1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Jimenez-Canale J, Navarro-Lopez R, Huerta-Ocampo JA, Burgara-Estrella AJ, Encarnacion-Guevara S, Silva-Campa E, Velazquez-Contreras FE, Sarabia-Sainz JA. Exploring the protein profile and biological activity of Crotalus molossus venom against E. coli, P. aeruginosa and S. aureus bacteria and T47D breast carcinoma cells. Toxicon 2024; 249:108036. [PMID: 39059561 DOI: 10.1016/j.toxicon.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Mexico has the highest diversity of snake species in the world, following Australia when considering just venomous snakes. Specifically, in Sonora, the second largest state in the country, more than 15 highly venomous species occur, including the northern black-tailed rattlesnake (Crotalus molossus). This specie's venom has not been as thoroughly researched in contrast with other Mexican vipers, nevertheless some studies report its biological activity and even pharmacological potential with antibacterial and cytotoxic activity. In this study we identified the main protein components from a pool of C. molossus venom through a gel-free proteomics approach, reporting ∼140 proteins belonging to the SVMP (38.76%), PLA2 (28.75%), CTL (11.93%), SVSP (6.03%) and LAAO (5.67%) toxin families. To study its biological activities, we evaluated its hemolytic, antibacterial, and cytotoxic activity in red blood cells, Gram positive and negative bacteria and a luminal A breast carcinoma cell line (T47D), respectively, in vitro. We report that concentrations <100 μg/mL are potentially not hemolytic and reduced the bacteria viability of E. coli and S. aureus with an IC50 of 10.27 and 11.51 μg/mL, respectively. Finally, we determined the C. molossus venom as cytotoxic against the T47D breast carcinoma cell line, with an IC50 of 1.55 μg/mL. We suggest that the evaluated cytotoxicity was due to a high abundance of SVMPs and PLA2s, since it's been reported that they affect the extracellular matrix and membrane permeation. This may provide a useful tool for pharmaceutical screening in the future.
Collapse
Affiliation(s)
- J Jimenez-Canale
- Department of Research in Materials and Polymers, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - R Navarro-Lopez
- Department of Health and Biological Sciences, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J A Huerta-Ocampo
- Proteomics Laboratory, Food Science Coordination, Center for Research in Feeding and Development (CIAD), Hermosillo, Sonora, 83304, Mexico
| | - A J Burgara-Estrella
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - S Encarnacion-Guevara
- Program of Functional Genomics of Procaryotes, Center of Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - E Silva-Campa
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - F E Velazquez-Contreras
- Department of Research in Materials and Polymers, University of Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J A Sarabia-Sainz
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
3
|
Xu H, El-Asal S, Zakri H, Mutlaq R, Krikke NTB, Casewell NR, Slagboom J, Kool J. Aligning Post-Column ESI-MS, MALDI-MS, and Coagulation Bioassay Data of Naja spp., Ophiophagus hannah, and Pseudonaja textillis Venoms Chromatographically to Assess MALDI-MS and ESI-MS Complementarity with Correlation of Bioactive Toxins to Mass Spectrometric Data. Toxins (Basel) 2024; 16:379. [PMID: 39330837 PMCID: PMC11435639 DOI: 10.3390/toxins16090379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.
Collapse
Affiliation(s)
- Haifeng Xu
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Susan El-Asal
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Hafsa Zakri
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Xu H, Mastenbroek J, Krikke NTB, El-Asal S, Mutlaq R, Casewell NR, Slagboom J, Kool J. Nanofractionation Analytics for Comparing MALDI-MS and ESI-MS Data of Viperidae Snake Venom Toxins. Toxins (Basel) 2024; 16:370. [PMID: 39195780 PMCID: PMC11360109 DOI: 10.3390/toxins16080370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Worldwide, it is estimated that there are 1.8 to 2.7 million cases of envenoming caused by snakebites. Snake venom is a complex mixture of protein toxins, lipids, small molecules, and salts, with the proteins typically responsible for causing pathology in snakebite victims. For their chemical characterization and identification, analytical methods are required. Reversed-phase liquid chromatography coupled with electrospray ionization mass spectrometry (RP-LC-ESI-MS) is a widely used technique due to its ease of use, sensitivity, and ability to be directly coupled after LC separation. This method allows for the efficient separation of complex mixtures and sensitive detection of analytes. On the other hand, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is also sometimes used, and though it typically requires additional sample preparation steps, it offers desirable suitability for the analysis of larger biomolecules. In this study, seven medically important viperid snake venoms were separated into their respective venom toxins and measured by ESI-MS. In parallel, using nanofractionation analytics, post-column high-resolution fractionation was used to collect the eluting toxins for further processing for MALDI-MS analysis. Our comparative results showed that the deconvoluted snake venom toxin masses were observed with good sensitivity from both ESI-MS and MALDI-MS approaches and presented overlap in the toxin masses recovered (between 25% and 57%, depending on the venom analyzed). The mass range of the toxins detected in high abundance was between 4 and 28 kDa. In total, 39 masses were found in both the ESI-MS and/or MALDI-MS analyses, with most being between 5 and 9 kDa (46%), 13 and 15 kDa (38%), and 24 and 28 kDa (13%) in size. Next to the post-column MS analyses, additional coagulation bioassaying was performed to demonstrate the parallel post-column assessment of venom activity in the workflow. Most nanofractionated venoms exhibited anticoagulant activity, with three venoms additionally exhibiting toxins with clear procoagulant activity (Bothrops asper, Crotalus atrox, and Daboia russelii) observed post-column. The results of this study highlight the complementarity of ESI-MS and MALDI-MS approaches for characterizing snake venom toxins and provide a complementary overview of defined toxin masses found in a diversity of viper snake venoms.
Collapse
Affiliation(s)
- Haifeng Xu
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jesse Mastenbroek
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Susan El-Asal
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
5
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
6
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
7
|
Hoepner CM, Stewart ZK, Qiao R, Fobert EK, Prentis PJ, Colella A, Chataway T, Burke da Silva K, Abbott CA. Proteotransciptomics of the Most Popular Host Sea Anemone Entacmaea quadricolor Reveals Not All Toxin Genes Expressed by Tentacles Are Recruited into Its Venom Arsenal. Toxins (Basel) 2024; 16:85. [PMID: 38393163 PMCID: PMC10893224 DOI: 10.3390/toxins16020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.
Collapse
Affiliation(s)
- Cassie M. Hoepner
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Zachary K. Stewart
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert Qiao
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Emily K. Fobert
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter J. Prentis
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Alex Colella
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Tim Chataway
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Catherine A. Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
8
|
AlShammari AK, Abd El-Aziz TM, Al-Sabi A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins (Basel) 2023; 16:12. [PMID: 38251229 PMCID: PMC10820993 DOI: 10.3390/toxins16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.
Collapse
Affiliation(s)
- Altaf K. AlShammari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| |
Collapse
|
9
|
Vilca-Quispe A, Alvarez-Risco A, Gomes Heleno MA, Ponce-Fuentes EA, Vera-Gonzales C, Zegarra-Aragon HFE, Aquino-Puma JL, Talavera-Núñez ME, Del-Aguila-Arcentales S, Yáñez JA, Ponce-Soto LA. Biochemical and hemostatic description of a thrombin-like enzyme TLBro from Bothrops roedingeri snake venom. Front Chem 2023; 11:1217329. [PMID: 38099189 PMCID: PMC10720248 DOI: 10.3389/fchem.2023.1217329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Objective: The current study's objective is to characterize a new throm-bin-like enzyme called TLBro that was obtained from Bothrops roedingeris snake from a biochemical and hemostatic perspective. Methodology: One chromatographic step was used to purify it, producing the serine protease TLBro. Molecular mass was estimated by SDS-PAGE to be between reduced and unreduced by 35 kDa. Tryptic peptide sequencing using Swiss Prot provided the complete amino acid sequence. Expasy.org by conducting a search that is limited to Crotalinae snake serine proteases and displaying a high degree of amino acid sequence. Results: Ser (182) is inhibited by phenylmethylsulfonyl fluoride (PMSF), and TLBro demonstrated the presence of Asp (88) residues. It also deduced the positions of His (43) and Ser (182) in the set of three coordinated amino acids in serine proteases. It was discovered that this substrate had high specificity for BANA, Michaelis-Menten behavior with KM 0 point85 mM and Vmax 1 point89 nmoles -NA/L/min, and high stability between temperatures (15 to 70°C) and pHs (2 point0 to 10 point0). According to doses and incubation times, TLBro degraded fibrin preferentially on the B-chain; additionally, its activities were significantly diminished after preincubation with divalent ions (Zn2 and Cd2). When incubated with PMSF, a particular serine protease inhibitor, enzymatic activities and platelet aggregation were inhibited. Conclusion: The findings revealed distinct structural and functional differences between the serine proteases, adding to the information and assisting in the improvement of the structure-function relationship.
Collapse
Affiliation(s)
- Augusto Vilca-Quispe
- Department of Biochemistry, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aldo Alvarez-Risco
- Facultad de Administración y Negocios, Universidad Tecnológica del Perú, Lima, Perú
| | - Mauricio Aurelio Gomes Heleno
- Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brazil
| | | | - Corina Vera-Gonzales
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | | - Juan Luis Aquino-Puma
- Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - María Elena Talavera-Núñez
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | | - Jaime A. Yáñez
- Facultad de Educación, Carrera de Educación y Gestión del Aprendizaje, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | | |
Collapse
|
10
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
11
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
12
|
Artificial pore blocker acts specifically on voltage-gated potassium channel isoform K V1.6. J Biol Chem 2022; 298:102467. [PMID: 36087839 DOI: 10.1016/j.jbc.2022.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows a half-maximal effective concentration (EC50) of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.
Collapse
|
13
|
Oliveira ISD, Pucca MB, Ferreira IG, Cerni FA, Jacob BDCDS, Wiezel GA, Pinheiro-Júnior EL, Cordeiro FA, Bordon KDCF, Arantes EC. State-of-the-art review of snake venom phosphodiesterases (svPDEs). Toxicon 2022; 217:121-130. [PMID: 35998712 DOI: 10.1016/j.toxicon.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
Phosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction. PDEs are also expressed in snake venom glands, being called snake venoms phosphodiesterases, or simply svPDEs. The occurrence of these enzymes has already been reported in crotalid, elapid and viperid venoms, such as Crotalus, Naja and Trimeresurus, respectively, but not all of them have been characterized concerning their structure, activity and function. In this review, we are addressing general characteristics of svPDEs, in addition to their structural, biochemical and functional characteristics, and we also report some potential applications of svPDEs.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Manuela Berto Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil; Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Beatriz de Cássia da Silva Jacob
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele Adriano Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francielle Almeida Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Urra FA, Vivas-Ruiz DE, Sanchez EF, Araya-Maturana R. An Emergent Role for Mitochondrial Bioenergetics in the Action of Snake Venom Toxins on Cancer Cells. Front Oncol 2022; 12:938749. [PMID: 35924151 PMCID: PMC9343075 DOI: 10.3389/fonc.2022.938749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Beyond the role of mitochondria in apoptosis initiation/execution, some mitochondrial adaptations support the metastasis and chemoresistance of cancer cells. This highlights mitochondria as a promising target for new anticancer strategies. Emergent evidence suggests that some snake venom toxins, both proteins with enzymatic and non-enzymatic activities, act on the mitochondrial metabolism of cancer cells, exhibiting unique and novel mechanisms that are not yet fully understood. Currently, six toxin classes (L-amino acid oxidases, thrombin-like enzymes, secreted phospholipases A2, three-finger toxins, cysteine-rich secreted proteins, and snake C-type lectin) that alter the mitochondrial bioenergetics have been described. These toxins act through Complex IV activity inhibition, OXPHOS uncoupling, ROS-mediated permeabilization of inner mitochondrial membrane (IMM), IMM reorganization by cardiolipin interaction, and mitochondrial fragmentation with selective migrastatic and cytotoxic effects on cancer cells. Notably, selective internalization and direct action of snake venom toxins on tumor mitochondria can be mediated by cell surface proteins overexpressed in cancer cells (e.g. nucleolin and heparan sulfate proteoglycans) or facilitated by the elevated Δψm of cancer cells compared to that non-tumor cells. In this latter case, selective mitochondrial accumulation, in a Δψm-dependent manner, of compounds linked to cationic snake peptides may be explored as a new anti-cancer drug delivery system. This review analyzes the effect of snake venom toxins on mitochondrial bioenergetics of cancer cells, whose mechanisms of action may offer the opportunity to develop new anticancer drugs based on toxin scaffolds.
Collapse
Affiliation(s)
- Félix A. Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- *Correspondence: Félix A. Urra,
| | - Dan E. Vivas-Ruiz
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Lima, Peru
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- Laboratorio de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
15
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
16
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Ghezellou P, Jakob K, Atashi J, Ghassempour A, Spengler B. Mass-Spectrometry-Based Lipidome and Proteome Profiling of Hottentotta saulcyi (Scorpiones: Buthidae) Venom. Toxins (Basel) 2022; 14:toxins14060370. [PMID: 35737031 PMCID: PMC9228814 DOI: 10.3390/toxins14060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Scorpion venom is a complex secretory mixture of components with potential biological and physiological properties that attracted many researchers due to promising applications from clinical and pharmacological perspectives. In this study, we investigated the venom of the Iranian scorpion Hottentotta saulcyi (Simon, 1880) by applying mass-spectrometry-based proteomic and lipidomic approaches to assess the diversity of components present in the venom. The data revealed that the venom’s proteome composition is largely dominated by Na+- and K+-channel-impairing toxic peptides, following the enzymatic and non-enzymatic protein families, e.g., angiotensin-converting enzyme, serine protease, metalloprotease, hyaluronidase, carboxypeptidase, and cysteine-rich secretory peptide. Furthermore, lipids comprise ~1.2% of the dry weight of the crude venom. Phospholipids, ether-phospholipids, oxidized-phospholipids, triacylglycerol, cardiolipins, very-long-chain sphingomyelins, and ceramides were the most intensely detected lipid species in the scorpion venom, may acting either independently or synergistically during the envenomation alongside proteins and peptides. The results provide detailed information on the chemical makeup of the venom, helping to improve our understanding of biological molecules present in it, leading to a better insight of the medical significance of the venom, and improving the medical care of patients suffering from scorpion accidents in the relevant regions such as Iran, Iraq, Turkey, and Afghanistan.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: (P.G.); (B.S.)
| | - Kevin Jakob
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Javad Atashi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran; (J.A.); (A.G.)
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran; (J.A.); (A.G.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: (P.G.); (B.S.)
| |
Collapse
|
18
|
Pinheiro-Junior EL, Kalina R, Gladkikh I, Leychenko E, Tytgat J, Peigneur S. A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels. Mar Drugs 2022; 20:md20020147. [PMID: 35200676 PMCID: PMC8878452 DOI: 10.3390/md20020147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| | - Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| |
Collapse
|
19
|
Pinheiro-Junior EL, Boldrini-França J, Takeda AAS, Costa TR, Peigneur S, Cardoso IA, Oliveira ISD, Sampaio SV, de Mattos Fontes MR, Tytgat J, Arantes EC. Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. Int J Biol Macromol 2021; 190:564-573. [PMID: 34506860 DOI: 10.1016/j.ijbiomac.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
PEGylation was firstly described around 50 years ago and has been used for more than 30 years as a strategy to improve the drugability of biopharmaceuticals. However, it remains poorly employed in toxinology, even though it may be a promising strategy to empower these compounds in therapeutics. This work reports the PEGylation of rCollinein-1, a recombinant snake venom serine protease (SVSP), able to degrade fibrinogen and inhibit the hEAG1 potassium channel. We compared the functional, structural, and immunogenic properties of the non-PEGylated (rCollinein-1) and PEGylated (PEG-rCollinein-1) forms. PEG-rCollinein-1 shares similar kinetic parameters with rCollinein-1, maintaining its capability of degrading fibrinogen, but with reduced activity on hEAG1 channel. CD analysis revealed the maintenance of protein conformation after PEGylation, and thermal shift assays demonstrated similar thermostability. Both forms of the enzyme showed to be non-toxic to peripheral blood mononuclear cells (PBMC). In silico epitope prediction indicated three putative immunogenic peptides. However, immune response on mice showed PEG-rCollinein-1 was devoid of immunogenicity. PEGylation directed rCollinein-1 activity towards hemostasis control, broadening its possibilities to be employed as a defibrinogenant agent.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil; Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Johara Boldrini-França
- University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920 Vila Velha, ES, Brazil
| | | | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Iara Aimê Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
21
|
Pucca MB, Bernarde PS, Rocha AM, Viana PF, Farias RES, Cerni FA, Oliveira IS, Ferreira IG, Sandri EA, Sachett J, Wen FH, Sampaio V, Laustsen AH, Sartim MA, Monteiro WM. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Front Immunol 2021; 12:659515. [PMID: 34168642 PMCID: PMC8219050 DOI: 10.3389/fimmu.2021.659515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Crotalus durissus ruruima is a rattlesnake subspecies mainly found in Roraima, the northernmost state of Brazil. Envenomings caused by this subspecies lead to severe clinical manifestations (e.g. respiratory muscle paralysis, rhabdomyolysis, and acute renal failure) that can lead to the victim’s death. In this review, we comprehensively describe C. d. ruruima biology and the challenges this subspecies poses for human health, including morphology, distribution, epidemiology, venom cocktail, clinical envenoming, and the current and future specific treatment of envenomings by this snake. Moreover, this review presents maps of the distribution of the snake subspecies and evidence that this species is responsible for some of the most severe envenomings in the country and causes the highest lethality rates. Finally, we also discuss the efficacy of the Brazilian horse-derived antivenoms to treat C. d. ruruima envenomings in Roraima state.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Universidade Federal do Acre, Cruzeiro do Sul, Brazil
| | | | - Patrik F Viana
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Raimundo Erasmo Souza Farias
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Felipe A Cerni
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliseu A Sandri
- Insikiram Institute of Indigenous Higher Studies, Federal University of Roraima, Boa Vista, Brazil
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Alfredo da Matta Foundation, Manaus, Brazil
| | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, Brazil
| | - Vanderson Sampaio
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marco A Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil.,Institute of Biological Sciences, Amazonas Federal University, Manaus, Brazil
| | - Wuelton M Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| |
Collapse
|
22
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
23
|
Tsai IH, Wang YM, Lin SW, Huang KF. Structural and bioinformatic analyses of Azemiops venom serine proteases reveal close phylogeographic relationships to pitvipers from eastern China and the New World. Toxicon 2021; 198:93-101. [PMID: 33957151 DOI: 10.1016/j.toxicon.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
The semi-fossil and pit-less Azemiops feae is possibly the most primitive crotalid species. Here, we have cloned and sequenced cDNAs encoding four serine proteases (vSPs) from the venom glands of Chinese A. feae. Full amino-acid sequences of the major vSP (designated as AzKNa) and three minor vSPs (designated as AzKNb, AzKNc and Az-PA) were deduced. Using Protein-BLAST search, the ten most-similar vSPs for each Azemiops vSP have been selected for multiple sequence alignment, and all the homologs are crotalid vSPs. The results suggest that the A. feae vSPs are structurally most like those of eastern-Chinese Gloydius, Viridovipera, Protobothrops and North American pitvipers, and quite different from more-specialized vSPs such as Agkistrodon venom Protein-C activators. The vSPs from Chinese A. feae and those from Vietnamese A. feae show significant sequence variations. AzKNa is acidic and contains six potential N-glycosylation sites and its surface-charge distribution differs greatly from that of AzKNb, as revealed by 3D-modeling. AzKNb and AzKNc do not contain N-glycosylation sites although most of their close homologs contain one or two. Az-PA belongs to the plasminogen-activator subtype with a conserved N20-glycosylation site. The evolution of this subtype of vSPs in Azemiops and related pitvipers has been traced by phylogenetic analysis.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Scienvaces, National Taiwan University, Taipei, Taiwan.
| | - Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, Sallau AB. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon 2021; 197:24-32. [PMID: 33775665 DOI: 10.1016/j.toxicon.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Proteomics technologies enable a comprehensive study of complex proteins and their functions. The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using HILIC coupled with LC-MS/MS analysis. Results revealed a total of 57, 55, and 46 proteins in the venoms of N. haje, N. katiensis, and N. nigricollis, respectively, with molecular mass ranging between 5 and 185 kDa. These snakes have 38 common proteins in addition to 3 uncommon proteins: actiflagelin, cathelicidin, and cystatin identified in their venoms. The identified proteins belonged to 14 protein families in N. haje and N. katiensis, and 12 protein families in N. nigricollis. Of the total venom proteins, 3FTx was the most abundant protein family, constituting 52% in N. haje and N. katiensis, and 41% in N. nigricollis, followed by PLA2, constituting 37% in N. nigricollis, 26% in N. haje, and 24% in N. katiensis. Other protein families, including LAAO, CRISPs, VEGF, PLB, CVF, SVMP, SVH, AMP, PI, Globin, Actin, and C-type lectins, were also detected, although, at very low abundances. Quantification of the relative abundance of each protein revealed that alpha and beta fibrinogenase and PLA2, which constituted 18-26% of the total proteome, were the most abundant. The 3 uncommon proteins have no known function in snake venom. However, actiflagelin activates sperm motility; cystatin inhibits angiogenesis, while cathelicidin exerts antimicrobial effects. The three Nigerian Naja genus proteomes displayed 70% similarity in composition, which suggests the possibility of formulating antivenom that may cross-neutralise the venoms of cobra species found in Nigeria. These data provide insights into clinically relevant peptides/proteins present in the venoms of these snakes. Data are available via ProteomeXchange with identifier PXD024627.
Collapse
Affiliation(s)
- Fatima Amin Adamude
- Department of Biochemistry, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emeka John Dingwoke
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Mujitaba Suleiman Abubakar
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Gadija Mohamed
- Agri-Food Systems and Omics, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infrutec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Ashwil Klein
- Proteomics Research Unit, Department of Biotechnology, Faculty of Natural Sciences, University of Western Cape, South Africa
| | - Abdullahi Balarabe Sallau
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
25
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|