1
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Liu X, Li A, Luo G, Zhu J. Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum. Foods 2024; 13:3641. [PMID: 39594056 PMCID: PMC11594126 DOI: 10.3390/foods13223641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Drought adversely affects plant growth, which leads to reduced crop yields and exacerbates food insecurity. Late embryogenesis abundant (LEA) proteins are crucial for plants' responses to abiotic stresses. This research further investigates the role of SiLEA5 by utilizing transgenic tomatoes under drought stress. The expression of SiLEA5 was upregulated under drought and abscisic acid (ABA) treatment, resulting in decreased electrolyte leakage and malondialdehyde content, alongside increased levels of osmotic regulators and antioxidant enzyme activity. These biochemical alterations reduce oxidative damage and enhance drought resistance. qRT-PCR analysis revealed the upregulation of ABA signaling genes and key enzymes involved in proline biosynthesis (P5CS) and dehydrin (DHN) synthesis under drought stress. Additionally, overexpression of SiLEA5 increased the net photosynthetic rate (Pn) and fruit yield of tomatoes by regulating stomatal density and aperture. These findings suggest that SiLEA5 may be a potential target for improving drought tolerance in tomatoes and other crops.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye 734000, China;
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| | - Aowei Li
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| | - Guanghong Luo
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye 734000, China;
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
3
|
Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant Growth Regulators: An Overview of WOX Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:3108. [PMID: 39520025 PMCID: PMC11548557 DOI: 10.3390/plants13213108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The adaptation of plants to land requires sophisticated biological processes and signaling. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signaling pathways in plants during stress and growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are TFs that are part of the homeodomain (HD) family, which is important for the maintenance of apical meristem, stem cell niche, and other cellular processes. The WOX gene family is divided into three clades: ancient, intermediate, and modern (WUS) based on historical evolution linkage. The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. Numerous research studies have discovered that the WOX gene family play a role in the whole plant's growth and development, such as in the stem, embryo, root, flower, and leaf. This review comprehensively analyzes roles of the WOX gene family across various plant species, highlighting the evolutionary significance and potential biotechnological applications in stress resistance and crop improvement.
Collapse
Affiliation(s)
- Haroon Rasheed
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Chichi Winarsih
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Haping Road 105, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| |
Collapse
|
4
|
Li M, Fan D, Wen Z, Meng J, Li P, Cheng T, Zhang Q, Sun L. Genome-wide identification of the Dof gene family: How it plays a part in mediating cold stress response in Prunus mume. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109215. [PMID: 39515001 DOI: 10.1016/j.plaphy.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
DNA binding with a finger transcription factor (Dof) takes part in several plant physiological activities such as seed germination, flowering time, cold and drought resistance. Although the function, molecular phylogeny and expression pattern of Dof genes in Prunus mume was not clear yet. Here, the gene structure, motif, chromosome location and phylogenetic relationship of the Dof gene family in Prunus species was explored. We identified 24 members of the Dof gene family from P. mume, which were divided into 3 different subgroups. All these PmDof genes can be mapped to the pseudochromosome. Only one pair of tandem duplication genes are located in Chr3, whereas 8 pairs of segmentally duplicated PmDof genes located in Chr1, Chr2, Chr4, Chr5, and Chr7. Motif and gene structure analysis showed that each group had a similar conservative motif and similar exon/intron composition. Cis-acting elements analysis indicate that PmDofs may be involved in regulating abiotic stress response. Gene expression patterns showed that most PmDofs genes were specifically expressed in different tissues and at different stages. We next found that PmDofs genes display an obvious expression preference or specificity in cold stress response according to qRT-PCR analysis. We further observe a great cold resistance in PmDof10/11/20 OE lines, they showed lower electrolyte leakage rate, MDA content and higher soluble sugar/protein, POD/SOD/proline content than WT after -5 °C 6h freezing treatment. This research offers fresh perspectives on the development of PmDofs, enhancing our comprehension of the structure and role of plant Dof gene families.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongqing Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhenying Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Juan Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lidan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
6
|
Liu X, Wang T, Ruan Y, Xie X, Tan C, Guo Y, Li B, Qu L, Deng L, Li M, Liu C. Comparative Metabolome and Transcriptome Analysis of Rapeseed ( Brassica napus L.) Cotyledons in Response to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2212. [PMID: 39204648 PMCID: PMC11360269 DOI: 10.3390/plants13162212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant (GX74) and -sensitive (XY15) rapeseeds. The mesophyll cells in cold-treated XY15 were severely damaged compared to slightly damaged cells in GX74. The fructose, glucose, malondialdehyde, and proline contents increased after cold stress in both genotypes; however, GX74 had significantly higher content than XY15. The pyruvic acid content increased after cold stress in GX74, but decreased in XY15. Metabolome analysis detected 590 compounds, of which 32 and 74 were differentially accumulated in GX74 (CK vs. cold stress) and XY15 (CK vs. cold stressed). Arachidonic acid and magnoflorine were the most up-accumulated metabolites in GX74 subjected to cold stress compared to CK. There were 461 and 1481 differentially expressed genes (DEGs) specific to XY15 and GX74 rapeseeds, respectively. Generally, the commonly expressed genes had higher expressions in GX74 compared to XY15 in CK and cold stress conditions. The expression changes in DEGs related to photosynthesis-antenna proteins, chlorophyll biosynthesis, and sugar biosynthesis-related pathways were consistent with the fructose and glucose levels in cotyledons. Compared to XY15, GX74 showed upregulation of a higher number of genes/transcripts related to arachidonic acid, pyruvic acid, arginine and proline biosynthesis, cell wall changes, reactive oxygen species scavenging, cold-responsive pathways, and phytohormone-related pathways. Taken together, our results provide a detailed overview of the cold stress responses in rapeseed cotyledons.
Collapse
Affiliation(s)
- Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Xiang Xie
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengfang Tan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Chen BC, Wu XJ, Guo HC, Xiao JP. Effects of appropriate low-temperature treatment on the yield and quality of pigmented potato (Solanum tuberosum L.) tubers. BMC PLANT BIOLOGY 2024; 24:274. [PMID: 38605295 PMCID: PMC11007950 DOI: 10.1186/s12870-024-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.
Collapse
Affiliation(s)
- Bi-Cong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Xiao-Jie Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Hua-Chun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China.
| |
Collapse
|
8
|
Wei W, Ju J, Zhang X, Ling P, Luo J, Li Y, Xu W, Su J, Zhang X, Wang C. GhBRX.1, GhBRX.2, and GhBRX4.3 improve resistance to salt and cold stress in upland cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1353365. [PMID: 38405586 PMCID: PMC10884310 DOI: 10.3389/fpls.2024.1353365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Introduction Abiotic stress during growth readily reduces cotton crop yield. The different survival tactics of plants include the activation of numerous stress response genes, such as BREVIS RADIX (BRX). Methods In this study, the BRX gene family of upland cotton was identified and analyzed by bioinformatics method, three salt-tolerant and cold-resistant GhBRX genes were screened. The expression of GhBRX.1, GhBRX.2 and GhBRXL4.3 in upland cotton was silenced by virus-induced gene silencing (VIGS) technique. The physiological and biochemical indexes of plants and the expression of related stress-response genes were detected before and after gene silencing. The effects of GhBRX.1, GhBRX.2 and GhBRXL4.3 on salt and cold resistance of upland cotton were further verified. Results and discussion We discovered 12, 6, and 6 BRX genes in Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. Chromosomal localization indicated that the retention and loss of GhBRX genes on homologous chromosomes did not have a clear preference for the subgenomes. Collinearity analysis suggested that segmental duplications were the main force for BRX gene amplification. The upland cotton genes GhBRX.1, GhBRX.2 and GhBRXL4.3 are highly expressed in roots, and GhBRXL4.3 is also strongly expressed in the pistil. Transcriptome data and qRT‒PCR validation showed that abiotic stress strongly induced GhBRX.1, GhBRX.2 and GhBRXL4.3. Under salt stress and low-temperature stress conditions, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and the content of soluble sugar and chlorophyll decreased in GhBRX.1-, GhBRX.2- and GhBRXL4.3-silenced cotton plants compared with those in the control (TRV: 00). Moreover, GhBRX.1-, GhBRX.2- and GhBRXL4.3-silenced cotton plants exhibited greater malondialdehyde (MDA) levels than did the control plants. Moreover, the expression of stress marker genes (GhSOS1, GhSOS2, GhNHX1, GhCIPK6, GhBIN2, GhSnRK2.6, GhHDT4D, GhCBF1 and GhPP2C) decreased significantly in the three target genes of silenced plants following exposure to stress. These results imply that the GhBRX.1, GhBRX.2 and GhBRXL4.3 genes may be regulators of salt stress and low-temperature stress responses in upland cotton.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xueli Zhang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pingjie Ling
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jin Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenjuan Xu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Center for Western Agricultural Research, Chinese Academy of Agricultural Sciences (CAAS), Changji, China
| | - Xianliang Zhang
- Center for Western Agricultural Research, Chinese Academy of Agricultural Sciences (CAAS), Changji, China
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences (CAAS), Anyang, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Xiang H, Wang S, Liang X, Wang X, Xie H, Wang D, Gai Z, Wang N, Xiang P, Han D, Shan D, Li Y, Li W. Foliar spraying of exogenous uniconazole (S3307) at the flowering stage as an effective method to resist low-temperature stress on mung bean [Vigna radiata (L.) Wilczek]. Sci Rep 2023; 13:22331. [PMID: 38102232 PMCID: PMC10724285 DOI: 10.1038/s41598-023-49652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Low temperature is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with low-temperature stress. Uniconazole (S3307) could play a significant role in the alleviation of abiotic stress in plants. In this study, the effects of S3307 on the reactive oxygen species (ROS) and antioxidant metabolism were studied in the leaves of mung bean [Vigna radiata (L.) Wilczek]. The experimental results showed that the low-temperature induced accumulation of superoxide anion (O2-) production rate, and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were found to alleviate oxidative damage under low temperatures. While, S3307 could reduce O2- production rate and MDA contents and increase the activities of SOD, POD, and CAT, slowed the decrease in ascorbic acid (AsA), dehydroascorbic acid (DHA), glutathione (GSH), and oxidized glutathione (GSSG), and promoted increase in soluble sugars (SS), soluble proteins (SP), and proline (Pro) content under low-temperature. At the same time, low temperature leads to lower 100 grain weight and number of grains per plant, which eventually causes yield reduction decreased. Foliar spraying of S3307 could alleviate the yield loss caused by low temperature, and the increase of S3307 treatment was 5.1%-12.5% and 6.3%-32.9% for the two varieties, respectively, compared with CK. In summary, exogenous S3307 pretreatment enhances plant tolerance to low-temperature by improving the antioxidant enzyme activities, increased non-enzymatic antioxidants content, and decreased O2- production rate and MDA contents and inducing alterations in endogenous S3307, and reduce the decrease in mung bean yield.
Collapse
Affiliation(s)
- Hongtao Xiang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, Heilongjiang, China
| | - Xiaoyan Liang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, Heilongjiang, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Hongchang Xie
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Deming Wang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Zhijia Gai
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Nannan Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Peng Xiang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Dongwei Han
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Dapeng Shan
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Yichu Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Wan Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
10
|
Huang D, An Q, Huang S, Tan G, Quan H, Chen Y, Zhou J, Liao H. Biomod2 modeling for predicting the potential ecological distribution of three Fritillaria species under climate change. Sci Rep 2023; 13:18801. [PMID: 37914761 PMCID: PMC10620159 DOI: 10.1038/s41598-023-45887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.
Collapse
Affiliation(s)
- Deya Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Guodong Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
11
|
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, Chen J, H.M. Siddique K, Li B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater Today Bio 2023; 22:100759. [PMID: 37600356 PMCID: PMC10433128 DOI: 10.1016/j.mtbio.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A sustainable and resilient crop production system is essential to meet the global food demands. Traditional chemical-based farming practices have become ineffective due to increased population pressures and extreme climate variations. Recently, nanobiotechnology is considered to be a promising approach for sustainable crop production by improving the targeted nutrient delivery, pest management efficacy, genome editing efficiency, and smart plant sensor implications. This review provides deeper mechanistic insights into the potential applications of engineered nanomaterials for improved crop stress resilience and productivity. We also have discussed the technology readiness level of nano-based strategies to provide a clear picture of our current perspectives of the field. Current challenges and implications in the way of upscaling nanobiotechnology in the crop production are discussed along with the regulatory requirements to mitigate associated risks and facilitate public acceptability in order to develop research objectives that facilitate a sustainable nano-enabled Agri-tech revolution. Conclusively, this review not only highlights the importance of nano-enabled approaches in improving crop health, but also demonstrated their roles to counter global food security concerns.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
12
|
Sajid M, Amjid M, Munir H, Valipour M, Rasul F, Khil A, Alqahtani MD, Ahmad M, Zulfiqar U, Iqbal R, Ali MF, Ibtahaj I. Enhancing Sugarcane Yield and Sugar Quality through Optimal Application of Polymer-Coated Single Super Phosphate and Irrigation Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3432. [PMID: 37836172 PMCID: PMC10574698 DOI: 10.3390/plants12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The judicious use of crop input is of prime importance for achieving a considerable output with a low-cost input. A two-year field experimentation was executed to assess the effect of varying polymer-coated single super phosphate (SSP) regimes on the yield and quality of sugarcane under differential water regimes. A two-factor study was executed under a randomized complete block design with a split-plot arrangement. The CPF-249 sugarcane variety was planted during the 2019-2020 period and the 2020-2021 period. The experiment consisted of four levels of polymer-coated SSP, i.e., control, 90, 110, and 130 kg ha-1, and three water regimes, which consisted of a number of irrigations, i.e., 18 irrigations, 15 irrigations, and 12 irrigations. Moreover, the water regimes were kept in the main plot, whereas the polymer-coated supplement was allocated in a subplot and replicated thrice. The data on the yield components and sugar-related traits were recorded during both years of study, and the treatment means were differentiated using an LSD test at a 95% confidence interval. Summating the findings of this study, a significant variation was revealed under the subject levels of both factors. Statistically, a 110 kg ha-1 polymer-coated SSP dose, along with 18 irrigations, declared the highest millable canes, stripped cane yield, and unstripped cane yield, followed by the 130 kg ha-1 treatment. Additionally, the highest pol% and cane sugar recovery % were recorded under 12 irrigations along with 130 kg ha-1 during both years. Similarly, the °Brix value was also significantly affected by 12 irrigations when 110 kg ha-1 of polymer-coated SSP was used. The unstripped cane yield had a strong positive correlation with the stripped cane yield, millable canes, and the number of internodes. Moreover, the commercial cane sugar % resulted in a strong positive correlation with the pol%, whereas the cane sugar recovery % revealed a strong positive correlation with the pol% and commercial cane sugar %.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Muhammad Amjid
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Hassan Munir
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Aka Khil
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A & F University, Xianyang 712100, China;
| | - Iqra Ibtahaj
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
13
|
Nikolić N, Ghirardelli A, Schiavon M, Masin R. Effects of the salinity-temperature interaction on seed germination and early seedling development: a comparative study of crop and weed species. BMC PLANT BIOLOGY 2023; 23:446. [PMID: 37736710 PMCID: PMC10515249 DOI: 10.1186/s12870-023-04465-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Weeds represent a great constraint for agricultural production due to their remarkable adaptability and their ability to compete with crops. Climate change exacerbates the abiotic stresses that plants encounter. Therefore, studying plant responses to adverse conditions is extremely important. Here, the response to saline stress at different temperatures of three weed species (Chenopodium album, Echinochloa crus-galli and Portulaca oleracea) and three crops (maize, soybean and rice) was investigated. RESULTS The germination percentage of soybean notably decreased as salinity and low temperatures increased. In contrast, maize and rice consistently maintained a high germination percentage, particularly when subjected to low salinity levels. Regarding weed species, the germination percentage of C. album was not significantly affected by salinity, but it decreased in E. crus-galli and P. oleracea with increasing salinity. The mean germination time for all species increased with salinity, especially at lower temperatures. This effect was most pronounced for soybean and E. crus-galli. C. album exhibited significant reduction in stem growth with high salinity and high temperatures, while in E. crus-galli stem growth was less reduced under similar conditions. CONCLUSION This study showed that successful germination under saline stress did not ensure successful early development and emphasizes the species-specific nature of the temperature-salinity interaction, perhaps influenced by intraspecific variability. Increasing salinity levels negatively impacted germination and seedling growth in most species, yet higher temperatures partially alleviated these effects.
Collapse
Affiliation(s)
- Nebojša Nikolić
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy.
| | - Aurora Ghirardelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences - DISAFA, University of Turin, Grugliasco, TO, 10095, Italy
| | - Roberta Masin
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| |
Collapse
|
14
|
Liu J, Wang H, Su M, Li Q, Xu H, Song J, Li C, Li Q. A Transcription Factor SlNAC4 Gene of Suaeda liaotungensis Enhances Salt and Drought Tolerance through Regulating ABA Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2951. [PMID: 37631162 PMCID: PMC10459557 DOI: 10.3390/plants12162951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) transcription factors are ubiquitously distributed in plants and play critical roles in the construction of plant organs and abiotic stress response. In this study, we described the cloning of a Suaeda liaotungensis K. NAC transcription factor gene SlNAC4, which contained 1450 bp, coding a 331 amino acid. We found that SlNAC4 was highly expressed in stems of S. liaotungensis, and the expression of SlNAC4 was considerably up-regulated after salt, drought, and ABA treatments. Transcription analysis and subcellular localization demonstrated that the SlNAC4 protein was located both in the nucleus and cytoplasm, and contained a C-terminal transcriptional activator. The SlNAC4 overexpression Arabidopsis lines significantly enhanced the tolerance to salt and drought treatment and displayed obviously increased activity of antioxidant enzymes under salt and drought stress. Additionally, transgenic plants overexpressing SlNAC4 had a significantly higher level of physiological indices. Interestingly, SlNAC4 promoted the expression of ABA metabolism-related genes including AtABA1, AtABA3, AtNCED3, AtAAO3, but inhibited the expression of AtCYP707A3 in overexpression lines. Using a yeast one-hybrid (Y1H) assay, we identified that the SlNAC4 transcription factor could bind to the promoters of those ABA metabolism-related genes. These results indicate that overexpression of SlNAC4 in plants enhances the tolerance to salt and drought stress by regulating ABA metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiuli Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
15
|
Moradi M, Khaleghi A, Khadivi A. Morphological variability of wild-growing crown imperial (Fritillaria imperialis L.) germplasm in central region of Iran-implications for in-situ conservation initiatives. BMC PLANT BIOLOGY 2023; 23:12. [PMID: 36604620 PMCID: PMC9817337 DOI: 10.1186/s12870-022-04032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Crown imperial (Fritillaria imperialis L.) is a threatened bulbous plant which has great ornamental and medicinal values and importance. In the present study, a total of 100 specimens of wild-growing F. imperialis from 10 natural areas of Markazi province, Iran, representing one of the main centers of genetic diversity of this species, were evaluated using 37 phenotypic attributes during April 2021. RESULTS High level of genetic variation within populations (75%) and low levels of genetic variation among populations (25%) was revealed. The highest coefficient of variation (CV) was found in leaf trichome (82.00%) and then margin of crown leaves (80.44%). In addition, flower color (CV = 50.86%), flower number (CV = 44.61%), peduncle diameter (CV = 33.44%), and plant length (CV = 32.55%)-all important from an ornamental point of view- showed relatively high CV values. The CV was the lowest for flower shape, filament color, bulb shape, bulblet number, and floral scent. Ward cluster analysis identified two main clusters, containing 14 and 86 specimens, respectively. The first group consisted mainly of specimens from the adjacent Shahbaz and Rasvand populations. According to the principal component analysis (PCA), the first six components of data accounted for 88.36% of total variance. The Shahbaz-1, Shahbaz-2, Shahbaz-6, Shahbaz-7, Shahbaz-9, and Bolagh-8 specimens showed the highest variation and were separated from others, which they can be used further in breeding programs, while Sarchal-2, Bolagh-3, and Chepeqli-4 specimens showed the lowest variability. Moreover, the studied populations were clustered into four distinct groups, each including populations that were geographically close to one another. CONCLUSIONS Although the examined specimens revealed high genetic diversity herein, the results indicated that wild-growing populations of F. imperialis are still at risk suffering from overcollection in the most of studied areas, especially in Deh-Sad and Tureh.
Collapse
Affiliation(s)
- Mohammad Moradi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Alireza Khaleghi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
16
|
Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci Rep 2022; 12:19602. [PMID: 36379972 PMCID: PMC9666524 DOI: 10.1038/s41598-022-24144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
Collapse
|
17
|
Liu L, Li H, Li N, Li S, Guo J, Li X. Parental salt priming improves the low temperature tolerance in wheat offspring via modulating the seed proteome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111428. [PMID: 36007631 DOI: 10.1016/j.plantsci.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Na Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
18
|
Hajihashemi S, Jahantigh O, Alboghobeish S. The redox status of salinity-stressed Chenopodium quinoa under salicylic acid and sodium nitroprusside treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1030938. [PMID: 36388511 PMCID: PMC9664220 DOI: 10.3389/fpls.2022.1030938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Spreading the cultivation of crops with high nutritional values such as quinoa demands a wide area of research to overcome the adverse effects of environmental stress. This study aimed at investigating the role of salicylic acid (SA) and sodium nitroprusside (SNP) as a nitric oxide donor, priming at improving the antioxidant defense systems in boosting salinity tolerance in Chenopodium quinoa. These two treatments, SA (0.1 mM) and SNP (0.2 mM), individually or in combination, significantly improved the function of both enzymatic and non-enzymatic antioxidants. SA and SNP priming significantly reduced superoxide dismutase activity, which was accompanied by a significant decrease in hydrogen peroxide accumulation under salinity stress (100 mM NaCl). The SA and SNP treatment increased the activity of enzymatic antioxidants (e.g., catalase, ascorbate peroxidase, peroxidase, and glutathione reductase) and the accumulation of non-enzymatic antioxidants (e.g. ascorbate-glutathione pools, α-tocopherol, phenols, flavonoids, anthocyanins, and carotenoids) to suppress the oxidative stress induced by salinity stress. Under SA and SNP treatment, the upregulation of antioxidant mechanisms induced a significant increase in chlorophyll florescence, chlorophylls, carotenoids, and proteins, as well as a significant reduction in the malondialdehyde content in salinity-stressed plants. In addition, the foliar application of SA or/and SNP led to a significant increase in the accumulation of osmoprotectant molecules of sugars and proline to overcome osmotic stress induced by salinity stress. In conclusion, SA and SNP priming can effectively combat salinity stress through improving the redox status of plants.
Collapse
|
19
|
Liu Z, Li Z, Wu S, Yu C, Wang X, Wang Y, Peng Z, Gao Y, Li R, Shen Y, Duan L. Coronatine Enhances Chilling Tolerance of Tomato Plants by Inducing Chilling-Related Epigenetic Adaptations and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:10049. [PMID: 36077443 PMCID: PMC9456409 DOI: 10.3390/ijms231710049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.
Collapse
Affiliation(s)
- Ziyan Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunxin Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ye Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuerong Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Runzhi Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liusheng Duan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Szuba A, Kalemba EM, Wawrzyniak MK, Suszka J, Chmielarz P. Deterioration in the Quality of Recalcitrant Quercus robur Seeds during Six Months of Storage at Subzero Temperatures: Ineffective Activation of Prosurvival Mechanisms and Evidence of Freezing Stress from an Untargeted Metabolomic Study. Metabolites 2022; 12:756. [PMID: 36005628 PMCID: PMC9413681 DOI: 10.3390/metabo12080756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Pedunculate oak (Quercus robur L.) is an economically important forest-forming species in Poland that produces seeds that are sensitive to desiccation; therefore, short-lived seeds are classified as recalcitrant. Such seeds display active metabolism throughout storage. Acorns stored under controlled conditions (moisture content of 40%, temperature -3 °C) maintain viability for up to 1.5-2 years. Meanwhile, oaks only produce large numbers of seeds every few years during so-called mast years. This results in a scarcity of good-quality seeds for continuous nursery production and restoration. The recalcitrant storage behavior and the requirements of foresters make it necessary to develop a new protocol for longer acorn storage at lower temperatures. Two storage temperatures were tested: -3 °C (currently used in forest practice) and -7 °C. Our results showed that acorns stored for six months exhibited deterioration and reduced germination capacity, as well as reduced seedling performance, particularly when acorns were stored at -7 °C. To elucidate the decrease in quality during storage, an untargeted metabolomics study was performed for the first time and supported with the analysis of carbohydrates and percentages of carbon (C) and nitrogen (N). Embryonic axes were characterized by a lower C:N ratio and higher hydration. A total of 1985 metabolites were detected, and 303 were successfully identified and quantified, revealing 44 known metabolites that displayed significantly up- or downregulated abundance. We demonstrated for the first time that the significant deterioration of seed germination potential, particularly in seeds stored at -7 °C, was accompanied by an increased abundance of phenolic compounds and carbohydrates but also amino acids and phosphorylated monosaccharides, particularly in the embryonic axes. The increased abundance of defense-related metabolites (1,2,4-Benzenetriol; BTO), products of ascorbic acid degradation (threonic and isothreonic acid), as well as antifreezing compounds (sugar alcohols, predominantly threitol), was reported in seed stored at -7 °C. We hypothesize that seed deterioration was caused by freezing stress experienced during six months of storage at -7 °C, a decline in antioxidative potential and the unsuccessful rerouting of the energy-production pathways. Additionally, our data are a good example of the application of high-throughput metabolomic tools in forest management.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, PL-62035 Kórnik, Poland
| | | | | | | | | |
Collapse
|
21
|
Abdullah, Mahmood A, Bibi S, Naqve M, Javaid MM, Zia MA, Jabbar A, Ud-Din W, Attia KA, Khan N, Al-Doss AA, Fiaz S. Physiological, Biochemical, and Yield Responses of Linseed ( Linum usitatissimum L.) in α-Tocopherol-Mediated Alleviation of Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:867172. [PMID: 35720587 PMCID: PMC9204098 DOI: 10.3389/fpls.2022.867172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2023]
Abstract
Exogenous application of antioxidants can be helpful for plants to resist salinity, which can be a potentially simple, economical, and culturally feasible approach, compared with introgression and genetic engineering. Foliar spraying of alpha-tocopherol (α-tocopherol) is an approach to improve plant growth under salinity stress. Alpha-tocopherol acts as an antioxidant preventing salinity-induced cellular oxidation. This study was designed to investigate the negative effects of salinity (0 and 120mM NaCl) on linseed (Linum usitatissimum L.) and their alleviation by foliar spraying of α-tocopherol (0, 100, and 200mg L-1). Seeds of varieties "Chandni and Roshni" were grown in sand-filled plastic pots, laid in a completely randomized design in a factorial arrangement, and each treatment was replicated three times. Salinity significantly affected linseed morphology and yield by reducing shoot and root dry weights, photosynthetic pigment (Chl. a, Chl. b, total Chl., and carotenoids) contents, mineral ion (Ca2+, K+) uptake, and 100-seed weight. Concomitantly, salinity increased Na+, proline, soluble protein, peroxidase, catalase, and superoxide dismutase activities in both varieties. Conversely, the growth and yield of linseed varieties were significantly restored by foliar spraying of α-tocopherol under saline conditions, improving shoot and root dry matter accumulation, photosynthetic pigment, mineral ion, proline, soluble protein contents, peroxidase, catalase, superoxide dismutase activities, and 100-seed weight. Moreover, foliar spray of α-tocopherol alleviated the effects of salinity stress by reducing the Na+ concentration and enhancing K+ and Ca2+ uptake. The Chandni variety performed better than the Roshni, for all growth and physiological parameters studied. Foliar spray of α-tocopherol (200mg L-1) alleviated salinity effects by improving the antioxidant potential of linseed varieties, which ultimately restored growth and yield. Therefore, the use of α-tocopherol may enhance the productivity of linseed and other crops under saline soils.
Collapse
Affiliation(s)
- Abdullah
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Safura Bibi
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Jabbar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Wasi Ud-Din
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Abdullah A. Al-Doss
- Biotechnology Lab, Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
22
|
Photosynthesis Mediated by RBOH-Dependent Signaling Is Essential for Cold Stress Memory. Antioxidants (Basel) 2022; 11:antiox11050969. [PMID: 35624833 PMCID: PMC9137663 DOI: 10.3390/antiox11050969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cold tolerance is improved by cold stress acclimation (CS-ACC), and the cold tolerance level is ‘remembered’ by plants. However, the underlying signaling mechanisms remain largely unknown. Here, the CS memory mechanism was studied by bioinformation, plant physiological and photosynthetic parameters, and gene expression. We found that CS-ACC induced the acquisition of CS memory and enhanced the maintenance of acquired cold tolerance (MACT) in cucumber seedlings. The H2O2 content and NADPH oxidase activity encoded by CsRBOH was maintained at higher levels during recovery after CS-ACC and inhibition of RBOH-dependent signaling after CS-ACC resulted in a decrease in the H2O2 content, NADPH oxidase activity, and MACT. CsRBOH2, 3, 4, and 5 showed high expression during recovery after CS-ACC. Many BZR-binding sites were identified in memory-responsive CsRBOHs promoters, and CsBZR1 and 3 showed high expression during recovery after CS-ACC. Inhibition of RBOH-dependent signaling or brassinosteroids affected the maintenance of the expression of these memory-responsive CsRBOHs and CsBZRs. The photosynthetic efficiency (PE) decreased but then increased with the prolonged recovery after CS-ACC, and was higher than the control at 48 h of recovery; however, inhibition of RBOH-dependent signaling resulted in a lower PE. Further etiolated seedlings experiments showed that a photosynthetic capacity was necessary for CS memory. Therefore, photosynthesis mediated by RBOH-dependent signaling is essential for CS memory.
Collapse
|
23
|
Pouris J, Levizou E, Karatassiou M, Meletiou-Christou MS, Rhizopoulou S. The Influence of the Partitioning of Sugars, Starch, and Free Proline in Various Organs of Cyclamen graecum on the Biology of the Species and Its Resistance to Abiotic Stressors. PLANTS 2022; 11:plants11091254. [PMID: 35567255 PMCID: PMC9104608 DOI: 10.3390/plants11091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
The geophyte Cyclamen graecum is native to the eastern Mediterranean. Its beautiful flowers with upswept pink petals appear during early autumn, after the summer drought period and before leaf expansion in late autumn. The floral and leaf development alternates with their cessation in early winter and late spring, respectively. Ecophysiological parameters and processes underlining the life-cycle of C. graecum have not previously been published. Seasonal fluctuations of sugars, starch, and free proline have been investigated in tubers, leaves, pedicels, and petals, as well as petal and leaf water status. At the whole plant level, the seasonal co-existence of leaves and flowers is marked by an elevated soluble sugar content, which was gradually reduced as the above-ground plant parts shed. The sugar content of petals and pedicels was lower than that of leaves and tubers. Leaf starch content increased from late autumn to spring and was comparable to that of tubers. The starch content in petals and pedicels was substantially lower than that of tubers and leaves. In tubers, monthly proline accumulation was sustained at relatively constant values. Although the partitioning of proline in various organs did not show a considerable seasonal variation, resulting in an unchanged profile of the trends between tubers, leaves, and flowers, the seasonal differences in proline accumulation were remarkable at the whole plant level. The pronounced petal proline content during the flowering period seems to be associated with the maintenance of floral turgor. Leaf proline content increased with the advance of the growth season. The values of leaf relative water content were sustained fairly constant before the senescence stage, but lower than the typical values of turgid and transpiring leaves. Relationships of the studied parameters with rainfall indicate the responsiveness of C. graecum to water availability in its habitat in the Mediterranean ecosystem.
Collapse
Affiliation(s)
- John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece;
| | - Maria Karatassiou
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environnent, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria-Sonia Meletiou-Christou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
- Correspondence: ; Tel.: +30-210-727-4513
| |
Collapse
|
24
|
Guo Z, Cai L, Liu C, Chen Z, Guan S, Ma W, Pan G. Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Sci Rep 2022; 12:6224. [PMID: 35418703 PMCID: PMC9008029 DOI: 10.1038/s41598-022-10420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
The sensitivity of rice to low-temperature stress (LTS), especially at the reproductive stage, is a primary factor of rice yield fluctuation in cold cultivate region. Here, the changes of reactive oxygen species (ROS), osmotic adjustment substances, and antioxidants in different tissues were analyzed during rice growing under low temperatures (LT) at the reproductive stage. Results showed that LTS increases the levels of proline (Pro), soluble protein (SP), glutathione (GSH), superoxidase (SOD), and ascorbate peroxidase (APX) in LJ25 (LTS-resistant) and LJ11 (LTS-sensitive). The activities of catalase (CAT) and peroxidase (POD) were significantly increased in LJ25 but decreased in LJ11 under LTS, while an opposite trend in ROS and malondialdehyde (MDA) was observed in both varieties. Moreover, most physicochemical properties were higher in flag leaves and panicles compared with those in leaf sheaths. The expression patterns of OsCOIN, OsCATC, OsMAP1, OsPOX1, and OsAPX were the same with phenotypic changes in Pro and the enzymes encoded by them, confirming the accuracy of the physicochemical analysis. Therefore, only CAT and POD increased more in LJ25, suggesting they could be the key factors used for LT-tolerant breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China.
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, China
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiwu Guan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China.
| |
Collapse
|
25
|
Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Zhang G, Liu Y, Jiang W. Cold Stress Resistance of Tomato ( Solanum lycopersicum) Seedlings Is Enhanced by Light Supplementation From Underneath the Canopy. FRONTIERS IN PLANT SCIENCE 2022; 13:831314. [PMID: 35498645 PMCID: PMC9039533 DOI: 10.3389/fpls.2022.831314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Adverse environmental conditions, such as low temperature (LT), greatly limit the growth and production of tomato. Recently, light-emitting diodes (LEDs) with specific spectra have been increasingly used in horticultural production facilities. The chosen spectrum can affect plant growth, development, and resistance, but the physiological regulatory mechanisms are largely unknown. In this study, we investigated the effects of LED light supplementation (W:B = 2:1, light intensity of 100 μmol⋅m-2⋅s-1, for 4 h/day from 9:00 to 13:00) from above and below the canopy on tomato resistance under sub-LT stress (15/8°C). The results showed that supplemental lighting from underneath the canopy (USL) promoted the growth of tomato seedlings, as the plant height, stem diameter, root activity, and plant biomass were significantly higher than those under LT. The activity of the photochemical reaction center was enhanced because of the increase in the maximal photochemical efficiency (F v /F m ) and photochemical quenching (qP), which distributed more photosynthetic energy to the photochemical reactions and promoted photosynthetic performance [the maximum net photosynthetic rate (Pmax) was improved]. USL also advanced the degree of stomatal opening, thus facilitating carbon assimilation under LT. Additionally, the relative conductivity (RC) and malondialdehyde (MDA) content were decreased, while the soluble protein content and superoxide dismutase (SOD) activity were increased with the application of USL under LT, thereby causing a reduction in membrane lipid peroxidation and alleviation of stress damage. These results suggest that light supplementation from underneath the canopy improves the cold resistance of tomato seedlings mainly by alleviating the degree of photoinhibition on photosystems, improving the activity of the photochemical reaction center, and enhancing the activities of antioxidant enzymes, thereby promoting the growth and stress resistance of tomato plants.
Collapse
Affiliation(s)
- Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangfan Song
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
- Natural Resources Bureau of Hutubi County in Xinjiang Province, Changji, China
| | - Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingcheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
| | - Guanhua Zhang
- Agriculture and Animal Husbandry Comprehensive Inspection and Testing Center of Chifeng, Chifeng, China
| | - Yuhong Liu
- Tibet Academy of Agriculture and Animal Husbandry Sciences Vegetable Research Institute, Lhasa, China
| | - Weijie Jiang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Hajihashemi S, Kazemi S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC PLANT BIOLOGY 2022; 22:148. [PMID: 35346042 PMCID: PMC8961914 DOI: 10.1186/s12870-022-03531-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nano-materials ameliorate the adverse effect of salinity stress on the physiological and biochemical processes in plants. The present investigation was designed to evaluate the physiological mechanisms through which a nano-chitosan-encapsulated nano-silicon fertilizer (NC-NS) can ameliorate the adverse effect of salinity stress on the wheat plants, and compare it with nano-chitosan (NC) and nano-silicon (NS) application. Nano-silicon was encapsulated with a chitosan-tripolyphosphate (TPP) nano-matrix by ionic gelation method for its slow release. The wheat plants were exposed to foliar application of distilled water, NC, NS, and NC-NS with two NaCl irrigation levels at 0 (distilled water) and 100 mM. RESULTS The foliar application of NC, NS, and NC-NS induced a significant increase in the function of enzymatic and non-enzymatic antioxidant systems of the wheat plants to equilibrate cellular redox homeostasis by balancing H2O2 content in the leaves and roots, as compared with salt-stressed plants without treatment. The plant's foliar-sprayed with NC, NS, and NC-NS solution exhibited a significant increase in the molecules with osmotic adjustment potentials such as proline, free amino acids, glycine betaine, and sugars to protect cells against osmotic stress-induced by salinity. The observed increase in the antioxidant power and osmoregulatory at NC, NS, and NC-NS application was accompanied by the protection of lipid membrane, proteins and photosynthetic apparatus against salinity stress. CONCLUSION In the present study, the beneficial role of NC, NS, and NC-NS application, particularly NC-NS, in alleviating the adverse effect of salinity stress on antioxidant systems and osmotic adjustment in wheat is well documented. An overview of the result of present study assists researchers in providing a potential solution for this increasing salinization threat in crops.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 63616-63973, Khuzestan, Iran.
| | - Shadi Kazemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 63616-63973, Khuzestan, Iran
| |
Collapse
|
27
|
Liu H, Bao G, Dou Z, Liu H, Bai J, Chen Y, Yuan Y, Zhang X, Xi J. Response characteristics of highland barley under freeze-thaw, drought and artemisinin stresses. BMC PLANT BIOLOGY 2022; 22:126. [PMID: 35300590 PMCID: PMC8932327 DOI: 10.1186/s12870-022-03520-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 05/08/2023]
Abstract
The freeze-thaw of early spring in China's Qinghai-Tibet Plateau is often accompanied by severe droughts. Artemisia annua, widely distributed in China, releases allelopathic substances, mainly artemisinin, to the environment and exerts a wide range of effects on crops. This paper studied the physiological effects of highland barley under freeze-thaw, drought, and artemisinin stress through indoor simulation experiments. The physiological response characteristics of superoxide dismutase (SOD) activity, catalase (POD) activity, net photosynthetic rate, relative water content (RWC), relative electrical conductivity, malondialdehyde (MDA) content, and soluble protein content in highland barley were analyzed. The results showed that artemisinin and drought contributed to the increase of SOD activity and the decrease of POD activity. Under the freeze-thaw stress, the SOD and POD activities both decreased firstly and then increased, but the effect of compound stress on POD was more complicated. Either artemisinin, drought, or low temperature could reduce the net photosynthetic rate of highland barley. Low temperature had more significant impacts on photosynthesis, and compound stress would show a single stress superimposed effect. Artemisinin, drought, and low temperature could reduce the RWC of highland barley, and increase the relative electrical conductivity and the concentration of soluble protein (except for low temperature stress above zero, which reduces the concentration of soluble protein). However, the effect of compound stress on soluble protein is more complex. The single stress of artemisinin and drought had no obvious effect on MDA content, while the MDA content was increased significantly under the freeze-thaw stress and the compound stress of artemisinin and drought, and the MDA content reached its peak at T1. The results are helpful to explore the effects of freeze-thaw, drought and artemisinin stress on the growth of highland barley under the background of the aridification of the Qinghai-Tibet Plateau, and provide ideas for rational agricultural management.
Collapse
Affiliation(s)
- Huichen Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun, China.
| | - Zihao Dou
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Haoyuan Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jingqi Bai
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yingyi Chen
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yifu Yuan
- College of Computer Science&Technology, Jilin University, Changchun, 130012, China
| | - Xin Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
28
|
Bilska-Kos A, Pietrusińska A, Suski S, Niedziela A, Linkiewicz AM, Majtkowski W, Żurek G, Zebrowski J. Cell Wall Properties Determine Genotype-Specific Response to Cold in Miscanthus × giganteus Plants. Cells 2022; 11:547. [PMID: 35159356 PMCID: PMC8834381 DOI: 10.3390/cells11030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/05/2023] Open
Abstract
The cell wall plays a crucial role in plant growth and development, including in response to environmental factors, mainly through significant biochemical and biomechanical plasticity. The involvement of the cell wall in C4 plants' response to cold is, however, still poorly understood. Miscanthus × giganteus, a perennial grass, is generally considered cold tolerant and, in contrast to other thermophilic species such as maize or sorgo, can maintain a relatively high level of photosynthesis efficiency at low ambient temperatures. This unusual response to chilling among C4 plants makes Miscanthus an interesting study object in cold acclimation mechanism research. Using the results obtained from employing a diverse range of techniques, including analysis of plasmodesmata ultrastructure by means of transmission electron microscopy (TEM), infrared spectroscopy (FTIR), and biomechanical tests coupled with photosynthetic parameters measurements, we present evidence for the implication of the cell wall in genotype-specific responses to cold in this species. The observed reduction in the assimilation rate and disturbance of chlorophyll fluorescence parameters in the susceptible M3 genotype under cold conditions were associated with changes in the ultrastructure of the plasmodesmata, i.e., a constriction of the cytoplasmic sleeve in the central region of the microchannel at the mesophyll-bundle sheath interface. Moreover, this cold susceptible genotype was characterized by enhanced tensile stiffness, strength of leaf wall material, and a less altered biochemical profile of the cell wall, revealed by FTIR spectroscopy, compared to cold tolerant genotypes. These changes indicate that a decline in photosynthetic activity may result from a decrease in leaf CO2 conductance due to the formation of more compact and thicker cell walls and that an enhanced tolerance to cold requires biochemical wall remodelling. Thus, the well-established trade-off between photosynthetic capacity and leaf biomechanics found across multiple species in ecological research may also be a relevant factor in Miscanthus' tolerance to cold. In this paper, we demonstrate that M. giganteus genotypes showing a high degree of genetic similarity may respond differently to cold stress if exposed at earlier growing seasons to various temperature regimes, which has implications for the cell wall modifications patterns.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Aleksandra Pietrusińska
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur, 02-093 Warsaw, Poland;
| | - Agnieszka Niedziela
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Anna M. Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland;
- Genetically Modified Organisms Controlling Laboratory, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Włodzimierz Majtkowski
- Botanical Garden, National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute—National Research Institute, Jeździecka 5, 85-867 Bydgoszcz, Poland;
| | - Grzegorz Żurek
- Department of Bioenergetics, Quality Analysis and Seed Science, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszów, Aleja Rejtana 16c, 35-959 Rzeszów, Poland;
| |
Collapse
|
29
|
Jayawardhane J, Goyali JC, Zafari S, Igamberdiev AU. The Response of Cowpea ( Vigna unguiculata) Plants to Three Abiotic Stresses Applied with Increasing Intensity: Hypoxia, Salinity, and Water Deficit. Metabolites 2022; 12:metabo12010038. [PMID: 35050160 PMCID: PMC8777733 DOI: 10.3390/metabo12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Exposing plants to gradually increasing stress and to abiotic shock represents two different phenomena. The knowledge on plants’ responses following gradually increasing stress is limited, as many of the studies are focused on abiotic shock responses. We aimed to investigate how cowpea (Vigna unguiculata (L.) Walp.) plants respond to three common agricultural abiotic stresses: hypoxia (applied with the increasing time of exposure to nitrogen gas), salinity (gradually increasing NaCl concentration), and water deficit (gradual decrease in water supply). We hypothesized that the cowpea plants would increase in tolerance to these three abiotic stresses when their intensities rose in a stepwise manner. Following two weeks of treatments, leaf and whole-plant fresh weights declined, soluble sugar levels in leaves decreased, and lipid peroxidation of leaves and roots and the levels of leaf electrolyte leakage increased. Polyphenol oxidase activity in both roots and leaves exhibited a marked increase as compared to catalase and peroxidase. Leaf flavonoid content decreased considerably after hypoxia, while it increased under water deficit treatment. NO emission rates after 3 h in the hypoxically treated plants were similar to the controls, while the other two treatments resulted in lower values of NO production, and these levels further decreased with time. The degree of these changes was dependent on the type of treatment, and the observed effects were more substantial in leaves than in roots. In summary, the responses of cowpea plants to abiotic stress depend on the type and the degree of stress applied and the plant organs.
Collapse
Affiliation(s)
- Jayamini Jayawardhane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (J.C.G.); (S.Z.)
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence: (J.J.); (A.U.I.)
| | - Juran C. Goyali
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (J.C.G.); (S.Z.)
- Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute of Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (J.C.G.); (S.Z.)
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (J.C.G.); (S.Z.)
- Correspondence: (J.J.); (A.U.I.)
| |
Collapse
|
30
|
Hajihashemi S, Skalicky M, Brestic M, Pavla V. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:160-170. [PMID: 34800820 DOI: 10.1016/j.plaphy.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Sodium nitroprusside (SNP), which produces nitric oxide (NO) has the well-documented potential to alleviate the adverse effects of various abiotic stressors such as salinity. The present study aimed at investigating how the application of SNP can ameliorate the adverse effects of salt stress and boost tolerance in Raphanus sativus. Salt stress induced by application of 100 or 200 mM NaCl significantly decreased photosynthetic pigments and chlorophyll fluorescence, followed by a significant reduction in carbohydrate content. SNP treatment increased salt-tolerance in plants by inhibiting the adverse effect of salinity on the photosynthetic apparatus and the accumulation of sugars. Salt stress was accompanied by a reduction in total antioxidant power (FRAP), accumulation of damaging levels of H2O2, lipid peroxidation, and reduction in protein, while SNP enhanced FRAP, reduced H2O2 and lipid peroxidation, and restored protein abundance. SNP treatment also increased hypocotyl growth of salt-stressed plants, accompanied by improvement in anatomical structure. Cross sections of the hypocotyl showed increased diameter of the central cylinder and thickness of the casparian strip in the SNP-treated plants under stress conditions. Indeed, the observed improvement in the growth of hypocotyl and leaves of salt-stressed radish plants treated with SNP, in parallel with improved physiology and anatomical features, suggested that NO can regulate diverse mechanisms to effectively increase salt tolerance.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-6361, Iran.
| | - Milan Skalicky
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Vachova Pavla
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| |
Collapse
|
31
|
Gu K, Hou S, Chen J, Guo J, Wang F, He C, Zou C, Xie X. The physiological response of different tobacco varieties to chilling stress during the vigorous growing period. Sci Rep 2021; 11:22136. [PMID: 34764409 PMCID: PMC8586257 DOI: 10.1038/s41598-021-01703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Tobacco is be sensitively affected by chilling injury in the vigorous growth period, which can easily lead to tobacco leaf browning during flue-curing and quality loss, however, the physiological response of tobacco in the prosperous period under low temperature stress is unclear. The physiological response parameters of two tobacco varieties to low temperature stress were determined. The main results were as follows: ① For tobacco in the vigorous growing period subjected to low-temperature stress at 4-16 °C, the tissue structure of chloroplast changed and photosynthetic pigments significantly decreased compared with each control with the increase of intensity of low-temperature stress. ② For tobacco in the vigorous growing period at 10-16 °C, antioxidant capacity of the protective enzyme system, osmotic adjustment capacity of the osmotic adjusting system and polyphenol metabolism in plants gradually increased due to induction of low temperature with the increase of intensity of low-temperature stress. ③ Under low-temperature stress at 4 °C, the protective enzyme system, osmotic adjusting system and polyphenol metabolism of the plants played an insignificant role in stress tolerance, which cannot be constantly enhanced based on low-temperature resistance at 10 °C. This study confirmed that under the temperature stress of 10-16 °C, the self-regulation ability of tobacco will be enhanced with the deepening of low temperature stress, but there is a critical temperature between 4 and 10 °C. The self-regulation ability of plants under low temperature stress will be inhibited.
Collapse
Affiliation(s)
- Kaiyuan Gu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shuang Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Jinfen Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Jinge Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fenfen Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chenggang He
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| | - Xiaoyu Xie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Wu H, Wu Z, Wang Y, Ding J, Zheng Y, Tang H, Yang L. Transcriptome and Metabolome Analysis Revealed the Freezing Resistance Mechanism in 60-Year-Old Overwintering Camellia sinensis. BIOLOGY 2021; 10:biology10100996. [PMID: 34681095 PMCID: PMC8533452 DOI: 10.3390/biology10100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary The freezing stress during overwintering brings great challenges to the normal growth of Camellia sinensis. The current research on C. sinensis mainly focuses on cold resistance, but less on freezing resistance. In the present study, the transcriptome and metabolome of C. sinensis under freezing stress were studied. Results showed that Pyr/PYL-PP2C-SnRK2 played a critical role in the signal transduction of freezing stress. Three metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis contributed to the freezing resistance of C. sinensis. This study provides substantial insights for the breeding of C. sinensis. Abstract Freezing stress in winter is the biggest obstacle to the survival of C. sinensis in mid-latitude and high-latitude areas, which has a great impact on the yield, quality, and even life of C. sinensis every year. In this study, transcriptome and metabolome were used to clarify the freezing resistance mechanism of 60-year-old natural overwintering C. sinensis under freezing stress. Next, 3880 DEGs and 353 DAMs were obtained. The enrichment analysis showed that pathways of MAPK and ABA played a key role in the signal transduction of freezing stress, and Pyr/PYL-PP2C-SnRK2 in the ABA pathway promoted stomatal closure. Then, the water holding capacity and the freezing resistance of C. sinensis were improved. The pathway analysis showed that DEGs and DAMs were significantly enriched and up-regulated in the three-related pathways of phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis. In addition, the carbohydrate and fatty acid synthesis pathways also had a significant enrichment, and the synthesis of these substances facilitated the freezing resistance. These results are of great significance to elucidate the freezing resistance mechanism and the freezing resistance breeding of C. sinensis.
Collapse
|
33
|
Amin B, Atif MJ, Wang X, Meng H, Ghani MI, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:785-796. [PMID: 33900017 DOI: 10.1111/plb.13276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Low temperature (LT) and high humidity (HH) are important environmental factors in greenhouses and plastic tunnels during the cold season, as they hamper plant growth and development. Here, we studied the effect of LT (day/night: 9/5 °C, 25/18 °C as control) and HH (95%, 80% as control) on young cucumber plants at the 2, 4 or 6 leaf stages. LT+HH stress resulted in a decline in shoot, root and total fresh and dry weights, and decreased Pn , gs , Tr , Fv /Fm , qP, ETR and chlorophyll, and increased MDA, H2 O2 , O2 - , NPQ and Ci as compared to the control at the 2 leaf stage. SOD, POD, CAT, APX and GR were upregulated under LT+HH stress as compared to the control at the 6 leaf stage. ABA and JA increased under LT+HH stress as compared to the control at the 6 leaf stage, while IAA and GA decreased under LT+HH stress as compared to the control at the 2 leaf stage. Our results show that LT+HH stress affects young cucumber plant photosynthetic efficiency, PSII activity, antioxidant defence system, ROS and hormone profile. Plants at the 6 leaf stage were more tolerant than at the 2 and 4 leaf stages under stress conditions.
Collapse
Affiliation(s)
- B Amin
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M J Atif
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - X Wang
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - H Meng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M I Ghani
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M Ali
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - Y Ding
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - X Li
- Tianjin Kerun Cucumber Research Institute, Tianjin, 300192, China
| | - Z Cheng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| |
Collapse
|
34
|
Arabia S, Shah MNA, Sami AA, Ghosh A, Islam T. Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1469-1485. [PMID: 34366590 PMCID: PMC8295428 DOI: 10.1007/s12298-021-01023-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED The amino acid, proline, is utilized by different organisms to offset cellular imbalances caused by environmental stresses. The wide use of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. A comprehensive analysis of the transcript abundance of proline metabolizing genes is fundamental for the assessment of function and regulation of each gene. Using available microarray data and quantitative real-time RT-PCR, the expression profiles of gene encoding key proline biosynthesis and degradation enzymes i.e., OAT, P5CS, P5CR and PDH were examined. Interestingly, validation of candidate genes in rice using in-silico data provided strong evidence for their involvement in stress response. Note that, OsOAT, OsP5CS1, OsP5CS2, OsP5CR showed similar expression pattern in quantitative real-time RT-PCR results as compared to microarray data. However, OsPDH showed a different expression pattern which may be due to the genotypic variation. Furthermore, a biochemical assay measuring proline content gave us a proper indication of the accumulation of proline under stressed conditions. Identification of key proline metabolizing genes from rice and Arabidopsis provides insights on the molecular regulation of proline homeostasis, to initiate metabolic engineering to develop stress-resilient plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01023-0.
Collapse
Affiliation(s)
- Shatil Arabia
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Nur Ahad Shah
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Asif Ahmed Sami
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000 Bangladesh
| | | | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|