1
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Theodoropoulou MA, Mantzourani C, Kokotos G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024; 14:1605. [PMID: 39766311 PMCID: PMC11674560 DOI: 10.3390/biom14121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play an essential role in the onset and progression of cancer. As a consequence, a variety of HDAC inhibitors (HDACis) have been developed as potent anticancer agents, several of which have been approved by the FDA for cancer treatment. However, recent accumulated research results have suggested that HDACs are also involved in several other pathophysiological conditions, such as fibrotic, inflammatory, neurodegenerative, and autoimmune diseases. Very recently, the HDAC inhibitor givinostat has been approved by the FDA for an indication beyond cancer: the treatment of Duchenne muscular dystrophy. In recent years, more and more HDACis have been developed as tools to understand the role that HDACs play in various disorders and as a novel therapeutic approach to fight various diseases other than cancer. In the present perspective article, we discuss the development and study of HDACis as anti-fibrotic and anti-inflammatory agents, covering the period from 2020-2024. We envision that the discovery of selective inhibitors targeting specific HDAC isozymes will allow the elucidation of the role of HDACs in various pathological processes and will lead to the development of promising treatments for such diseases.
Collapse
Affiliation(s)
- Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
3
|
Zhang J, Wang G, Ma J, Duan Y, Sharma SA, Oladejo S, Ma X, Arellano G, Orchard RC, Reese TA, Kuang Z. HDAC3 integrates TGF-β and microbial cues to program tuft cell biogenesis and diurnal rhythms in mucosal immune surveillance. Sci Immunol 2024; 9:eadk7387. [PMID: 39331726 DOI: 10.1126/sciimmunol.adk7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
The intestinal mucosal surface is directly exposed to daily fluctuations in food and microbes driven by 24-hour light and feeding cycles. Intestinal epithelial tuft cells are key sentinels that surveil the gut luminal environment, but how these cells are diurnally programmed remains unknown. Here, we show that histone deacetylase 3 (HDAC3) controls tuft cell specification and the diurnal rhythm of its biogenesis, which is regulated by the gut microbiota and feeding schedule. Disruption of epithelial HDAC3 decreases tuft cell numbers, impairing antihelminth immunity and norovirus infection. Mechanistically, HDAC3 functions noncanonically to activate transforming growth factor-β (TGF-β) signaling, which promotes rhythmic expression of Pou2f3, a lineage-defining transcription factor of tuft cells. Our findings reveal an environmental-epigenetic link that controls the diurnal differentiation of tuft cells and promotes rhythmic mucosal surveillance and immune responses in anticipation of exogenous challenges.
Collapse
Affiliation(s)
- Jianglin Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yiran Duan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samskrathi A Sharma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah Oladejo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xianda Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Giselle Arellano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Li R, Cao Y, Wu W, Liu H, Xu S. Inhibitor of FTO, Rhein, Restrains the Differentiation of Myoblasts and Delays Skeletal Muscle Regeneration. Animals (Basel) 2024; 14:2434. [PMID: 39199967 PMCID: PMC11350746 DOI: 10.3390/ani14162434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification affecting skeletal muscle development. Rhein, an anti-inflammatory extract, inhibits FTO, a key demethylase in m6A metabolism. Our study showed that during muscle fiber formation, FTO and ALKBH5 expression increased while m6A levels decreased. After muscle injury, FTO and ALKBH5 expression initially rose but later fell, while m6A levels initially dropped and then recovered. Inhibition of FTO by Rhein reduced MyHC and MyoG expression, indicating myoblast differentiation suppression. In a mouse model, Rhein decreased MyHC expression and muscle fiber cross-sectional area, delaying muscle regeneration. Rhein's ability to increase RNA m6A modification delays skeletal muscle remodeling post-injury, suggesting a new medicinal application for this plant extract.
Collapse
Affiliation(s)
- Rongyang Li
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
| |
Collapse
|
5
|
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol 2024; 15:1405569. [PMID: 38983721 PMCID: PMC11232433 DOI: 10.3389/fphys.2024.1405569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Histone deacetylases (HDAC) catalyze the removal of acetylation modifications on histones and non-histone proteins, which regulates gene expression and other cellular processes. HDAC inhibitors (HDACi), approved anti-cancer agents, emerge as a potential new therapy for heart diseases. Cardioprotective effects of HDACi are observed in many preclinical animal models of heart diseases. Genetic mouse models have been developed to understand the role of each HDAC in cardiac functions. Some of the findings are controversial. Here, we provide an overview of how HDACi and HDAC impact cardiac functions under physiological or pathological conditions. We focus on in vivo studies of zinc-dependent classical HDACs, emphasizing disease conditions involving cardiac hypertrophy, myocardial infarction (MI), ischemic reperfusion (I/R) injury, and heart failure. In particular, we review how non-biased omics studies can help our understanding of the mechanisms underlying the cardiac effects of HDACi and HDAC.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sichong Qian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Chen X, Ma J, Wang ZW, Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol 2024; 154:167-174. [PMID: 36872193 DOI: 10.1016/j.semcdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence has illustrated that the E3 ubiquitin ligases critically participate in the development and progression of cardiovascular diseases. Dysregulation of E3 ubiquitin ligases exacerbates cardiovascular diseases. Blockade or activation of E3 ubiquitin ligases mitigates cardiovascular performance. Therefore, in this review, we mainly introduced the critical role and underlying molecular mechanisms of E3 ubiquitin ligase NEDD4 family in governing the initiation and progression of cardiovascular diseases, including ITCH, WWP1, WWP2, Smurf1, Smurf2, Nedd4-1 and Nedd4-2. Moreover, the functions and molecular insights of other E3 ubiquitin ligases, such as F-box proteins, in cardiovascular disease development and malignant progression are described. Furthermore, we illustrate several compounds that alter the expression of E3 ubiquitin ligases to alleviate cardiovascular diseases. Therefore, modulation of E3 ubiquitin ligases could be a novel and promising strategy for improvement of therapeutic efficacy of deteriorative cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhi-Wei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhiting Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Li H, Jia Y, Yao D, Gao M, Wang L, Liu J. Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Mol Biol Rep 2024; 51:266. [PMID: 38302764 DOI: 10.1007/s11033-023-09154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Yan Jia
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Daomin Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Lijun Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| |
Collapse
|
9
|
Jin G, Wang K, Zhao Y, Yuan S, He Z, Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem 2023; 138:106601. [PMID: 37224740 DOI: 10.1016/j.bioorg.2023.106601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone or non-histone substrates, leading to the regulation of many biological functions, such as gene transcription, translation and remodeling chromatin. Targeting HDACs for drug development is a promising way for human diseases, including cancers and heart diseases. In particular, numerous HDAC inhibitors have revealed potential clinical value for the treatment of cardiac diseases in recent years. In this review, we systematically summarize the therapeutic roles of HDAC inhibitors with different chemotypes on heart diseases. Additionally, we discuss the opportunities and challenges in developing HDAC inhibitors for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Yaohui Zhao
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
10
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Nikolic A, Fahlbusch P, Wahlers N, Riffelmann NK, Jacob S, Hartwig S, Kettel U, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress targets mitochondrial respiratory efficiency in the skeletal muscle of C57BL/6 mice. Cell Mol Life Sci 2023; 80:108. [PMID: 36988756 PMCID: PMC10060325 DOI: 10.1007/s00018-023-04761-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany.
| |
Collapse
|
12
|
Zhang Q, Yin J, Zou Y. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in heart failure rats. Heart Vessels 2023; 38:857-868. [PMID: 36717388 DOI: 10.1007/s00380-022-02231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 02/01/2023]
Abstract
Chronic heart failure (CHF), a conventional, complex, and severe syndrome, is generally defined by myocardial output inadequate to satisfy the metabolic requirements of body tissues. Recently, miR-568 was identified to be down-regulated in CHF patients' sera and negatively correlated with left ventricular mass index in symptomatic CHF patients with systolic dysfunction. Nevertheless, the role of miR-568 during CHF development remains obscure. The current study is aimed to investigate the role of miR-568 in CHF. The MTT assay, flow cytometry analysis, RT-qPCR analysis, western blot analysis and luciferase reporter assays were conducted to figure out the function and potential mechanism of miR-568 in vitro. Rats were operated with aortic coarctation to establish CHF animal model. The effects of miR-568 and SMURF2 on CHF rats were evaluated by hematoxylin-eosin staining, Masson's staining, serum index testing, cardiac ultrasound detection, and TUNEL staining assays. We discovered that miR-568 level was downregulated by H2O2 treatment in cardiomyocytes. In mechanism, miR-568 directly targeted and negatively regulated SMURF2. In function, SMURF2 overexpression reversed the effects of miR-568 on cardiac function and histological changes in vivo. Additionally, SMURF2 overexpression reversed the effects of miR-568 on the content of LDH, AST, CK and CK-MB in vivo. Moreover, SMURF2 overexpression reversed the effects of miR-568 on oxidative stress response in vivo. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in CHF rats. This discovery may serve as a potential biomarker for CHF treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Jun Yin
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Yong Zou
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
13
|
Wang M, Luo W, Yu T, Liang S, Zou C, Sun J, Li G, Liang G. Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154387. [PMID: 36027716 DOI: 10.1016/j.phymed.2022.154387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heart failure is a common event in the course of hypertension. Recent studies have highlighted the key role of the non-hemodynamic activity of angiotensin II (Ang II) in hypertension-related cardiac inflammation and remodeling. A naturally occurring compound, diacerein, exhibits anti-inflammatory activities in various systems. HYPOTHESIS/PURPOSE In this study, we have examined the potential effects of diacerein on Ang II-induced heart failure. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop hypertensive heart failure. Mice were treated with diacerein by gavage for final 2 weeks. RNA-sequencing analysis was performed to explore the potential mechanism of diacerein. RESULTS We found that diacerein could inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of blood pressure. To explore the potential mechanism of diacerein, RNA-sequencing analysis was performed, indicating that MAPKs/c-Myc pathway is involved in that cardioprotective effects of Diacerein. We further confirmed that diacerein inhibits Ang II-activated MAPKs/c-Myc pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Deficiency of MAPKs or c-Myc in cardiomyocytes abolished the anti-inflammatory effects of diacerein. CONCLUSION Our results indicate that diacerein protects hearts in Ang II-induced mice through inhibiting MAPKs/c-Myc-mediated inflammatory responses, rendering diacerein a potential therapeutic candidate agent for hypertensive heart failure.
Collapse
Affiliation(s)
- Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
14
|
Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines 2022; 10:biomedicines10092178. [PMID: 36140279 PMCID: PMC9496565 DOI: 10.3390/biomedicines10092178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac fibrosis is a common pathological consequence of most myocardial diseases. It is associated with the excessive accumulation of extracellular matrix proteins as well as fibroblast differentiation into myofibroblasts in the cardiac interstitium. This structural remodeling often results in myocardial dysfunctions such as arrhythmias and impaired systolic function in patients with heart conditions, ultimately leading to heart failure and death. An understanding of the precise mechanisms of cardiac fibrosis is still limited due to the numerous signaling pathways, cells, and mediators involved in the process. This review article will focus on the pathophysiological processes associated with the development of cardiac fibrosis. In addition, it will summarize the novel strategies for anti-fibrotic therapies such as epigenetic modifications, miRNAs, and CRISPR technologies as well as various medications in cellular and animal models.
Collapse
|
15
|
Li RJ, Xu JJ, Zhang ZH, Chen MW, Liu SX, Yang C, Li YL, Luo P, Liu YJ, Tang R, Shan ZG. Rhein ameliorates transverse aortic constriction-induced cardiac hypertrophy via regulating STAT3 and p38 MAPK signaling pathways. Front Pharmacol 2022; 13:940574. [PMID: 36091816 PMCID: PMC9459036 DOI: 10.3389/fphar.2022.940574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The progression from compensatory hypertrophy to heart failure is difficult to reverse, in part due to extracellular matrix fibrosis and continuous activation of abnormal signaling pathways. Although the anthraquinone rhein has been examined for its many biological properties, it is not clear whether it has therapeutic value in the treatment of cardiac hypertrophy and heart failure. In this study, we report for the first time that rhein can ameliorate transverse aortic constriction (TAC)-induced cardiac hypertrophy and other cardiac damage in vivo and in vitro. In addition, rhein can reduce cardiac hypertrophy by attenuating atrial natriuretic peptide, brain natriuretic peptide, and β-MHC expression; cardiac fibrosis; and ERK phosphorylation and transport into the nucleus. Furthermore, the inhibitory effect of rhein on myocardial hypertrophy was similar to that of specific inhibitors of STAT3 and ERK signaling. In addition, rhein at therapeutic doses had no significant adverse effects or toxicity on liver and kidney function. We conclude that rhein reduces TAC-induced cardiac hypertrophy via targeted inhibition of the molecular function of ERK and downregulates STAT3 and p38 MAPK signaling. Therefore, rhein might be a novel and effective agent for treating cardiac hypertrophy and other cardiovascular diseases.
Collapse
Affiliation(s)
- Run-Jing Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jia-Jia Xu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng-Hao Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Min-Wei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shi-Xiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-Ling Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Jiang Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| | - Zhong-Gui Shan
- Department of Cardiac Surgery, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| |
Collapse
|
16
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
17
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
19
|
Dille M, Nikolic A, Wahlers N, Fahlbusch P, Jacob S, Hartwig S, Lehr S, Kabra D, Klymenko O, Al-Hasani H, Kotzka J, Knebel B. Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166286. [PMID: 34624498 DOI: 10.1016/j.bbadis.2021.166286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
Chronic stress leads to post-traumatic stress disorder (PTSD) and metabolic disorders including fatty liver. We hypothesized that stress-induced molecular mechanisms alter energy metabolism, thereby promoting hepatic lipid accumulation even after a stress-free recovery period. In this context, we investigated fibroblast growth factor-21 (FGF21) as protective for energy and glucose homeostasis. FGF21 knockout mice (B6.129S6(SJL)-Fgf21tm1.2Djm; FGF21KO) and control mice (C57BL6; WT) were subjected to chronic variable stress. Mice were examined directly after acute intervention (Cvs) and long-term after 3 months of recovery (3mCvs). In WT, Cvs reduced insulin sensitivity and hepatic lipid accumulation, whilst fatty acid uptake increased. FGF21KO mice responded to Cvs with improved glucose tolerance, insulin resistance but liver triglycerides and plasma lipids were unaltered. Hepatic gene expression was specifically altered by genotype and stress e.g. by PPARa and SREBP-1 regulated genes. The stress-induced alteration of hepatic metabolism persisted after stress recovery. In hepatocytes at 3mCvs, differential gene regulation and secreted proteins indicated a genotype specific progression of liver dysfunction. Overall, at 3mCvs FGF21 was involved in maintaining mitochondrial activity, attenuating de novo lipogenesis, increased fatty acid uptake and histone acetyltransferase activity. Glucocorticoid release and binding to the FGF21 promoter may contribute to prolonged FGF21 release and protection against hepatic lipid accumulation. In conclusion, we showed that stress favors fatty liver disease and FGF21 protected against hepatic lipid accumulation after previous chronic stress loading by i) restored physiological function, ii) modulated gene expression via DNA-modifying enzymes, and iii) maintained energy metabolism.
Collapse
Affiliation(s)
- Matthias Dille
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Aleksandra Nikolic
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Natalie Wahlers
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pia Fahlbusch
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sylvia Jacob
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sonja Hartwig
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dhiraj Kabra
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Oleksiy Klymenko
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry und Pathobiochemistry, German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
20
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Zúñiga-Muñoz A, García-Niño WR, Carbó R, Navarrete-López LÁ, Buelna-Chontal M. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci 2021; 277:119599. [PMID: 33989666 DOI: 10.1016/j.lfs.2021.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.
Collapse
Affiliation(s)
- Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Wylly-Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Roxana Carbó
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Luis-Ángel Navarrete-López
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico.
| |
Collapse
|
22
|
Li X, Yang Y, Chen S, Zhou J, Li J, Cheng Y. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci 2021; 271:119186. [PMID: 33577852 DOI: 10.1016/j.lfs.2021.119186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.
Collapse
Affiliation(s)
- Xuping Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sixuan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jingyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
23
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|