1
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Akumwami S, Rahman A, Funamoto M, Hossain A, Morishita A, Ikeda Y, Kitamura H, Kitada K, Noma T, Ogino Y, Nishiyama A. Effects of D-Allose on experimental cardiac hypertrophy. J Pharmacol Sci 2024; 156:142-148. [PMID: 39179333 DOI: 10.1016/j.jphs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Masafumi Funamoto
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Hiroaki Kitamura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takahisa Noma
- Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
Aguado-Alvaro LP, Garitano N, Pelacho B. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis. Int J Mol Sci 2024; 25:6004. [PMID: 38892192 PMCID: PMC11172550 DOI: 10.3390/ijms25116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
4
|
Mao S, Song C, Huang H, Nie Y, Ding K, Cui J, Tian J, Tang H. Role of transcriptional cofactors in cardiovascular diseases. Biochem Biophys Res Commun 2024; 706:149757. [PMID: 38490050 DOI: 10.1016/j.bbrc.2024.149757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cardiovascular disease is a main cause of mortality in the world and the highest incidence of all diseases. However, the mechanism of the pathogenesis of cardiovascular disease is still unclear, and we need to continue to explore its mechanism of action. The occurrence and development of cardiovascular disease is significantly associated with genetic abnormalities, and gene expression is affected by transcriptional regulation. In this complex process, the protein-protein interaction promotes the RNA polymerase II to the initiation site. And in this process of transcriptional regulation, transcriptional cofactors are responsible for passing cues from enhancers to promoters and promoting the binding of RNA polymerases to promoters, so transcription cofactors playing a key role in gene expression regulation. There is growing evidence that transcriptional cofactors play a critical role in cardiovascular disease. Transcriptional cofactors can promote or inhibit transcription by affecting the function of transcription factors. It can affect the initiation and elongation process of transcription by forming complexes with transcription factors, which are important for the stabilization of DNA rings. It can also act as a protein that interacts with other proteins to affect the expression of other genes. Therefore, the aim of this overview is to summarize the effect of some transcriptional cofactors such as BRD4, EP300, MED1, EZH2, YAP, SIRT6 in cardiovascular disease and to provide a promising therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Katanasaka Y, Yabe H, Murata N, Sobukawa M, Sugiyama Y, Sato H, Honda H, Sunagawa Y, Funamoto M, Shimizu S, Shimizu K, Hamabe-Horiike T, Hawke P, Komiyama M, Mori K, Hasegawa K, Morimoto T. Fibroblast-specific PRMT5 deficiency suppresses cardiac fibrosis and left ventricular dysfunction in male mice. Nat Commun 2024; 15:2472. [PMID: 38503742 PMCID: PMC10951424 DOI: 10.1038/s41467-024-46711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a well-known epigenetic regulatory enzyme. However, the role of PRMT5-mediated arginine methylation in gene transcription related to cardiac fibrosis is unknown. Here we show that fibroblast-specific deletion of PRMT5 significantly reduces pressure overload-induced cardiac fibrosis and improves cardiac dysfunction in male mice. Both the PRMT5-selective inhibitor EPZ015666 and knockdown of PRMT5 suppress α-smooth muscle actin (α-SMA) expression induced by transforming growth factor-β (TGF-β) in cultured cardiac fibroblasts. TGF-β stimulation promotes the recruitment of the PRMT5/Smad3 complex to the promoter site of α-SMA. It also increases PRMT5-mediated H3R2 symmetric dimethylation, and this increase is inhibited by Smad3 knockdown. TGF-β stimulation increases H3K4 tri-methylation mediated by the WDR5/MLL1 methyltransferase complex, which recognizes H3R2 dimethylation. Finally, treatment with EPZ015666 significantly improves pressure overload-induced cardiac fibrosis and dysfunction. These findings suggest that PRMT5 regulates TGF-β/Smad3-dependent fibrotic gene transcription, possibly through histone methylation crosstalk, and plays a critical role in cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
- Shizuoka General Hospital, Shizuoka, Japan.
| | - Harumi Yabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Noriyuki Murata
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Minori Sobukawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuga Sugiyama
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hikaru Sato
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroki Honda
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Philip Hawke
- Laboratory of Scientific English, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
- Shizuoka General Hospital, Shizuoka, Japan.
| |
Collapse
|
6
|
Yu S, Zeng L, Rao F, Deng C, Zhang M, Xiao H, Xiao F, Xue Y, Wu S, Du Z, Wei W. High hydrostatic pressure participates in atrial fibrosis through the p300/p53/Smad3 pathway. FASEB J 2024; 38:e23324. [PMID: 38019188 DOI: 10.1096/fj.202300473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/01/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
As an independent risk factor of atrial fibrillation (AF), hypertension (HTN) can induce atrial fibrosis through cyclic stretch and hydrostatic pressure. The mechanism by which high hydrostatic pressure promotes atrial fibrosis is unclear yet. p300 and p53/Smad3 play important roles in the process of atrial fibrosis. This study investigated whether high hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway. Biochemical experiments were used to study the expression of p300/p53/Smad3 pathway in left atrial appendage (LAA) tissues of patients with sinus rhythm (SR), AF, AF + HTN, and C57/BL6 mice, hypertensive C57/BL6 mice and atrial fibroblasts of mice. To investigate the roles of p300 and p53 in the process of atrial fibrosis, p300 and p53 in mice atrial fibroblasts were knocked in or knocked down, respectively. The expression of p300/p53/Smad3 and fibrotic factors was higher in patients with AF and AF + HTN than those with SR only. The expressions of p300/p53/Smad3 and fibrotic factors increased in hypertensive mice. Curcumin (Cur) and knocking down of p300 reversed the expressions of these factors. 40 mmHg hydrostatic pressure/overexpression of p300 upregulated the expressions of p300/p53/Smad3 and fibrotic factors in mice LAA fibroblasts. While Cur or knocking down p300 reversed these changes. Knocking down/overexpression of p53, the expressions of p53/Smad3 and fibrotic factors also decreased/increased, correspondingly. High hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway, which further increases the susceptibility to AF.
Collapse
Affiliation(s)
- Shenghuan Yu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Long Zeng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Chunyu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Mengzhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Haiyin Xiao
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Feifei Xiao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yumei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Shulin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhimin Du
- Dongguan Tungwah Songshan Lake Hospital, Dongguan, P.R. China
| | - Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| |
Collapse
|
7
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
8
|
Liu W, Yuan Q, Cao S, Wang G, Liu X, Xia Y, Bian Y, Xu F, Chen Y. Review: Acetylation Mechanisms andTargeted Therapies in Cardiac Fibrosis. Pharmacol Res 2023; 193:106815. [PMID: 37290541 DOI: 10.1016/j.phrs.2023.106815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Cardiac fibrosis is a common pathophysiological remodeling process that occurs in a variety of cardiovascular diseases and greatly influences heart structure and function, progressively leading to the development of heart failure. However, to date, few effective therapies for cardiac fibrosis exist. Abnormal proliferation, differentiation, and migration of cardiac fibroblasts are responsible for the excessive deposition of extracellular matrix in the myocardium. Acetylation, a widespread and reversible protein post-translational modification, plays an important role in the development of cardiac fibrosis by adding acetyl groups to lysine residues. Many acetyltransferases and deacetylases regulate the dynamic alterations of acetylation in cardiac fibrosis, regulating a range of pathogenic conditions including oxidative stress, mitochondrial dysfunction, and energy metabolism disturbance. In this review, we demonstrate the critical roles that acetylation modifications caused by different types of pathological injury play in cardiac fibrosis. Furthermore, we propose therapeutic acetylation-targeting strategies for the prevention and treatment of patients with cardiac fibrosis.
Collapse
Affiliation(s)
- Weikang Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Guoying Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangguo Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Xia
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
9
|
Kawase Y, Sunagawa Y, Shimizu K, Funamoto M, Hamabe-Horiike T, Katanasaka Y, Shimizu S, Hawke P, Mori K, Komiyama M, Hasegawa K, Morimoto T. 6-Shogaol, an Active Component of Ginger, Inhibits p300 Histone Acetyltransferase Activity and Attenuates the Development of Pressure-Overload-Induced Heart Failure. Nutrients 2023; 15:2232. [PMID: 37432400 PMCID: PMC10181444 DOI: 10.3390/nu15092232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Hypertrophic stress-induced cardiac remodeling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. Continuation of this response eventually leads to heart failure. The histone acetyltransferase p300 plays an important role in the development of heart failure, and may be a target for heart failure therapy. The phenolic phytochemical 6-shogaol, a pungent component of raw ginger, has various bioactive effects; however, its effect on cardiovascular diseases has not been investigated. One micromolar of 6-shogaol suppressed phenylephrine (PE)-induced increases in cardiomyocyte hypertrophy in rat primary cultured cardiomyocytes. In rat primary cultured cardiac fibroblasts, 6-shogaol suppressed transforming growth factor-beta (TGF-β)-induced increases in L-proline incorporation. It also blocked PE- and TGF-β-induced increases in histone H3K9 acetylation in the same cells and in vitro. An in vitro p300-HAT assay revealed that 6-shogaol suppressed histone acetylation. The mice underwent transverse aortic constriction (TAC) surgery, and were administered 0.2 or 1 mg/kg of 6-shogaol daily for 8 weeks. 6-shogaol prevented TAC-induced systolic dysfunction and cardiac hypertrophy in a dose-dependent manner. Furthermore, it also significantly inhibited TAC-induced increases in histone H3K9 acetylation. These results suggest that 6-shogaol may ameliorate heart failure through a variety of mechanisms, including the inhibition of p300-HAT activity.
Collapse
Affiliation(s)
- Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Philip Hawke
- Laboratory of Scientific English, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Kiyoshi Mori
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.K.); (Y.S.); (K.S.); (M.F.); (T.H.-H.); (Y.K.); (K.M.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| |
Collapse
|
10
|
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1133611. [PMID: 37008337 PMCID: PMC10050342 DOI: 10.3389/fcvm.2023.1133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| |
Collapse
|
11
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
12
|
Sunagawa Y, Kawaguchi S, Miyazaki Y, Katanasaka Y, Funamoto M, Shimizu K, Shimizu S, Hamabe-Horiike T, Kawase Y, Komiyama M, Mori K, Murakami A, Hasegawa K, Morimoto T. Auraptene, a citrus peel-derived natural product, prevents myocardial infarction-induced heart failure by activating PPARα in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154457. [PMID: 36223697 DOI: 10.1016/j.phymed.2022.154457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Auraptene derived from the peel of Citrus hassaku possesses anti-tumor, anti-inflammatory, and neuroprotective activities. Thus, it could be a valuable pharmacological alternative to treat some diseases. However, the therapeutic value of auraptene for heart failure (HF) is unknown. STUDY DESIGN/METHODS In cultured cardiomyocytes from neonatal rats, the effect of auraptene on phenylephrine-induced hypertrophic responses and peroxisome proliferator-activated receptor-alpha (PPARα)-dependent gene transcriptions. To investigate whether auraptene prevents the development of heart failure after myocardial infarction (MI) in vivo, Sprague-Dawley rats with moderate MI (fractional shortening < 40%) were randomly assigned for treatment with low- or high-dose auraptene (5 or 50 mg/kg/day, respectively) or vehicle for 6 weeks. The effects of auraptene were evaluated by echocardiography, histological analysis, and the measurement of mRNA levels of hypertrophy, fibrosis, and PPARα-associated genes. RESULTS In cultured cardiomyocytes, auraptene repressed phenylephrine-induced hypertrophic responses, such as increases in cell size and activities of atrial natriuretic factor and endothelin-1 promoters. Auraptene induced PPARα-dependent gene activation by enhancing cardiomyocyte peroxisome proliferator-responsive element reporter activity. The inhibition of PPARα abrogated the protective effect of auraptene on phenylephrine-induced hypertrophic responses. In rats with MI, auraptene significantly improved MI-induced systolic dysfunction and increased posterior wall thickness compared to the vehicle. Auraptene treatment also suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, and expression of hypertrophy and fibrosis response markers at the mRNA level compared with vehicle treatment. MI-induced decreases in the expression of PPARα-dependent genes were improved by auraptene treatment. CONCLUSIONS Auraptene has beneficial effects on MI-induced cardiac hypertrophy and left ventricular systolic dysfunction in rats, at least partly due to PPARα activation. Further clinical studies are required to evaluate the efficacy of auraptene in patients with HF.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Shogo Kawaguchi
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Division of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Department of Nephrology, Shizuoka General Hospital, Shizuoka 420-8527, Japan; Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Akira Murakami
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan.
| |
Collapse
|
13
|
Wang M, Jin L, Zhang Q, Zhu W, He H, Lou S, Luo W, Han X, Liang G. Curcumin analog JM-2 alleviates diabetic cardiomyopathy inflammation and remodeling by inhibiting the NF-κB pathway. Biomed Pharmacother 2022; 154:113590. [DOI: 10.1016/j.biopha.2022.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
|
14
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
15
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
16
|
Jin QH, Hu XJ, Zhao HY. Curcumin activates autophagy and attenuates high glucose‑induced apoptosis in HUVECs through the ROS/NF‑κB signaling pathway. Exp Ther Med 2022; 24:596. [PMID: 35949325 PMCID: PMC9353459 DOI: 10.3892/etm.2022.11533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Qi-Hui Jin
- Department of Geriatric Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xu-Jun Hu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hai-Yan Zhao
- Department of Internal Medicina, Shangcheng District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
17
|
Pyrazole-Curcumin Suppresses Cardiomyocyte Hypertrophy by Disrupting the CDK9/CyclinT1 Complex. Pharmaceutics 2022; 14:pharmaceutics14061269. [PMID: 35745840 PMCID: PMC9227296 DOI: 10.3390/pharmaceutics14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intrinsic histone acetyltransferase (HAT), p300, has an important role in the development and progression of heart failure. Curcumin (CUR), a natural p300-specific HAT inhibitor, suppresses hypertrophic responses and prevents deterioration of left-ventricular systolic function in heart-failure models. However, few structure–activity relationship studies on cardiomyocyte hypertrophy using CUR have been conducted. To evaluate if prenylated pyrazolo curcumin (PPC) and curcumin pyrazole (PyrC) can suppress cardiomyocyte hypertrophy, cultured cardiomyocytes were treated with CUR, PPC, or PyrC and then stimulated with phenylephrine (PE). PE-induced cardiomyocyte hypertrophy was inhibited by PyrC but not PPC at a lower concentration than CUR. Western blotting showed that PyrC suppressed PE-induced histone acetylation. However, an in vitro HAT assay showed that PyrC did not directly inhibit p300-HAT activity. As Cdk9 phosphorylates both RNA polymerase II and p300 and increases p300-HAT activity, the effects of CUR and PyrC on the kinase activity of Cdk9 were examined. Phosphorylation of p300 by Cdk9 was suppressed by PyrC. Immunoprecipitation-WB showed that PyrC inhibits Cdk9 binding to CyclinT1 in cultured cardiomyocytes. PyrC may prevent cardiomyocyte hypertrophic responses by indirectly suppressing both p300-HAT activity and RNA polymerase II transcription elongation activity via inhibition of Cdk9 kinase activity.
Collapse
|
18
|
The Polyunsaturated Fatty Acids, EPA and DHA, Ameliorate Myocardial Infarction-induced Heart Failure by Inhibiting p300-HAT Activity in Rats. J Nutr Biochem 2022; 106:109031. [DOI: 10.1016/j.jnutbio.2022.109031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/24/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
|
19
|
Katagiri T, Sunagawa Y, Maekawa T, Funamoto M, Shimizu S, Shimizu K, Katanasaka Y, Komiyama M, Hawke P, Hara H, Mori K, Hasegawa K, Morimoto T. Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients 2022; 14:580. [PMID: 35276939 PMCID: PMC8838613 DOI: 10.3390/nu14030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Ecklonia stolonifera Okamura extract (ESE) has been reported to have various bioactive effects, but its effects on cardiovascular disease have not yet been investigated. First, primary neonatal rat cultured cardiomyocytes were treated with ESE and stimulated with phenylephrine (PE) for 48 h. ESE (1000 µg/mL) significantly suppressed PE-induced cardiomyocyte hypertrophy, hypertrophy-related gene transcription, and the acetylation of histone H3K9. An in vitro p300-HAT assay indicated that ESE directly inhibited p300-HAT activity. Next, one week after myocardial infarction (MI) surgery, rats (left ventricular fractional shortening (LVFS) < 40%) were randomly assigned to three groups: vehicle (saline, n = 9), ESE (0.3 g/kg, n = 10), or ESE (1 g/kg, n = 10). Daily oral administration was carried out for 8 weeks. After treatment, LVFS was significantly higher in the ESE (1 g/kg) group than in the vehicle group. The ESE treatments also significantly suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, hypertrophy- and fibrosis-related gene transcription, and the acetylation of histone H3K9. These results suggest that ESE suppressed both hypertrophic responses in cardiomyocytes and the development of heart failure in rats by inhibiting p300-HAT activity. Thus, this dietary extract is a potential novel therapeutic strategy for heart failure in humans.
Collapse
Affiliation(s)
- Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tatsuya Maekawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Philip Hawke
- Laboratory of Scientific English, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | | | - Kiyoshi Mori
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.K.); (Y.S.); (T.M.); (M.F.); (S.S.); (K.S.); (Y.K.); (K.M.); (K.H.)
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| |
Collapse
|
20
|
Ono M, Sunagawa Y, Mochizuki S, Katagiri T, Takai H, Iwashimizu S, Inai K, Funamoto M, Shimizu K, Shimizu S, Katanasaka Y, Komiyama M, Hawke P, Hara H, Arakawa Y, Mori K, Asai A, Hasegawa K, Morimoto T. Chrysanthemum morifolium Extract Ameliorates Doxorubicin-Induced Cardiotoxicity by Decreasing Apoptosis. Cancers (Basel) 2022; 14:683. [PMID: 35158951 PMCID: PMC8833354 DOI: 10.3390/cancers14030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that the anthracycline anticancer drug doxorubicin (DOX) induces cardiotoxicity. Recently, Chrysanthemum morifolium extract (CME), an extract of the purple chrysanthemum flower, has been reported to possess various physiological activities such as antioxidant and anti-inflammatory effects. However, its effect on DOX-induced cardiotoxicity is still unknown. An 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)assay revealed that 1 mg/mL of CME reduced DOX-induced cytotoxicity in H9C2 cells but not in MDA-MB-231 cells. A TUNEL assay indicated that CME treatment improved DOX-induced apoptosis in H9C2 cells. Moreover, DOX-induced increases in the expression levels of p53, phosphorylated p53, and cleaved caspase-3,9 were significantly suppressed by CME treatment. Next, we investigated the effect of CME in vivo. The results showed that CME treatment substantially reversed the DOX-induced decrease in survival rate. Echocardiography indicated that CME treatment also reduced DOX-induced left ventricular systolic dysfunction, and a TUNEL assay showed that CME treatment also suppressed apoptosis in the mouse heart. These results reveal that CME treatment ameliorated DOX-induced cardiotoxicity by suppressing apoptosis. Further study is needed to clarify the effect of CME on DOX-induced heart failure in humans.
Collapse
Affiliation(s)
- Masaya Ono
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Saho Mochizuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Hidemichi Takai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Sonoka Iwashimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Kyoko Inai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
| | - Philip Hawke
- Laboratory of Scientific English, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | | | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate of Medicine, Kyoto 606-8507, Japan;
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (M.O.); (Y.S.); (S.M.); (T.K.); (H.T.); (S.I.); (K.I.); (M.F.); (K.S.); (S.S.); (Y.K.); (K.H.)
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| |
Collapse
|
21
|
Shimizu K, Sunagawa Y, Funamoto M, Honda H, Katanasaka Y, Murai N, Kawase Y, Hirako Y, Katagiri T, Yabe H, Shimizu S, Sari N, Wada H, Hasegawa K, Morimoto T. The Selective Serotonin 2A Receptor Antagonist Sarpogrelate Prevents Cardiac Hypertrophy and Systolic Dysfunction via Inhibition of the ERK1/2-GATA4 Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:ph14121268. [PMID: 34959669 PMCID: PMC8708651 DOI: 10.3390/ph14121268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.
Collapse
Affiliation(s)
- Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Hiroki Honda
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Noriyuki Murai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuta Hirako
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Harumi Yabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Hiromichi Wada
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Correspondence: ; Tel.: +81-54-264-5763
| |
Collapse
|
22
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Sari N, Katanasaka Y, Sugiyama Y, Miyazaki Y, Sunagawa Y, Funamoto M, Shimizu K, Shimizu S, Hasegawa K, Morimoto T. Alpha Mangostin Derived from Garcinia magostana Linn Ameliorates Cardiomyocyte Hypertrophy and Fibroblast Phenotypes in Vitro. Biol Pharm Bull 2021; 44:1465-1472. [PMID: 34602555 DOI: 10.1248/bpb.b21-00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy and fibrosis are significant risk factors for chronic heart failure (HF). Since pharmacotherapy agents targeting these processes have not been established, we investigated the effect of alpha-magostin (α-man) on cardiomyocyte hypertrophy and fibrosis in vitro. Primary cultured cardiomyocytes and cardiac fibroblasts were prepared from neonatal rats. After α-man treatment, phenylephrine (PE) and transforming growth factor-beta (TGF-β) were added to the cardiomyocytes and cardiac fibroblasts to induce hypertrophic and fibrotic responses, respectively. Hypertrophic responses were assessed by measuring the cardiomyocyte surface area and hypertrophic gene expression levels. PE-induced phosphorylation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 was examined by Western blotting. Fibrotic responses were assessed by measuring collagen synthesis, fibrotic gene expression levels, and myofibroblast differentiation. In addition, TGF-β-induced reactive oxygen species (ROS) production was investigated. In cultured cardiomyocytes, α-man significantly suppressed PE-induced increases in the cardiomyocyte surface area, and the mRNA levels (atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP)). Treatment with α-man significantly suppressed PE-induced Akt phosphorylation, but not ERK and p38 phosphorylation. In cultured cardiac fibroblasts, α-man significantly suppressed TGF-β-induced increases in L-proline incorporation, mRNA levels (POSTN and alpha-smooth muscle actin (α-SMA)), and myofibroblast differentiation. Additionally, it significantly inhibited TGF-β-induced reduced nicotinamide adenine dinucleotide phosphate oxidase4 (NOX4) expression and ROS production in cardiac fibroblasts. Treatment with α-man significantly ameliorates hypertrophy by inhibiting Akt phosphorylation in cardiomyocytes and fibrosis by inhibiting NOX4-generating ROS in fibroblasts. These findings suggest that α-man is a possible natural product for the prevention of cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Nurmila Sari
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Yuga Sugiyama
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Kana Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Satoshi Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Koji Hasegawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| |
Collapse
|
24
|
Sunagawa Y, Shimizu K, Katayama A, Funamoto M, Shimizu K, Nurmila S, Shimizu S, Miyazaki Y, Katanasaka Y, Hasegawa K, Morimoto T. Metformin suppresses phenylephrine-induced hypertrophic responses by inhibiting p300-HAT activity in cardiomyocytes. J Pharmacol Sci 2021; 147:169-175. [PMID: 34384564 DOI: 10.1016/j.jphs.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Heart failure is the final pathway for a wide spectrum of myocardial stress, including hypertension and myocardial infarction. However, the potential effects of metformin on cardiac hypertrophy are still unclear. PURPOSE The purpose of this study was to investigate whether metformin leads to suppression of hypertrophic responses in cardiomyocytes. METHODS AND RESULTS To investigate whether metformin inhibited p300-histone acetyltransferase (HAT), we performed an in vitro HAT assay. Metformin directly inhibited p300-mediated acetylation of histone-H3K9. To examine the effects of metformin on hypertrophic responses, cardiomyocytes prepared from neonatal rats were treated with metformin and stimulated with saline or phenylephrine (PE), a α1-adrenergic agonist for 48 h. PE stimulus showed an increase in cell size, myofibrillar organization, expression of the endogenous atrial natriuretic factor and brain natriuretic peptide genes, and acetylation of histone-H3K9 compared with saline-treated cells. These PE-induced changes were inhibited by metformin. Next, to examine the effect of metformin on p300-mediated hypertrophy, cardiomyocytes were transfected with expression vector of p300. Metformin significantly suppressed p300-induced hypertrophic responses and acetylation of histone-H3K9. CONCLUSIONS The study demonstrates that metformin can suppress PE-induced and p300-mediated hypertrophic responses. Metformin may be useful for the treatment of patients with diabetes and heart failure.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Kiyotaka Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayumi Katayama
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Sari Nurmila
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
| |
Collapse
|
25
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
26
|
Curcumin, an Inhibitor of p300-HAT Activity, Suppresses the Development of Hypertension-Induced Left Ventricular Hypertrophy with Preserved Ejection Fraction in Dahl Rats. Nutrients 2021; 13:nu13082608. [PMID: 34444769 PMCID: PMC8397934 DOI: 10.3390/nu13082608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
We found that curcumin, a p300 histone acetyltransferase (HAT) inhibitor, prevents cardiac hypertrophy and systolic dysfunction at the stage of chronic heart failure in Dahl salt-sensitive rats (DS). It is unclear whether curcumin suppresses the development of hypertension-induced left ventricular hypertrophy (LVH) with a preserved ejection fraction. Therefore, in this study, we randomized DS (n = 16) and Dahl salt-resistant (DR) rats (n = 10) at 6 weeks of age to either curcumin or vehicle groups. These rats were fed a high-salt diet and orally administrated with 50 mg/kg/d curcumin or its vehicle for 6 weeks. Both curcumin and vehicle treatment groups exhibited similar degrees of high-salt diet-induced hypertension in DS rats. Curcumin significantly decreased hypertension-induced increase in posterior wall thickness and LV mass index, without affecting the systolic function. It also significantly reduced hypertension-induced increases in myocardial cell diameter, perivascular fibrosis and transcriptions of the hypertrophy-response gene. Moreover, it significantly attenuated the acetylation levels of GATA4 in the hearts of DS rats. A p300 HAT inhibitor, curcumin, suppresses the development of hypertension-induced LVH, without affecting blood pressure and systolic function. Therefore, curcumin may be used for the prevention of development of LVH in patients with hypertension.
Collapse
|
27
|
Myocardial ischemia reperfusion injury is alleviated by curcumin-peptide hydrogel via upregulating autophagy and protecting mitochondrial function. Stem Cell Res Ther 2021; 12:89. [PMID: 33509263 PMCID: PMC7842017 DOI: 10.1186/s13287-020-02101-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is an important factor limiting the success of cardiac reperfusion therapy. Curcumin has a significant cardioprotective effect against IRI, can inhibit ventricular remodeling induced by pressure load or MI, and improve cardiac function. However, the poor water solubility and low bioavailability of curcumin restrict its clinical application. Methods In this study, we prepared and evaluated a curcumin-hydrogel (cur-hydrogel) to reduce cardiomyocyte apoptosis and reactive oxygen species formation induced by hypoxia-reoxygenation injury, promote autophagy, and reduce mitochondrial damage by maintaining the phosphorylation of Cx43. Results Meanwhile, cur-hydrogel can restore cardiac function, inhibit myocardial collagen deposition and apoptosis, and activate JAK2/STAT3 pathway to alleviate myocardial ischemia-reperfusion injury in rats. Conclusions The purpose of this study is to elucidate the protective effects of cur-hydrogel on myocardial ischemia-reperfusion injury by regulating apoptosis, autophagy, and mitochondrial injury in vitro and in vivo, which lays a new theoretical and experimental foundation for the prevention and reduction of IRI.
Collapse
|
28
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
29
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Kandagalla S, Shekarappa SB, Rimac H, Grishina MA, Potemkin VA, Hanumanthappa M. Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. J Mol Graph Model 2020; 101:107756. [PMID: 32979659 DOI: 10.1016/j.jmgm.2020.107756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Acetylation plays a key role in maintaining and balancing cellular regulation and homeostasis. Acetyltransferases are an important class of enzymes which mediate this acetylation process. EP300 is a type 3 major lysine (K) acetyl transferase, and its aberrant activity is implicated in many human diseases. Hence, targeting EP300 mediated acetylation is a necessary step to control the associated diseases. Currently, a few EP300 inhibitors are known, among which curcumin is the most widely investigated molecule. However, due to its instability, chemical aggregation and reactivity, its inhibitory activity against the EP300 acetyltransferase domain is disputable. To address this curcumin problem, different curcumin analogues have been synthesized. These molecules were selected for screening against the EP300 acetyltransferase domain using in silico docking and MD analysis. We have successfully elucidated that the curcumin analogue CNB001 is a potential EP300 inhibitor with good drug-like characteristics.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia
| | - Sharath Belenahalli Shekarappa
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, 577451, Karnataka, India
| | - Hrvoje Rimac
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia; Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovacica 1, 10000, Zagreb, Croatia.
| | - Maria A Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia
| | - Vladimir A Potemkin
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia.
| | - Manjunatha Hanumanthappa
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, 577451, Karnataka, India; Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India.
| |
Collapse
|