1
|
Maguire C, Chen J, Rouphael N, Pickering H, Phan HV, Glascock A, Chu V, Dandekar R, Corry D, Kheradmand F, Baden LR, Selaky R, McComsey GA, Haddad EK, Cairns CB, Pulendran B, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, David MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Ehrlich LIR, Montgomery RR, Shaw AC, Hough CL, Geng LN, Hafler DA, Augustine AD, Becker PM, Peters B, Ozonoff A, Kim-Schulze SH, Krammer F, Bosinger S, Eckalbar W, Altman MC, Wilson M, Guan L, Kleinstein SH, Smolen KK, Reed EF, Levy O, Maecker H, Hunt P, Steen H, Diray-Arce J, Langelier CR, Melamed E. Chronic Viral Reactivation and Associated Host Immune Response and Clinical Outcomes in Acute COVID-19 and Post-Acute Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.622799. [PMID: 39605478 PMCID: PMC11601417 DOI: 10.1101/2024.11.14.622799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic viral infections are ubiquitous in humans, with individuals harboring multiple latent viruses that can reactivate during acute illnesses. Recent studies have suggested that SARS-CoV-2 infection can lead to reactivation of latent viruses such as Epstein-Barr Virus (EBV) and cytomegalovirus (CMV), yet, the extent and impact of viral reactivation in COVID-19 and its effect on the host immune system remain incompletely understood. Here we present a comprehensive multi-omic analysis of viral reactivation of all known chronically infecting viruses in 1,154 hospitalized COVID-19 patients, from the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study, who were followed prospectively for twelve months. We reveal significant reactivation of Herpesviridae, Enteroviridae, and Anelloviridae families during acute stage of COVID-19 (0-40 days post-hospitalization), each exhibiting distinct temporal dynamics. We also show that viral reactivation correlated with COVID-19 severity, demographic characteristics, and clinical outcomes, including mortality. Integration of cytokine profiling, cellular immunophenotyping, metabolomics, transcriptomics, and proteomics demonstrated virus-specific host responses, including elevated pro-inflammatory cytokines (e.g. IL-6, CXCL10, and TNF), increased activated CD4+ and CD8+ T-cells, and upregulation of cellular replication genes, independent of COVID-19 severity and SARS-CoV-2 viral load. Notably, persistent Anelloviridae reactivation during convalescence (≥3 months post-hospitalization) was associated with Post-Acute Sequelae of COVID-19 (PASC) symptoms, particularly physical function and fatigue. Our findings highlight a remarkable prevalence and potential impact of chronic viral reactivation on host responses and clinical outcomes during acute COVID-19 and long term PASC sequelae. Our data provide novel immune, transcriptomic, and metabolomic biomarkers of viral reactivation that may inform novel approaches to prognosticate, prevent, or treat acute COVID-19 and PASC.
Collapse
Affiliation(s)
- Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Jing Chen
- Clinical and Data Coordinating Center (CDCC) Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Harry Pickering
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles CA 90095, USA
| | - Hoang Van Phan
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | - Victoria Chu
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - David Corry
- Baylor College of Medicine and the Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Baylor College of Medicine and the Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA
| | - Lindsey R. Baden
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafick Selaky
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Grace A. McComsey
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Elias K. Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | - Charles B. Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | - Bali Pulendran
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Viviana Simon
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan P. Metcalf
- Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | - Mark M. David
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kari C. Nadeau
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Chris Bime
- University of Arizona, Tucson AZ 85721, USA
| | - Joanna Schaenman
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles CA 90095, USA
| | - David Erle
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Carolyn S. Calfee
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Linda N Geng
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Alison D. Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Al Ozonoff
- Clinical and Data Coordinating Center (CDCC) Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Matthew C. Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | | | | | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elaine F. Reed
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles CA 90095, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Peter Hunt
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joann Diray-Arce
- Clinical and Data Coordinating Center (CDCC) Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Esther Melamed
- The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Burnham KL, Milind N, Lee W, Kwok AJ, Cano-Gamez K, Mi Y, Geoghegan CG, Zhang P, McKechnie S, Soranzo N, Hinds CJ, Knight JC, Davenport EE. eQTLs identify regulatory networks and drivers of variation in the individual response to sepsis. CELL GENOMICS 2024; 4:100587. [PMID: 38897207 PMCID: PMC11293594 DOI: 10.1016/j.xgen.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.
Collapse
Affiliation(s)
- Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nikhil Milind
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Wanseon Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew J Kwok
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kiki Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuxin Mi
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Ping Zhang
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles J Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | | |
Collapse
|
3
|
Ciesielski TH. Sepsis research: Heterogeneity as a foundation rather than an afterthought. CELL GENOMICS 2024; 4:100608. [PMID: 38991496 PMCID: PMC11293572 DOI: 10.1016/j.xgen.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Our understanding of sepsis has been hampered by the implicit assumption that sepsis is a homogeneous disease. In this issue of Cell Genomics, Burnham et al.1 have started to characterize the genetic variants and regulatory networks that underlie variations in the individual response to sepsis; this may eventually enable targeted intervention development.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Guiouillier F, Derely J, Salvadori A, Pochard J, Le Goff J, Martinez T, Raffin F, Laitselart P, Beaucreux C, Priou S, Conan PL, Foissaud V, Servonnet A, Vest P, Boutonnet M, de Rudnicki S, Bigaillon C, Libert N. Reactivation of Epstein-Barr virus among intensive care patients: a prospective observational study. Intensive Care Med 2024; 50:418-426. [PMID: 38436725 DOI: 10.1007/s00134-024-07345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Herpesvirus reactivation has been documented among patients in the intensive care unit (ICU) and is associated with increased morbidity and mortality, particularly for cytomegalovirus (CMV). Epstein-Barr virus (EBV) has been poorly studied despite >95% of the population being seropositive. Our preliminary study suggested an association between EBV reactivation and increased morbidity and mortality. This study aimed to investigate this association among patients admitted to the ICU. METHODS In this multicenter prospective study, polymerase chain reaction was performed to quantify EBV in patients upon ICU admission and then twice a week during their stay. Follow-up was 90 days. RESULTS The study included 129 patients; 70 (54.3%) had EBV reactivation. On day 90, there was no difference in mortality rates between patients with and without reactivation (25.7% vs 15.3%, p = 0.22). Patients with EBV reactivation at admission had increased mortality compared with those without reactivation and those with later reactivation. EBV reactivation was associated with increased morbidity. Patients with EBV reactivation had fewer ventilator-free days at day 28 than those without reactivation (18 [1-22] vs. 21 days [5-26], p = 0.037) and a higher incidence of acute respiratory distress syndrome (34.3% vs. 17%, p = 0.04), infections (92.9% vs. 78%, p = 0.03), and septic shock (58.6% vs. 32.2%, p = 0.004). More patients with EBV reactivation required renal replacement therapy (30% vs. 11.9%, p = 0.02). EBV reactivation was also associated with a more inflammatory immune profile. CONCLUSION While EBV reactivation was not associated with increased 90-day mortality, it was associated with significantly increased morbidity.
Collapse
Affiliation(s)
- François Guiouillier
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Jean Derely
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Alexandre Salvadori
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Bégin, Saint Mandé, France
| | - Jonas Pochard
- Service d'Anesthésie-réanimation Chirurgicale, Hôpital de Bicêtre, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Jérôme Le Goff
- Département des Agents Infectieux, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thibault Martinez
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Florent Raffin
- Institut de Recherche Biomédicale des Armées, Unité d'Analyses Biologiques, Brétigny sur Orge, France
| | - Philippe Laitselart
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Charlotte Beaucreux
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Bégin, Saint Mandé, France
| | - Sonia Priou
- CentraleSupelec, Université Paris Saclay, Laboratoire Génie Industriel, Gif-Sur-Yvette, France
| | - Pierre-Louis Conan
- Service de maladie infectieuse, Hôpital d'Instruction des Armées Bégin, Saint Mandé, France
| | - Vincent Foissaud
- Service de biologie médicale, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Aurélie Servonnet
- Institut de Recherche Biomédicale des Armées, Unité d'Analyses Biologiques, Brétigny sur Orge, France
| | - Philippe Vest
- Service de biologie médicale, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Mathieu Boutonnet
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Stéphane de Rudnicki
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Christine Bigaillon
- Service de biologie médicale, Hôpital d'Instruction des Armées Bégin, Saint Mandé, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France.
| |
Collapse
|
6
|
Wigston C, Lavender M, Long R, Sankhesara D, Ching D, Weaire-Buchanan G, Mowlaboccus S, Coombs GW, Lam K, Wrobel J, Yaw MC, Musk M, Boan P. Mycoplasma and Ureaplasma Donor-Derived Infection and Hyperammonemia Syndrome in 4 Solid Organ Transplant Recipients From a Single Donor. Open Forum Infect Dis 2023; 10:ofad263. [PMID: 37323424 PMCID: PMC10264062 DOI: 10.1093/ofid/ofad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Hyperammonemia syndrome (HS) is a life-threatening condition occurring in solid organ transplant patients, affecting primarily lung recipients, and is associated with Mycoplasma hominis and/or Ureaplasma spp infection. The organ donor was a young man who died of hypoxic brain injury and had urethral discharge antemortem. The donor and 4 solid organ transplant recipients had infection with M hominis and/or Ureaplasma spp. The lung and heart recipients both developed altered conscious state and HS associated with M hominis and Ureaplasma spp infections. Despite treatment with antibiotics and ammonia scavengers, both the lung and heart recipients died at day +102 and day +254, respectively. After diagnosis in the thoracic recipients, screening samples from the liver recipient and 1 kidney recipient were culture positive for M hominis with or without Ureaplasma spp. Neither the liver nor kidney recipients developed HS. Our case series demonstrates the unique finding of M hominis and Ureaplasma spp dissemination from an immunocompetent donor across 4 different organ recipients. Phylogenetic whole genome sequencing analysis demonstrated that M hominis samples from recipients and donor were closely related, suggesting donor-derived infection. Screening of lung donors and/or recipients for Mycoplasma and Ureaplasma spp is recommended, as well as prompt treatment with antimicrobials to prevent morbidity.
Collapse
Affiliation(s)
- Charlotte Wigston
- Correspondence: Charlotte Wigston, MBBCh, PGCertHPE, MRCP, Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Perth, WA 6150, Australia (); Peter Boan, MBBS, FRACP, FRCPA, Department of Microbiology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Murdoch, Perth, WA 6150, Australia ()
| | - Melanie Lavender
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Rebecca Long
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Dipen Sankhesara
- Advanced Heart Failure Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - David Ching
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Graham Weaire-Buchanan
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Geoffrey W Coombs
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Kaitlyn Lam
- Advanced Heart Failure Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Jeremy Wrobel
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
- Department of Medicine, University of Notre Dame, Perth, Western Australia, Australia
| | - Meow Cheong Yaw
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Michael Musk
- Advanced Lung Disease Unit, Fiona Stanley Hospital,Murdoch, Western Australia, Australia
| | - Peter Boan
- Correspondence: Charlotte Wigston, MBBCh, PGCertHPE, MRCP, Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Perth, WA 6150, Australia (); Peter Boan, MBBS, FRACP, FRCPA, Department of Microbiology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Murdoch, Perth, WA 6150, Australia ()
| |
Collapse
|
7
|
Liu W, Wang C, Pan F, Shao J, Cui Y, Han D, Zhang H. Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections. Pathogens 2023; 12:pathogens12050719. [PMID: 37242389 DOI: 10.3390/pathogens12050719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Droplet digital PCR (ddPCR) recently has been shown to be a potential diagnostic tool for adults with bloodstream infections (BSIs); however, its application in children remains obscure. In this study, 76 blood samples of children with suspected BSIs were synchronously detected by traditional blood cultures (BCs) and ddPCRs. Our team validated the diagnostic performance of ddPCR including sensitivity, specificity, and positive and negative predictive values. The 76 pediatric patients from the hematology department (67.1%), the pediatric intensive care unit (PICU, 27.6%), and other departments (5.2%) were enrolled. The positive rate of ddPCR results was 47.9%, whereas that for BC was 6.6%. In addition, the time consumption of ddPCR was shorter, only for 4.7 ± 0.9 h, in comparison with the detection timing of BC (76.7 ± 10.4 h, p < 0.01). The levels of agreement and disagreement between BC and ddPCR were 96.1% and 4.2%, and the negative agreement reached 95.6%. The sensitivity of ddPCR was 100%, with corresponding specificities ranging from 95.3 to 100.0%. In addition, a total of nine viruses were identified by ddPCR. In China, the multiplexed ddPCR first could be a tool for the rapid and accurate diagnosis of children with suspected BSIs and can be an early indicator of the possibility of viraemia in children with immunosuppression.
Collapse
Affiliation(s)
- Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
8
|
Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. Int J Mol Sci 2023; 24:ijms24031829. [PMID: 36768154 PMCID: PMC9916340 DOI: 10.3390/ijms24031829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Because of endotoxemia during sepsis (a severe life-threatening infection), lipopolysaccharide (LPS) tolerance (the reduced responses to the repeated LPS stimulation) might be one of the causes of sepsis-induced immune exhaustion (the increased susceptibility to secondary infection and/or viral reactivation). In LPS tolerance macrophage (twice-stimulated LPS, LPS/LPS) compared with a single LPS stimulation (N/LPS), there was (i) reduced energy of the cell in both glycolysis and mitochondrial activities (extracellular flux analysis), (ii) decreased abundance of the following proteins (proteomic analysis): (a) complex I and II of the mitochondrial electron transport chain, (b) most of the glycolysis enzymes, (c) anti-viral responses with Myxovirus resistance protein 1 (Mx1) and Ubiquitin-like protein ISG15 (Isg15), (d) antigen presentation pathways, and (iii) the down-regulated anti-viral genes, such as Mx1 and Isg15 (polymerase chain reaction). To test the correlation between LPS tolerance and viral reactivation, asymptomatic mice with and without murine norovirus (MNV) infection as determined in feces were tested. In MNV-positive mice, MNV abundance in the cecum, but not in feces, of LPS/LPS mice was higher than that in N/LPS and control groups, while MNV abundance of N/LPS and control were similar. Additionally, the down-regulated Mx1 and Isg15 were also demonstrated in the cecum, liver, and spleen in LPS/LPS-activated mice, regardless of MNV infection, while N/LPS more prominently upregulated these genes in the cecum of MNV-positive mice compared with the MNV-negative group. In conclusion, defects in anti-viral responses after LPS tolerance, perhaps through the reduced energy status of macrophages, might partly be responsible for the viral reactivation. More studies on patients are of interest.
Collapse
|
9
|
Merino I, de la Fuente A, Domínguez-Gil M, Eiros JM, Tedim AP, Bermejo-Martín JF. Digital PCR applications for the diagnosis and management of infection in critical care medicine. Crit Care 2022; 26:63. [PMID: 35313934 PMCID: PMC8935253 DOI: 10.1186/s13054-022-03948-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Infection (either community acquired or nosocomial) is a major cause of morbidity and mortality in critical care medicine. Sepsis is present in up to 30% of all ICU patients. A large fraction of sepsis cases is driven by severe community acquired pneumonia (sCAP), which incidence has dramatically increased during COVID-19 pandemics. A frequent complication of ICU patients is ventilator associated pneumonia (VAP), which affects 10–25% of all ventilated patients, and bloodstream infections (BSIs), affecting about 10% of patients. Management of these severe infections poses several challenges, including early diagnosis, severity stratification, prognosis assessment or treatment guidance. Digital PCR (dPCR) is a next-generation PCR method that offers a number of technical advantages to face these challenges: it is less affected than real time PCR by the presence of PCR inhibitors leading to higher sensitivity. In addition, dPCR offers high reproducibility, and provides absolute quantification without the need for a standard curve. In this article we reviewed the existing evidence on the applications of dPCR to the management of infection in critical care medicine. We included thirty-two articles involving critically ill patients. Twenty-three articles focused on the amplification of microbial genes: (1) four articles approached bacterial identification in blood or plasma; (2) one article used dPCR for fungal identification in blood; (3) another article focused on bacterial and fungal identification in other clinical samples; (4) three articles used dPCR for viral identification; (5) twelve articles quantified microbial burden by dPCR to assess severity, prognosis and treatment guidance; (6) two articles used dPCR to determine microbial ecology in ICU patients. The remaining nine articles used dPCR to profile host responses to infection, two of them for severity stratification in sepsis, four focused to improve diagnosis of this disease, one for detecting sCAP, one for detecting VAP, and finally one aimed to predict progression of COVID-19. This review evidences the potential of dPCR as a useful tool that could contribute to improve the detection and clinical management of infection in critical care medicine.
Collapse
Affiliation(s)
- Irene Merino
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain.,Microbiology Department, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Amanda de la Fuente
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Marta Domínguez-Gil
- Microbiology Department, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - José María Eiros
- Microbiology Department, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain. .,Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain.
| | - Jesús F Bermejo-Martín
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 3-5, 28029, Madrid, Spain
| |
Collapse
|
10
|
Qu J, He F, Li H, Lv X. Emergent Virus Reactivation in SARS-CoV-2-Negative Community Acquired Pneumonia Patients During the COVID-19 Pandemic. Front Microbiol 2022; 13:758073. [PMID: 35197947 PMCID: PMC8859182 DOI: 10.3389/fmicb.2022.758073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Emergent viruses (namely, HSV-1, CMV, and EBV) reactivation were common in critically ill patients and/or immunosuppressed patients. This study aimed to understand the clinical manifestations and reactivation of the emergent viruses in SARS-CoV-2-Negative community acquired pneumonia (CAP) patients during the COVID-19 pandemic. We retrospectively reviewed the medical records of CAP patients from January to March 2020, in our university hospital in China. The patients were divided into two groups based on the presence or absence of emergent viruses. In all patients, the positive rates of EBV, HSV, and CMV were 23.43% (15/64), 22.06% (15/68), and 12.50% (8/64), respectively. The most common presenting symptoms were fever (98, 57.99%) and dry cough (55, 32.54%). The levels of albumin, hemoglobin, lymphocyte count, and CD4 + T lymphocyte count in emergent viruses positive group were lower than those of viruses negative group (P < 0.05). The initial chest CT features of these patients were diverse. The most common manifestations were ground-glass opacity (91/169, 53.85%) and pulmonary nodule (88/169, 52.07%). More emergent viruses positive patients have bilateral upper lobes involvement than emergent viruses negative patients (P < 0.05). A total of 80.47% patients (136/169) received empirical antimicrobial treatment. The most commonly used antibiotic regimen was fluoroquinolone monotherapy (80/169, 47.34%). The emergent viruses positive patients have poorer clinical outcome (P < 0.05). In conclusion, emergent viruses reactivation was common in SARS-CoV-2-Negative CAP patients. Emergent viruses positive patients have poorer cellular immune function, more severer conditions and poorer prognosis. Fluoroquinolones may be a therapeutic option for CAP patients.
Collapse
|
11
|
Mallet F, Diouf L, Meunier B, Perret M, Reynier F, Leissner P, Quemeneur L, Griffiths AD, Moucadel V, Pachot A, Venet F, Monneret G, Lepape A, Rimmelé T, Tan LK, Brengel-Pesce K, Textoris J. Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically Ill Patients: A Single-Centre Prospective Longitudinal Study. Front Immunol 2021; 12:698808. [PMID: 34795661 PMCID: PMC8593420 DOI: 10.3389/fimmu.2021.698808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction We analysed blood DNAemia of TTV and four herpesviruses (CMV, EBV, HHV6, and HSV-1) in the REAnimation Low Immune Status Marker (REALISM) cohort of critically ill patients who had presented with either sepsis, burns, severe trauma, or major surgery. The aim was to identify common features related to virus and injury-associated pathologies and specific features linking one or several viruses to a particular pathological context. Methods Overall and individual viral DNAemia were measured over a month using quantitative PCR assays from the 377 patients in the REALISM cohort. These patients were characterised by clinical outcomes [severity scores, mortality, Intensive Care Unit (ICU)-acquired infection (IAI)] and 48 parameters defining their host response after injury (cell populations, immune functional assays, and biomarkers). Association between viraemic event and clinical outcomes or immune markers was assessed using χ2-test or exact Fisher’s test for qualitative variables and Wilcoxon test for continuous variables. Results The cumulative incidence of viral DNAemia increased from below 4% at ICU admission to 35% for each herpesvirus during the first month. EBV, HSV1, HHV6, and CMV were detected in 18%, 12%, 10%, and 9% of patients, respectively. The incidence of high TTV viraemia (>10,000 copies/ml) increased from 11% to 15% during the same period. Herpesvirus viraemia was associated with severity at admission; CMV and HHV6 viraemia correlated with mortality during the first week and over the month. The presence of individual herpesvirus during the first month was significantly associated (p < 0.001) with the occurrence of IAI, whilst herpesvirus DNAemia coupled with high TTV viraemia during the very first week was associated with IAI. Herpesvirus viraemia was associated with a lasting exacerbated host immune response, with concurrent profound immune suppression and hyper inflammation, and delayed return to immune homeostasis. The percentage of patients presenting with herpesvirus DNAemia was significantly higher in sepsis than in all other groups. Primary infection in the hospital and high IL10 levels might favour EBV and CMV reactivation. Conclusion In this cohort of ICU patients, phenotypic differences were observed between TTV and herpesviruses DNAemia. The higher prevalence of herpesvirus DNAemia in sepsis hints at further studies that may enable a better in vivo understanding of host determinants of herpesvirus viral reactivation. Furthermore, our data suggest that EBV and TTV may be useful as additional markers to predict clinical deterioration in ICU patients.
Collapse
Affiliation(s)
- François Mallet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Léa Diouf
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,IVIDATA, Levallois-Perret, France
| | - Boris Meunier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Soladis Inc., Cambridge, MA, United States
| | - Magali Perret
- BIOASTER Technology Research Institute, Lyon, France
| | | | | | | | - Andrew D Griffiths
- Laboratoire de Biochimie (LBC), École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) Université, Centre National de la Recherche Scientifique (CNRS) UMR8231, Paris, France
| | - Virginie Moucadel
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alexandre Pachot
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alain Lepape
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | | | - Karen Brengel-Pesce
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julien Textoris
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
12
|
Viral Micro-RNAs Are Detected in the Early Systemic Response to Injury and Are Associated With Outcomes in Polytrauma Patients. Crit Care Med 2021; 50:296-306. [PMID: 34259445 DOI: 10.1097/ccm.0000000000005181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate early activation of latent viruses in polytrauma patients and consider prognostic value of viral micro-RNAs in these patients. DESIGN This was a subset analysis from a prospectively collected multicenter trauma database. Blood samples were obtained upon admission to the trauma bay (T0), and trauma metrics and recovery data were collected. SETTING Two civilian Level 1 Trauma Centers and one Military Treatment Facility. PATIENTS Adult polytrauma patients with Injury Severity Scores greater than or equal to 16 and available T0 plasma samples were included in this study. Patients with ICU admission greater than 14 days, mechanical ventilation greater than 7 days, or mortality within 28 days were considered to have a complicated recovery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Polytrauma patients (n = 180) were identified, and complicated recovery was noted in 33%. Plasma samples from T0 underwent reverse transcriptase-quantitative polymerase chain reaction analysis for Kaposi's sarcoma-associated herpesvirus micro-RNAs (miR-K12_10b and miRK-12-12) and Epstein-Barr virus-associated micro-RNA (miR-BHRF-1), as well as Luminex multiplex array analysis for established mediators of inflammation. Ninety-eight percent of polytrauma patients were found to have detectable Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus micro-RNAs at T0, whereas healthy controls demonstrated 0% and 100% detection rate for Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, respectively. Univariate analysis revealed associations between viral micro-RNAs and polytrauma patients' age, race, and postinjury complications. Multivariate least absolute shrinkage and selection operator analysis of clinical variables and systemic biomarkers at T0 revealed that interleukin-10 was the strongest predictor of all viral micro-RNAs. Multivariate least absolute shrinkage and selection operator analysis of systemic biomarkers as predictors of complicated recovery at T0 demonstrated that miR-BHRF-1, miR-K12-12, monocyte chemoattractant protein-1, and hepatocyte growth factor were independent predictors of complicated recovery with a model complicated recovery prediction area under the curve of 0.81. CONCLUSIONS Viral micro-RNAs were detected within hours of injury and correlated with poor outcomes in polytrauma patients. Our findings suggest that transcription of viral micro-RNAs occurs early in the response to trauma and may be associated with the biological processes involved in polytrauma-induced complicated recovery.
Collapse
|