1
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
2
|
Asman M, Bartosik K, Jakubas-Zawalska J, Świętek A, Witecka J. A New Endemic Locality of Dermacentor reticulatus in Central-Southern Poland and Its Potential Epidemiological Implications. INSECTS 2024; 15:580. [PMID: 39194785 DOI: 10.3390/insects15080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Dermacentor reticulatus (Acari: Ixodidae) is an important arthropod vector in medical and veterinary contexts. Its geographic range is divided into western and eastern populations separated by a "Dermacentor-free zone" in central Poland. Recent faunistic studies showed a new endemic locality of the species in Upper Silesia to the west of the Vistula River (central-southern Poland) and its co-occurrence with I. ricinus. The prevalence of five tick-borne pathogens (TBPs), e.g., B. burgdorferi s.l., Bartonella spp., Rickettsia spp., and Babesia spp., in the ticks was assessed with polymerase chain reaction (PCR) methods. The molecular studies revealed the presence of Rickettsia spp. in 23.8% of the D. reticulatus specimens. In turn, 94.1% of the I. ricinus adults were infected with B. burgdorferi s.l., 11.7 % with Babesia spp., and 5.8% with Rickettsia spp. Coinfections with two TBPs were noted in 17.6% of the I. ricinus. These findings highlight not only the risk of infestation by both tick species in an area previously considered Dermacentor-free, but also the high prevalence of TBPs in the study area. Increased focus on medical and veterinary services appears necessary to diagnose and prevent tick-borne diseases in this region.
Collapse
Affiliation(s)
- Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 St., 41-808 Zabrze, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland
| | | | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19 St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Joanna Witecka
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 St., 41-218 Sosnowiec, Poland
| |
Collapse
|
3
|
Polsomboon Nelson S, Ergunay K, Bourke BP, Reinbold-Wasson DD, Caicedo-Quiroga L, Kirkitadze G, Chunashvili T, Tucker CL, Linton YM. Nanopore-based metagenomics reveal a new Rickettsia in Europe. Ticks Tick Borne Dis 2024; 15:102305. [PMID: 38150911 DOI: 10.1016/j.ttbdis.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Accurate identification of tick-borne bacteria, including those associated with rickettsioses, pose significant challenges due to the polymicrobial and polyvectoral nature of the infections. We aimed to carry out a comparative evaluation of a non-targeted metagenomic approach by nanopore sequencing (NS) and commonly used PCR assays amplifying Rickettsia genes in field-collected ticks. The study included a total of 310 ticks, originating from Poland (44.2 %) and Bulgaria (55.8 %). Samples comprised 7 species, the majority of which were Ixodes ricinus (62.9 %), followed by Dermacentor reticulatus (21.2 %). Screening was carried out in 55 pools, using total nucleic acid extractions from individual ticks. NS and ompA/gltA PCRs identified Rickettsia species in 47.3 % and 54.5 % of the pools, respectively. The most frequently detected species were Rickettsia asiatica (27.2 %) and Rickettsia raoultii (21.8 %), followed by Rickettsia monacensis (3.6 %), Rickettsia helvetica (1.8 %), Rickettsia massiliae (1.8 %) and Rickettsia tillamookensis (1.8 %). Phylogeny construction on mutS, uvrD, argS and virB4 sequences and a follow-up deep sequencing further supported R. asiatica identification, documented in Europe for the first time. NS further enabled detection of Anaplasma phagocytophilum (9.1 %), Coxiella burnetii (5.4 %) and Neoehrlichia mikurensis (1.8 %), as well as various endosymbionts of Rickettsia and Coxiella. Co-detection of multiple rickettsial and non-rickettsial bacteria were observed in 16.4 % of the pools with chromosome and plasmid-based contigs. In conclusion, non-targeted metagenomic sequencing was documented as a robust strategy capable of providing a broader view of the tick-borne bacterial pathogen spectrum.
Collapse
Affiliation(s)
- Suppaluck Polsomboon Nelson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Smithsonian Institution, Department of Entomology, National Museum of Natural History (NMNH), Washington, DC, USA
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Smithsonian Institution, Department of Entomology, National Museum of Natural History (NMNH), Washington, DC, USA; Hacettepe University, Faculty of Medicine, Ankara, Turkey.
| | - Brian P Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Smithsonian Institution, Department of Entomology, National Museum of Natural History (NMNH), Washington, DC, USA
| | | | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Smithsonian Institution, Department of Entomology, National Museum of Natural History (NMNH), Washington, DC, USA
| | - Giorgi Kirkitadze
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Tbilisi, Georgia
| | - Tamar Chunashvili
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Tbilisi, Georgia
| | - Cynthia L Tucker
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA; Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Smithsonian Institution, Department of Entomology, National Museum of Natural History (NMNH), Washington, DC, USA
| |
Collapse
|
4
|
Strobl J, Mündler V, Müller S, Gindl A, Berent S, Schötta AM, Kleissl L, Staud C, Redl A, Unterluggauer L, Aguilar González AE, Weninger ST, Atzmüller D, Klasinc R, Stanek G, Markowicz M, Stockinger H, Stary G. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest 2022; 132:e161188. [PMID: 36166299 PMCID: PMC9621130 DOI: 10.1172/jci161188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Mündler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Gindl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sara Berent
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Sophie T. Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mateusz Markowicz
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
5
|
Numan M, Islam N, Adnan M, Zaman Safi S, Chitimia-Dobler L, Labruna MB, Ali A. First genetic report of Ixodes kashmiricus and associated Rickettsia sp. Parasit Vectors 2022; 15:378. [PMID: 36261834 PMCID: PMC9583563 DOI: 10.1186/s13071-022-05509-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Hard ticks (Ixodidae) are hematophagous ectoparasites that transmit various pathogens to a variety of hosts including humans. Transhumant herds have been involved in the spread of ticks and associated Rickettsia spp., and studies on this neglected topic have been unexplored in many regions including Pakistan. This study aimed to investigate ticks infesting transhumant herds of sheep (Ovis aries) and goats (Capra hircus) in district Shangla, Khyber Pakhtunkhwa, Pakistan. Methods Of the 144 examined animals, 112 hosts (68 sheep and 44 goats) of transhumant herds were infested by 419 ticks of different life stages including nymphs (105; 25%), males (58; 14%) and females (256; 61%). For molecular analyses, DNA was extracted from 64 collected ticks and subjected to PCR for the amplification of tick 16S rDNA and ITS2 partial sequences and for the amplification of rickettsial gltA and ompA gene sequences. Results All tick specimens were identified as Ixodes kashmiricus based on morphological features. The obtained 16S rDNA and ITS2 sequences showed 95.7% and 95.3% identity, respectively, with Ixodes kazakstani reported from Kyrgyzstan. In the phylogenetic tree, the sequences clustered with members of the Ixodes ricinus species complex, including I. kazakstani and Ixodes apronophorus. Additionally, rickettsial gltA and ompA partial sequences were 99.7% identical to Rickettsia sp. endosymbiont of Ixodes spp. from Panama and Costa Rica and 99.2% with Rickettsia endosymbiont from the USA. Phylogenetically, the rickettsial gltA and ompA partial sequences from I. kashmiricus clustered with various haplotypes of Rickettsia endosymbiont, which were sister cladded to Rickettsia monacensis. Conclusions This is the first genetic report of I. kashmiricus and associated Rickettsia sp. Large-scale tick surveillance studies across the country are needed to investigate Ixodes ticks and associated pathogens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Nabeela Islam
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Punjab, Pakistan
| | | | - Marcelo B Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
6
|
Kubiak K, Szymańska H, Dmitryjuk M, Dzika E. Abundance of Ixodes ricinus Ticks (Acari: Ixodidae) and the Diversity of Borrelia Species in Northeastern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127378. [PMID: 35742628 PMCID: PMC9223791 DOI: 10.3390/ijerph19127378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Monitoring the abundance of ticks and the prevalence of pathogens in ticks is an important activity in assessing the risk of tick-borne diseases and helps to develop preventive measures. This study aimed to estimate the density of Ixodes ricinus, the prevalence of Borrelia species, and their diversity in northeastern Poland. The overall mean I. ricinus density was 9.7 ticks/100 m2. There were no differences between years, subregions, or habitats of study. The Borrelia infection rate was higher in females (22.6%) and males (14.3%) than in nymphs 5.5% (MIR). The most infected ticks came from the eastern subregion (10.1%) where the incidence of borreliosis among the inhabitants was over 20% higher than in the other subregions. In the infected ticks, B. afzelii (38.3%) and B. garinii (34.5%) were predominant. B. bavariensis was confirmed in I. ricinus in Poland for the first time. The most polymorphic was B. garinii. B. miyamotoi (belonged to the European type) was identified as a mono-infection in 0.9% of ticks and in 1.5% as a co-infection with B. afzelii and with B. garinii. Besides the risk of borreliosis and co-infections with different Borrelia species, physicians should also be aware of B. miyamotoi infections among patients.
Collapse
Affiliation(s)
- Katarzyna Kubiak
- Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, Zolnierska 14c, 10-561 Olsztyn, Poland; (H.S.); (E.D.)
- Correspondence:
| | - Hanna Szymańska
- Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, Zolnierska 14c, 10-561 Olsztyn, Poland; (H.S.); (E.D.)
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Ewa Dzika
- Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, Zolnierska 14c, 10-561 Olsztyn, Poland; (H.S.); (E.D.)
| |
Collapse
|
7
|
Bell-Sakyi L, Hartley CS, Khoo JJ, Forth JH, Palomar AM, Makepeace BL. New Cell Lines Derived from European Tick Species. Microorganisms 2022; 10:microorganisms10061086. [PMID: 35744603 PMCID: PMC9228755 DOI: 10.3390/microorganisms10061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Tick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera Argas, Dermacentor, Hyalomma, Ixodes and Rhipicephalus originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented. Further molecular analysis of the two new Ixodes ricinus cell lines and three existing cell lines of the same species revealed genetic variation between cell lines derived from ticks collected in the same or nearby locations. Collectively, these new cell lines will support research into a wide range of viral, bacterial and protozoal tick-borne diseases prevalent in Europe.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
- Correspondence:
| | - Catherine S. Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jing Jing Khoo
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jan Hendrik Forth
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany;
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ana M. Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, 26006 Logroño, La Rioja, Spain;
| | - Benjamin L. Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| |
Collapse
|
8
|
Prevalence of Tick-Borne Pathogens in Questing Ixodes ricinus and Dermacentor reticulatus Ticks Collected from Recreational Areas in Northeastern Poland with Analysis of Environmental Factors. Pathogens 2022; 11:pathogens11040468. [PMID: 35456142 PMCID: PMC9024821 DOI: 10.3390/pathogens11040468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ticks, such as Ixodes ricinus and Dermacentor reticulatus, act as vectors for multiple pathogens posing a threat to both human and animal health. As the process of urbanization is progressing, those arachnids are being more commonly encountered in urban surroundings. In total, 1112 I. ricinus (n = 842) and D. reticulatus (n = 270) ticks were collected from several sites, including recreational urban parks, located in Augustów and Białystok, Poland. Afterwards, the specimens were examined for the presence of Borrelia spp., Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., and Coxiella burnetii using the PCR method. Overall obtained infection rate reached 22.4% (249/1112). In total, 26.7% (225/842) of I. ricinus was infected, namely with Borrelia spp. (25.2%; 212/842), Babesia spp. (2.0%; 17/842), and A. phagocytophilum (1.2%; 10/842). Among D. reticulatus ticks, 8.9% (24/270) were infected, specifically with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%; 3/270), and Borrelia burgdorferi s.l. (0.7%; 2/270). No specimen tested positively for Rickettsia spp., Bartonella spp., or Coxiella burnetii. Co-infections were detected in 14 specimens. Results obtained in this study confirm that I. ricinus and D. reticulatus ticks found within the study sites of northeastern Poland are infected with at least three pathogens. Evaluation of the prevalence of pathogens in ticks collected from urban environments provides valuable information, especially in light of the growing number of tick-borne infections in humans and domesticated animals.
Collapse
|
9
|
Rutkowski K, Sowa P, Mroczko B, Pancewicz S, Rutkowski R, Czupryna P, Groblewska M, Łukaszewicz-Zając M, Moniuszko-Malinowska A. Sensitisation and allergic reactions to alpha-1,3-galactose in Podlasie, Poland, an area endemic for tick-borne infections. Infect Dis (Lond) 2022; 54:572-579. [PMID: 35382677 DOI: 10.1080/23744235.2022.2057583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Ticks transmit several pathogens and seem implicated in the production of specific IgE antibodies to alpha-1,3-galactose (α-gal sIgE). They cause delayed and immediate allergy to mammalian meat and medication including antivenoms, vaccines and monoclonal antibodies. METHODS We assessed the prevalence of α-gal sIgE in forest workers and healthy controls in the Podlasie voivodeship, north-eastern Poland; the relationship between α-gal sIgE and allergy to α-gal-containing products; the correlation between α-gal sIgE and anti-Borrelia burgdorferi and anti-tick-borne encephalitis virus (TBEV) antibodies; the relationship between α-gal sIgE and markers of infection with lesser-known pathogens transmitted by ticks such as Anaplasma phagocytophilum. RESULTS Production of α-gal sIgE was closely related to tick bites. The odds ratio for detectable α-gal sIgE was 9.31 times higher among people with a history of tick bites (OR 9.3; p < .05). There was no correlation with the history of TBE, Lyme disease or human granulocytic anaplasmosis. However, serum α-gal sIgE correlated with anti-TBEV IgM antibodies in CSF. There was a strong correlation between α-gal sIgE and total IgE and sIgE to pork and beef. CONCLUSIONS Our data support the link between I.ricinus ticks and the production of α-gal sIgE and confirm that the pathogens carried by ticks we examined for do not seem implicated in this immune response.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Adult Allergy, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Paweł Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Ryszard Rutkowski
- Department of Respiratory Diagnostics and Bronchoscopy, Medical University of Białystok, Białystok, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | | | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022; 69:153-166. [PMID: 35122422 PMCID: PMC9487987 DOI: 10.1111/zph.12913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK.,Health Protection Research Unit in Emerging & Zoonotic Infections, Public Health England, Porton Down, UK
| |
Collapse
|
11
|
Incidence of Tick-Borne Encephalitis during the COVID-19 Pandemic in Selected European Countries. J Clin Med 2022; 11:jcm11030803. [PMID: 35160255 PMCID: PMC8836726 DOI: 10.3390/jcm11030803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ixodes ricinus ticks are one of the most important vectors and reservoirs of infectious diseases in Europe, and tick-borne encephalitis (TBE) is one of the most dangerous human diseases transmitted by these vectors. The aim of the present study was to investigate the TBE incidence in some European countries during the COVID-19 pandemic. To this end, we analyzed the data published by the European Center for Disease Prevention and Control (ECDC) and Eurostat on the number of reported TBE and COVID-19 cases in 2020 and TBE cases in 2015–2019 (reference period). Significant differences in the TBE incidence were found between the analyzed countries. The highest TBE incidence was found in Lithuania (25.45/100,000 inhabitants). A high TBE incidence was also observed in Central European countries. In 12 of the 23 analyzed countries, there was significant increase in TBE incidence during the COVID-19 pandemic during 2020 compared to 2015–2019. There was no correlation between the incidence of COVID-19 and TBE and between the availability of medical personnel and TBE incidence in the studied countries. In conclusion, Central Europe and the Baltic countries are areas with a high risk of TBE infection. Despite the COVID-19 pandemic and imposed restrictions, the incidence of TBE is increasing in more than half of the analyzed countries.
Collapse
|
12
|
Frątczak M, Petko B, Sliwowska JH, Szeptycki J, Tryjanowski P. Similar Trajectories in Current Alcohol Consumption and Tick-Borne Diseases: Only Parallel Changes in Time or Links Between? Front Cell Infect Microbiol 2022; 11:790938. [PMID: 34976865 PMCID: PMC8716731 DOI: 10.3389/fcimb.2021.790938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
In a modern world, both tick-borne diseases and alcohol consumption are among major public health threats. In the present opinion article, we pose the question, whether these two health problems: alcohol consumption and tick-borne diseases prevalence can be related. We hypothesize that it is possible due to at least three factors: outdoor places chosen for alcohol consumption, behavioral changes induced by alcohol, and possible stronger attraction of human hosts after alcohol consumption to ticks. Many important clues are coming from social studies about people’s preference of places to consume alcohol and from studies regarding the attraction of people consuming alcohol to mosquitos. These data, however, cannot be directly transferred to the case of alcohol consumption and ticks. Therefore, we suggest that more detailed studies are needed to better understand the possible individual attractiveness of people to ticks and ways alcohol may influence it.
Collapse
Affiliation(s)
- Martyna Frątczak
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Branislav Petko
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland.,The University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Joanna H Sliwowska
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Jan Szeptycki
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Poznań, Poland
| | - Piotr Tryjanowski
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Jauregui J, Maniago E. Neoehrlichiosis: A Case Study of the Tick-Borne Pathogen That Can Cause Thromboembolic Events. Adv Emerg Nurs J 2022; 44:19-22. [PMID: 35089276 DOI: 10.1097/tme.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Candidatus Neoehrlichia mikurensis is a gram-negative bacterium carried and spread by Ixodes ricinus ticks often found in Europe and Asia. It causes a disease process called neoehrlichiosis, which can result in vasculitis and thromboembolic events. This pathogen does not grow in typical culture medium, and most laboratories do not carry the specific polymerase chain reaction (PCR) test needed to detect neoehrlichiosis. If a patient presents to an emergency department complaining of a recent tick bite and symptoms of a deep vein thrombosis or pulmonary embolism, consider that these symptoms may be related. Treat the tick bite with doxycycline for 3 weeks and manage the thromboembolic event according to standard treatment of care.
Collapse
Affiliation(s)
- Jean Jauregui
- Emergency Department, University of Maryland Shore Regional Medical Center at Chestertown
| | | |
Collapse
|
14
|
Urban woodland habitat is important for tick presence and density in a city in England. Ticks Tick Borne Dis 2021; 13:101857. [PMID: 34763308 DOI: 10.1016/j.ttbdis.2021.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Urban green spaces provide an opportunity for contact between members of the public and ticks infected with pathogens. Understanding tick distribution within these areas and the drivers for increased tick density or Borrelia infection are important from a risk management perspective. This study aimed to generate data on tick presence, nymph density and Borrelia infection across a range of urban green space habitats, in order to identify those that may potentially present a higher risk of Lyme borreliosis to members of the public. Several sites were visited across the English city of Bath during 2015 and 2016. Tick presence was confirmed in all habitats surveyed, with increased likelihood in woodland and woodland edge. Highest nymph densities were also reported in these habitats, along with grassland during one of the sampling years. Adult ticks were more likely to be infected compared to nymphs, and the highest densities of infected nymphs were associated with woodland edge habitat. In addition to Lyme borreliosis causing Borrelia genospecies, Borrelia miyamotoi was also detected at several sites. This study adds to the growing evidence that urban green space habitats present a public health risk from tick bites, and this has implications for many policy areas including health and wellbeing, climate adaptation and urban green space planning.
Collapse
|
15
|
Lesiczka PM, Hrazdilová K, Majerová K, Fonville M, Sprong H, Hönig V, Hofmannová L, Papežík P, Růžek D, Zurek L, Votýpka J, Modrý D. The Role of Peridomestic Animals in the Eco-Epidemiology of Anaplasma phagocytophilum. MICROBIAL ECOLOGY 2021; 82:602-612. [PMID: 33547531 DOI: 10.1007/s00248-021-01704-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Kristýna Hrazdilová
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 1655, /76, Plzeň, Czech Republic
| | - Karolina Majerová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, P.O. Box 1, Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, P.O. Box 1, Bilthoven, The Netherlands
| | - Václav Hönig
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Hudcova, 70, Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Petr Papežík
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Daniel Růžek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Hudcova, 70, Brno, Czech Republic
| | - Ludek Zurek
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka, 129, Prague, Czech Republic, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University, Zemědělská, 1665, Brno, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic.
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
- Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka, 129, Prague, Czech Republic.
| |
Collapse
|
16
|
Bertola M, Montarsi F, Obber F, Da Rold G, Carlin S, Toniolo F, Porcellato E, Falcaro C, Mondardini V, Ormelli S, Ravagnan S. Occurrence and Identification of Ixodes ricinus Borne Pathogens in Northeastern Italy. Pathogens 2021; 10:1181. [PMID: 34578213 PMCID: PMC8470124 DOI: 10.3390/pathogens10091181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
In Europe, Ixodes ricinus is the main vector for tick-borne pathogens (TBPs), the most common tick species in Italy, particularly represented in pre-alpine and hilly northern areas. From 2011 to 2017, ticks were collected by dragging in Belluno province (northeast Italy) and analyzed by molecular techniques for TBP detection. Several species of Rickettsia spp. and Borrelia spp. Anaplaspa phagocitophilum, Neoerlichia mikurensis and Babesia venatorum, were found to be circulating in the study area carried by I. ricinus (n = 2668, all stages). Overall, 39.1% of screened pools were positive for at least one TBP, with a prevalence of 12.25% and 29.2% in immature stages and adults, respectively. Pathogens were detected in 85% of the monitored municipalities, moreover the presence of TBPs varied from one to seven different pathogens in the same year. The annual TBPs prevalence fluctuations observed in each municipality highlights the necessity of performing continuous tick surveillance. In conclusion, the observation of TBPs in ticks remains an efficient strategy for monitoring the circulation of tick-borne diseases (TBDs) in a specific area.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Elena Porcellato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | | | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| |
Collapse
|
17
|
Hansford KM, McGinley L, Wilkinson S, Gillingham EL, Cull B, Gandy S, Carter DP, Vaux AGC, Richards S, Hayes A, Medlock JM. Ixodes ricinus and Borrelia burgdorferi sensu lato in the Royal Parks of London, UK. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:593-606. [PMID: 34125334 DOI: 10.1007/s10493-021-00633-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Assessing the risk of tick-borne disease in areas with high visitor numbers is important from a public health perspective. Evidence suggests that tick presence, density, infection prevalence and the density of infected ticks can vary between habitats within urban green space, suggesting that the risk of Lyme borreliosis transmission can also vary. This study assessed nymph density, Borrelia prevalence and the density of infected nymphs across a range of habitat types in nine parks in London which receive millions of visitors each year. Ixodes ricinus were found in only two of the nine locations sampled, and here they were found in all types of habitat surveyed. Established I. ricinus populations were identified in the two largest parks, both of which had resident free-roaming deer populations. Highest densities of nymphs (15.68 per 100 m2) and infected nymphs (1.22 per 100 m2) were associated with woodland and under canopy habitats in Richmond Park, but ticks infected with Borrelia were found across all habitat types surveyed. Nymphs infected with Borrelia (7.9%) were only reported from Richmond Park, where Borrelia burgdorferi sensu stricto and Borrelia afzelii were identified as the dominant genospecies. Areas with short grass appeared to be less suitable for ticks and maintaining short grass in high footfall areas could be a good strategy for reducing the risk of Lyme borreliosis transmission to humans in such settings. In areas where this would create conflict with existing practices which aim to improve and/or meet historic landscape, biodiversity and public access goals, promoting public health awareness of tick-borne disease risks could also be utilised.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK.
| | - Liz McGinley
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| | | | - Emma L Gillingham
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| | - Ben Cull
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| | - Sara Gandy
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| | - Daniel P Carter
- Genomics of Rare and Emerging Human Pathogens, National Infection Service, Public Health England, Porton Down, UK
| | - Alexander G C Vaux
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| | - Simon Richards
- The Royal Parks, The Old Police House, Hyde Park, London, W2 2UH, UK
| | - Alister Hayes
- The Royal Parks, The Old Police House, Hyde Park, London, W2 2UH, UK
| | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, Emergency Response Department Science & Technology, Public Health England, Porton Down, UK
| |
Collapse
|
18
|
Răileanu C, Silaghi C, Fingerle V, Margos G, Thiel C, Pfister K, Overzier E. Borrelia burgdorferi Sensu Lato in Questing and Engorged Ticks from Different Habitat Types in Southern Germany. Microorganisms 2021; 9:microorganisms9061266. [PMID: 34200876 PMCID: PMC8230558 DOI: 10.3390/microorganisms9061266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Borrelia burgdorferi sensu lato (s.l.) causes the most common tick-borne infection in Europe, with Germany being amongst the countries with the highest incidences in humans. This study aimed at (1) comparing infection rates of B. burgdorferi s.l. in questing Ixodes ricinus ticks from different habitat types in Southern Germany, (2) analysing genospecies distribution by habitat type, and (3) testing tissue and ticks from hosts for B. burgdorferi s.l. Questing ticks from urban, pasture, and natural habitats together with feeding ticks from cattle (pasture) and ticks and tissue samples from wild boars and roe deer (natural site) were tested by PCR and RFLP for species differentiation. B. burgdorferi s.l. was found in 29.8% questing adults and 15% nymphs. Prevalence was lower at the urban sites with occurrence of roe deer than where these were absent. Borrelia burgdorferi s.l. DNA was found in 4.8% ticks from roe deer, 6.3% from wild boar, and 7.8% from cattle. Six genospecies were identified in unfed ticks: Borrelia afzelii (48.6%), Borrelia burgdorferi sensu stricto (16%), Borrelia garinii (13.2%), Borrelia valaisiana (7.5%), Borrelia spielmanii (6.2%), and Borrelia bavariensis (0.9%). This study shows high infection levels and a great diversity of Borrelia in questing ticks. The presence of roe deer seems to reduce B. burgdorferi s.l. infection rates in tick populations.
Collapse
Affiliation(s)
- Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
- Correspondence:
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Claudia Thiel
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Kurt Pfister
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Evelyn Overzier
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| |
Collapse
|
19
|
Kulisz J, Bartosik K, Zając Z, Woźniak A, Kolasa S. Quantitative Parameters of the Body Composition Influencing Host Seeking Behavior of Ixodes ricinus Adults. Pathogens 2021; 10:706. [PMID: 34198835 PMCID: PMC8227263 DOI: 10.3390/pathogens10060706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Ixodes ricinus, a hematophagous arthropod species with great medical importance in the northern hemisphere, is characterized by an ability to survive prolonged periods of starvation, a wide host spectrum, and high vector competence. The aim of the present study was to determine the quantitative parameters of questing I. ricinus ticks collected in eastern Poland during the spring peak of their activity. The study consisted in the determination of quantitative parameters characterizing I. ricinus females and males, i.e., fresh body mass, reduced body mass, lipid-free body mass, water mass, and lipid mass and calculation of the lipid index. A statistically significant difference was observed between the mean values of the lipid index in females collected during the first and last ten days of May, which indicates the progressive utilization of reserve materials in the activity period. Higher activity of I. ricinus female ticks was observed during the last ten days of May despite the less favorable weather conditions, indicating their strong determination in host-seeking behaviors accompanying a decline in the lipid content and the use of the "now or never" strategy.
Collapse
Affiliation(s)
- Joanna Kulisz
- Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (K.B.); (Z.Z.); (A.W.)
| | - Katarzyna Bartosik
- Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (K.B.); (Z.Z.); (A.W.)
| | - Zbigniew Zając
- Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (K.B.); (Z.Z.); (A.W.)
| | - Aneta Woźniak
- Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; (K.B.); (Z.Z.); (A.W.)
| | - Szymon Kolasa
- Polesie National Park, Lubelska 3a St., 22-234 Urszulin, Poland;
| |
Collapse
|
20
|
Plantard O, Hoch T, Daveu R, Rispe C, Stachurski F, Boué F, Poux V, Cebe N, Verheyden H, René-Martellet M, Chalvet-Monfray K, Cafiso A, Olivieri E, Moutailler S, Pollet T, Agoulon A. Where to find questing Ixodes frontalis ticks? Under bamboo bushes! Ticks Tick Borne Dis 2020; 12:101625. [PMID: 33383440 DOI: 10.1016/j.ttbdis.2020.101625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023]
Abstract
Tick-borne diseases have a complex epidemiology that depends on different ecological communities, associating several species of vertebrate hosts, vectors and pathogens. While most studies in Europe are focused on Ixodes ricinus, other Ixodes species may also be involved in the transmission or maintenance of pathogens. This is the case of Ixodes frontalis, a poorly known species associated with different bird species such as blackbirds, thrushes and robins, with a wide distribution covering most European countries. In a previous study, high densities of questing I. frontalis larvae were found during autumn-winter at a site close to Nantes (western France) where a long-term survey focused on I. ricinus was conducted. These I. frontalis were mostly observed under bamboo bushes. In the present study, we investigated the presence of I. frontalis under bamboo bushes at various locations. With that aim in mind, a systematic search for questing I. frontalis was undertaken by the flagging method in public urban parks and private gardens presenting bamboo bushes (32 sites). This survey was carried out during autumn-winter to maximize the probability of finding the most abundant stage, i.e. larvae. We searched for I. frontalis first in the area of Nantes (10 sites), then in other regions of France (21 sites) and at one site in northern Italy. A single visit to each site revealed the presence of I. frontalis at 29 out of 32 sites: larvae were always present, nymphs were frequent (59 % of the positive sites), while adults were found at only 14 % of the sites. Questing stages of this understudied species are thus easy to find, by dragging or flagging under bamboo bushes in autumn or winter. We make the assumption that bamboo offers a favourable place for birds to roost overnight outside their breeding period (i.e. spring), sheltered from both predators and wind. This would explain higher densities of I. frontalis under bamboo, relative to other biotopes. As I. frontalis is known to harbour zoonotic pathogens, the consequences of this discovery on the epidemiology of tick-borne diseases are discussed.
Collapse
Affiliation(s)
| | | | - Romain Daveu
- INRAE, Oniris, BIOEPAR, 44300, Nantes, France; Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | | | | | | | - Valérie Poux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès Champanelle, France; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - Nicolas Cebe
- Université de Toulouse, INRAE, CEFS, 31326, Castanet-Tolosan, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, 31326, Castanet-Tolosan, France
| | - Magalie René-Martellet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès Champanelle, France; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - Karine Chalvet-Monfray
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès Champanelle, France; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - Alessandra Cafiso
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Sara Moutailler
- UMR BIPAR, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700, Maisons-Alfort, France
| | - Thomas Pollet
- ASTRE, Université de Montpellier, CIRAD, INRAE, 34398, Montpellier, France; UMR BIPAR, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700, Maisons-Alfort, France
| | | |
Collapse
|