 E, 585, Radiobiology building, Room 151, Salt Lake City, UT, 84112, USA
| | - Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Lee B Honig
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Marius Tanase
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Ludivine Doridot
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014, Paris, France
| | - Alexandra Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
- Alpenglow Biosciences, Inc., 98103, Seattle, WA, USA
| | - Bennett Davenport
- 12800 East 19th Ave, Anschutz Medical Campus, Room P18-9403, University of Colorado, Aurora, CO, 80045, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - James C Lo
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Section of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, One Baylor Plaza, MS: 185, R614, 77030, Houston, TX, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA.
| |
Collapse
|
12
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
13
|
Rahiminejad S, Maurya MR, Mukund K, Subramaniam S. Modular and mechanistic changes across stages of colorectal cancer. BMC Cancer 2022; 22:436. [PMID: 35448980 PMCID: PMC9022252 DOI: 10.1186/s12885-022-09479-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While mechanisms contributing to the progression and metastasis of colorectal cancer (CRC) are well studied, cancer stage-specific mechanisms have been less comprehensively explored. This is the focus of this manuscript. METHODS Using previously published data for CRC (Gene Expression Omnibus ID GSE21510), we identified differentially expressed genes (DEGs) across four stages of the disease. We then generated unweighted and weighted correlation networks for each of the stages. Communities within these networks were detected using the Louvain algorithm and topologically and functionally compared across stages using the normalized mutual information (NMI) metric and pathway enrichment analysis, respectively. We also used Short Time-series Expression Miner (STEM) algorithm to detect potential biomarkers having a role in CRC. RESULTS Sixteen Thousand Sixty Two DEGs were identified between various stages (p-value ≤ 0.05). Comparing communities of different stages revealed that neighboring stages were more similar to each other than non-neighboring stages, at both topological and functional levels. A functional analysis of 24 cancer-related pathways indicated that several signaling pathways were enriched across all stages. However, the stage-unique networks were distinctly enriched only for a subset of these 24 pathways (e.g., MAPK signaling pathway in stages I-III and Notch signaling pathway in stages III and IV). We identified potential biomarkers, including HOXB8 and WNT2 with increasing, and MTUS1 and SFRP2 with decreasing trends from stages I to IV. Extracting subnetworks of 10 cancer-relevant genes and their interacting first neighbors (162 genes in total) revealed that the connectivity patterns for these genes were different across stages. For example, BRAF and CDK4, members of the Ser/Thr kinase, up-regulated in cancer, displayed changing connectivity patterns from stages I to IV. CONCLUSIONS Here, we report molecular and modular networks for various stages of CRC, providing a pseudo-temporal view of the mechanistic changes associated with the disease. Our analysis highlighted similarities at both functional and topological levels, across stages. We further identified stage-specific mechanisms and biomarkers potentially contributing to the progression of CRC.
Collapse
Affiliation(s)
- Sara Rahiminejad
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Mano R Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Kubota CS, Espenshade PJ. Targeting stearoyl-CoA desaturase in solid tumors. Cancer Res 2022; 82:1682-1688. [PMID: 35294526 DOI: 10.1158/0008-5472.can-21-4044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells are demarcated from normal cells by distinct biological hallmarks, including the reprogramming of metabolic processes. One of the key players involved in metabolic reprogramming is stearoyl-CoA desaturase (SCD), which converts saturated fatty acids to monounsaturated fatty acids in an oxygen-dependent reaction that is crucial for maintaining fatty acid homeostasis. As such, SCD has been identified as a potential therapeutic target in numerous types of cancers, and its inhibition suppresses cancer cell growth in vitro and in vivo. This review summarizes the evidence implicating SCD in cancer progression and proposes novel therapeutic strategies for targeting SCD in solid tumors.
Collapse
Affiliation(s)
- Casie S Kubota
- Johns Hopkins School of Medicine, Baltimore, United States
| | - Peter J Espenshade
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Araya H, Morales E, Gómez M, Urdaneta N, Araya P, Morales MA. Diabetes mellitus contribution to the remodeling of the tumor microenvironment in gastric cancer. World J Gastrointest Oncol 2021; 13:1997-2012. [PMID: 35070037 PMCID: PMC8713306 DOI: 10.4251/wjgo.v13.i12.1997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial contribution of diabetes mellitus (DM) as a risk factor associated with increased cancer incidence and mortality in many human neoplasms, including gastric cancer (GC). DM is considered a systemic inflammatory disease and therefore, this inflammatory status may have profound effects on the tumor microenvironment (TME), particularly by driving many molecular mechanisms to generate a more aggressive TME. DM is an active driver in the modification of the behavior of many cell components of the TME as well as altering the mechanical properties of the extracellular matrix (ECM), leading to an increased ECM stiffening. Additionally, DM can alter many cellular signaling mechanisms and thus favoring tumor growth, invasion, and metastatic potential, as well as key elements in regulating cellular functions and cross-talks, such as the microRNAs network, the production, and cargo of exosomes, the metabolism of cell stroma and resistance to hypoxia. In the present review, we intend to highlight the mechanistic contributions of DM to the remodeling of TME in GC.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Hernan Araya
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Erik Morales
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Anatomía Patologica, Hospital Regional de Talca, Talca 34600000, Chile
| | - Milibeth Gómez
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Nelson Urdaneta
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Paulina Araya
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
16
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
17
|
The Roles of Carbohydrate Response Element Binding Protein in the Relationship between Carbohydrate Intake and Diseases. Int J Mol Sci 2021; 22:ijms222112058. [PMID: 34769488 PMCID: PMC8584459 DOI: 10.3390/ijms222112058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are macronutrients that serve as energy sources. Many studies have shown that carbohydrate intake is nonlinearly associated with mortality. Moreover, high-fructose corn syrup (HFCS) consumption is positively associated with obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Accordingly, products with equal amounts of glucose and fructose have the worst effects on caloric intake, body weight gain, and glucose intolerance, suggesting that carbohydrate amount, kind, and form determine mortality. Understanding the role of carbohydrate response element binding protein (ChREBP) in glucose and lipid metabolism will be beneficial for elucidating the harmful effects of high-fructose corn syrup (HFCS), as this glucose-activated transcription factor regulates glycolytic and lipogenic gene expression. Glucose and fructose coordinately supply the metabolites necessary for ChREBP activation and de novo lipogenesis. Chrebp overexpression causes fatty liver and lower plasma glucose levels, and ChREBP deletion prevents obesity and fatty liver. Intestinal ChREBP regulates fructose absorption and catabolism, and adipose-specific Chrebp-knockout mice show insulin resistance. ChREBP also regulates the appetite for sweets by controlling fibroblast growth factor 21, which promotes energy expenditure. Thus, ChREBP partly mimics the effects of carbohydrate, especially HFCS. The relationship between carbohydrate intake and diseases partly resembles those between ChREBP activity and diseases.
Collapse
|
18
|
Daniel PV, Mondal P. Causative and Sanative dynamicity of ChREBP in Hepato-Metabolic disorders. Eur J Cell Biol 2020; 99:151128. [PMID: 33232883 DOI: 10.1016/j.ejcb.2020.151128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
ChREBP is the master regulator of carbohydrate dependent glycolytic and lipogenic flux within metabolic tissues. It plays a vital role in hyper-calorific milieu by activating glycolysis, lipogenesis along with pentose phosphate shunt and glycogen synthesis, fostering immediate reduction in the systemic glycemic levels. Liver being the primary organ to sense disproportionate dietary intake and linked physiological stress, stimulates ChREBP to perform the aforementioned processes. Activated ChREBP also inhibits lipolysis and encourages proper disposal of excessive triglycerides into adipocytes from the liver ablating hepatic intracellular lipid trafficking. Chronic overeating or onset of positive energy balance, hyper-activates ChREBP and signals development, intensification of hepato-metabolic disorders, and allied discrepancies in the whole-body metabolic functioning. ChREBP thus gets negatively connotated as the primary regulator of hepatic disorders, owing to its inherent features as the primary glycemic sensor and the only transcription factor that can transduce glucose-dependent glycolytic and lipogenic signals. Through this review, we - try to recapitulate and emphasize on the sanative events coordinated by ChREBP in several pathophysiological states. In totality, we aim to uncouple the disease-causing aspects of ChREBP from its positive attributes evoked during a metabolic crisis, in hepato-metabolic diseases.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| |
Collapse
|