1
|
Saccomano G, Pinamonti M, Longo E, Marcuzzo T, Tromba G, Dreossi D, Brun F. The potential of x-ray virtual histology in the diagnosis of skin tumors. Skin Res Technol 2024; 30:e13801. [PMID: 39363439 PMCID: PMC11449805 DOI: 10.1111/srt.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Histopathological analysis represents the gold standard in clinical practice for diagnosing skin neoplasms. While the current diagnostic workflow has specialized in producing robust and accurate results, interpreting tissue architecture and malignant cellular morphology correctly remains one of the greatest challenges for pathologists. This paper aims to explore the prospect of applying x-ray virtual histology to human skin tumor excisions and correlating it with the histological validation. MATERIALS AND METHODS Seven skin biopsies containing intriguing melanoma types and pigmented skin lesions were scanned using x-ray Computed micro-Tomography (μCT) and then sectioned for conventional histology assessment. RESULTS The tissue microarchitecture reconstructed by μCT offers detailed insights into diagnosing the malignancy or benignity of the skin lesions. Three-dimensional reconstruction via x-ray virtual histology reveals infiltrative patterns in basal cell carcinoma and evaluated invasiveness in melanoma. The technology enables the identification of pagetoid distributions of neoplastic cells and the assessment of melanoma depth in three dimensions. CONCLUSION Although the proposed approach is not intended to replace conventional histology, the non-destructive nature of the sample and the clarity provided by virtual inspection demonstrate the promising impact of μCT as a valid support method prior to conventional histological sectioning. Indeed, μCT images can suggest the optimal sectioning position before using a microtome, as is commonly performed in histological practice. Moreover, the three-dimensional nature of the proposed approach paves the way for a more accurate assessment of significant prognostic factors in melanoma, such as Breslow thickness, by considering the whole micro-volume rather than a two-dimensional observation.
Collapse
Affiliation(s)
- Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
| | - Thomas Marcuzzo
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | | | | | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| |
Collapse
|
2
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2024. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
3
|
Gaunt JR, Zainolabidin N, Yip AKK, Tan JM, Low AYT, Chen AI, Ch'ng TH. Cytokine enrichment in deep cerebellar nuclei is contributed by multiple glial populations and linked to reduced amyloid plaque pathology. J Neuroinflammation 2023; 20:269. [PMID: 37978387 PMCID: PMC10656954 DOI: 10.1186/s12974-023-02913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) pathology and amyloid-beta (Aβ) plaque deposition progress slowly in the cerebellum compared to other brain regions, while the entorhinal cortex (EC) is one of the most vulnerable regions. Using a knock-in AD mouse model (App KI), we show that within the cerebellum, the deep cerebellar nuclei (DCN) has particularly low accumulation of Aβ plaques. To identify factors that might underlie differences in the progression of AD-associated neuropathology across regions, we profiled gene expression in single nuclei (snRNAseq) across all cell types in the DCN and EC of wild-type (WT) and App KI male mice at age 7 months. We found differences in expression of genes associated with inflammatory activation, PI3K-AKT signalling, and neuron support functions between both regions and genotypes. In WT mice, the expression of interferon-response genes in microglia is higher in the DCN than the EC and this enrichment is confirmed by RNA in situ hybridisation, and measurement of inflammatory cytokines by protein array. Our analyses also revealed that multiple glial populations are responsible for establishing this cytokine-enriched niche. Furthermore, homogenates derived from the DCN induced inflammatory gene expression in BV2 microglia. We also assessed the relationship between the DCN microenvironment and Aβ pathology by depleting microglia using a CSF1R inhibitor PLX5622 and saw that, surprisingly, the expression of a subset of inflammatory cytokines was increased while plaque abundance in the DCN was further reduced. Overall, our study revealed the presence of a cytokine-enriched microenvironment unique to the DCN that when modulated, can alter plaque deposition.
Collapse
Affiliation(s)
- Jessica R Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Norliyana Zainolabidin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Alaric K K Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Albert I Chen
- Center for Aging Research, Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, 92037, USA.
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore.
- School of Biological Science, Nanyang Technological University, Singapore, 63755, Singapore.
| |
Collapse
|
4
|
Chourrout M, Sandt C, Weitkamp T, Dučić T, Meyronet D, Baron T, Klohs J, Rama N, Boutin H, Singh S, Olivier C, Wiart M, Brun E, Bohic S, Chauveau F. Virtual histology of Alzheimer's disease: Biometal entrapment within amyloid-β plaques allows for detection via X-ray phase-contrast imaging. Acta Biomater 2023; 170:260-272. [PMID: 37574159 DOI: 10.1016/j.actbio.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
Amyloid-β (Aβ) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aβ plaques. The current study was designed to test the hypothesis that Aβ-related contrast in XPCT could be caused by Aβ fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aβ plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aβ plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAβ, J20; rat: TgF344). Aβ plaques from the genetic AD patient were visible using XPCT, and had higher β-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aβ plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAβ mice. In all four transgenic strains, β-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAβ mice. Hence, a hyperdense contrast formation of Aβ plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-β plaques (Aβ), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aβ plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aβ plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ. Lyon, Lyon Neuroscience Research Center (CRNL); CNRS UMR5292; INSERM U1028, Univ. Lyon 1, Lyon, France
| | | | | | - Tanja Dučić
- ALBA-CELLS Synchrotron, MIRAS Beamline, Cerdanyola del Vallès, Spain
| | - David Meyronet
- Hospices Civils de Lyon, Neuropathology Department, Lyon, France; Univ. Lyon, Cancer Research Center of Lyon (CRCL); INSERM U1052; CNRS UMR5286, Univ. Lyon 1; Centre Léon Bérard, Lyon, France
| | | | - Jan Klohs
- ETH Zurich, Institute for Biomedical Engineering, Zurich, Switzerland
| | - Nicolas Rama
- Univ. Lyon, Cancer Research Center of Lyon (CRCL); INSERM U1052; CNRS UMR5286, Univ. Lyon 1; Centre Léon Bérard, Lyon, France
| | - Hervé Boutin
- Univ. Manchester, Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Shifali Singh
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE); Inserm UA7, Grenoble, France
| | - Cécile Olivier
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE); Inserm UA7, Grenoble, France
| | - Marlène Wiart
- Univ. Lyon, CarMeN Laboratory; INSERM U1060, INRA U1397, INSA Lyon, Univ. Lyon 1, Lyon, France; CNRS, France
| | - Emmanuel Brun
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE); Inserm UA7, Grenoble, France
| | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE); Inserm UA7, Grenoble, France
| | - Fabien Chauveau
- Univ. Lyon, Lyon Neuroscience Research Center (CRNL); CNRS UMR5292; INSERM U1028, Univ. Lyon 1, Lyon, France; CNRS, France.
| |
Collapse
|
5
|
Wang M, Xu T, Gao L, Huang C, Xu P, Gong C, Amakye WK, Liao L, Yao M, Ren J. Lycium ruthenicum Murr. treatment attenuates APPswE/PS1ΔE9 mouse model-like mitochondrial dysfunction in Slc25a46 knockout mouse model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Pinkert-Leetsch D, Frohn J, Ströbel P, Alves F, Salditt T, Missbach-Guentner J. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 2023; 23:43. [PMID: 37131262 PMCID: PMC10152799 DOI: 10.1186/s40644-023-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The worldwide increase of pancreatic ductal adenocarcinoma (PDAC), which still has one of the lowest survival rates, requires novel imaging tools to improve early detection and to refine diagnosis. Therefore, the aim of this study was to assess the feasibility of propagation-based phase-contrast X-ray computed tomography of already paraffin-embedded and unlabeled human pancreatic tumor tissue to achieve a detailed three-dimensional (3D) view of the tumor sample in its entirety. METHODS Punch biopsies of areas of particular interest were taken from paraffin blocks after initial histological analysis of hematoxylin and eosin stained tumor sections. To cover the entire 3.5 mm diameter of the punch biopsy, nine individual tomograms with overlapping regions were acquired in a synchrotron parallel beam configuration and stitched together after data reconstruction. Due to the intrinsic contrast based on electron density differences of tissue components and a voxel size of 1.3 μm achieved PDAC and its precursors were clearly identified. RESULTS Characteristic tissue structures for PDAC and its precursors, such as dilated pancreatic ducts, altered ductal epithelium, diffuse immune cell infiltrations, increased occurrence of tumor stroma and perineural invasion were clearly identified. Certain structures of interest were visualized in three dimensions throughout the tissue punch. Pancreatic duct ectasia of different caliber and atypical shape as well as perineural infiltration could be contiguously traced by viewing serial tomographic slices and by applying semi-automatic segmentation. Histological validation of corresponding sections confirmed the former identified PDAC features. CONCLUSION In conclusion, virtual 3D histology via phase-contrast X-ray tomography visualizes diagnostically relevant tissue structures of PDAC in their entirety, preserving tissue integrity in label-free, paraffin embedded tissue biopsies. In the future, this will not only enable a more comprehensive diagnosis but also a possible identification of new 3D imaging tumor markers.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany.
| | - Jasper Frohn
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center, Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
7
|
Frost J, Schmitzer B, Töpperwien M, Eckermann M, Franz J, Stadelmann C, Salditt T. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Neuroscience 2023; 520:18-38. [PMID: 37061161 DOI: 10.1016/j.neuroscience.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
We investigate structural properties of neurons in the granular layer of human cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze data recorded by X-ray phase contrast tomography from tissue samples collected post mortem from a MS and a healthy control group. Using automated segmentation and histogram analysis based on optimal transport theory (OT) we find that the distributions representing nuclear structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of the dentate gyrus in Alzheimer's disease, suggesting that more compact structure of neuronal nuclei which we attributed to increased levels of heterochromatin, may possibly represent a more general phenomenon of cellular senescence associated with neurodegeneration.
Collapse
Affiliation(s)
- Jakob Frost
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany
| | - Bernhard Schmitzer
- Institute of Computer Science, Georg-August Universität Göttingen, Germany
| | - Mareike Töpperwien
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France; Present adress: YXLON GmbH, Hamburg, Germany
| | - Marina Eckermann
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France
| | - Jonas Franz
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| | - Tim Salditt
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| |
Collapse
|
8
|
Cheron G, Ristori D, Marquez-Ruiz J, Cebolla AM, Ris L. Electrophysiological alterations of the Purkinje cells and deep cerebellar neurons in a mouse model of Alzheimer disease (electrophysiology on cerebellum of AD mice). Eur J Neurosci 2022; 56:5547-5563. [PMID: 35141975 DOI: 10.1111/ejn.15621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is histopathologically well defined by the presence of amyloid deposits and tau-related neurofibrillary tangles in crucial regions of the brain. Interest is growing in revealing and determining possible pathological markers also in the cerebellum as its involvement in cognitive functions is now well supported. Despite the central position of the Purkinje cell in the cerebellum, its electrophysiological behaviour in mouse models of Alzheimer's disease is scarce in the literature. Our first aim was here to focus on the electrophysiological behaviour of the cerebellum in awake mouse model of Alzheimer's disease (APPswe/PSEN1dE9) and the related performance on the water-maze test classically used in behavioural studies. We found prevalent signs of electrophysiological alterations in both Purkinje cells and deep cerebellar nuclei neurons which might explain the behavioural deficits reported during the water-maze test. The alterations of neurons firing were accompanied by a dual (~16 and ~228 Hz) local field potential's oscillation in the Purkinje cell layer of Alzheimer's disease mice which was concomitant to an important increase of both the simple and the complex spikes. In addition, β-amyloid deposits were present in the molecular layer of the cerebellum. These results highlight the importance of the output firing modification of the AD cerebellum that may indirectly impact the activity of its subcortical and cortical targets.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institut, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Marquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Anna-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium.,UMONS Research Institut for health and technology, Université de Mons, Mons, Belgium
| |
Collapse
|
9
|
Chourrout M, Rositi H, Ong E, Hubert V, Paccalet A, Foucault L, Autret A, Fayard B, Olivier C, Bolbos R, Peyrin F, Crola-da-Silva C, Meyronet D, Raineteau O, Elleaume H, Brun E, Chauveau F, Wiart M. Brain virtual histology with X-ray phase-contrast tomography Part I: whole-brain myelin mapping in white-matter injury models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1620-1639. [PMID: 35415001 PMCID: PMC8973191 DOI: 10.1364/boe.438832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments. The purpose of this study was to propose an approach that enables myelin fibers to be mapped in the whole rodent brain with microscopic resolution and without the need for strenuous staining. With this aim, we coupled in-line (propagation-based) X-ray phase-contrast tomography (XPCT) to ethanol-induced brain sample dehydration. We here provide the proof-of-concept that this approach enhances myelinated axons in rodent and human brain tissue. In addition, we demonstrated that white-matter injuries could be detected and quantified with this approach, using three animal models: ischemic stroke, premature birth and multiple sclerosis. Furthermore, in analogy to diffusion tensor imaging (DTI), we retrieved fiber directions and DTI-like diffusion metrics from our XPCT data to quantitatively characterize white-matter microstructure. Finally, we showed that this non-destructive approach was compatible with subsequent complementary brain sample analysis by conventional histology. In-line XPCT might thus become a novel gold-standard for investigating white-matter injury in the intact brain. This is Part I of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part II shows how in-line XPCT enables the whole-brain 3D morphometric analysis of amyloid- β (A β ) plaques.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- Co-first authors
| | - Hugo Rositi
- Univ-Clermont Auvergne; CNRS;
SIGMA Clermont; Institut Pascal,
Clermont-Ferrand, France
- Co-first authors
| | - Elodie Ong
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- Univ-Lyon, Hospices Civils de
Lyon, Lyon, France
| | - Violaine Hubert
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Alexandre Paccalet
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Louis Foucault
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | | | | | - Cécile Olivier
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | | | - Françoise Peyrin
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | - Claire Crola-da-Silva
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | | | - Olivier Raineteau
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | - Héléne Elleaume
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Emmanuel Brun
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Fabien Chauveau
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- CNRS, Lyon,
France
- Co-last authors
| | - Marlene Wiart
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- CNRS, Lyon,
France
- Co-last authors
| |
Collapse
|
10
|
Chourrout M, Roux M, Boisvert C, Gislard C, Legland D, Arganda-Carreras I, Olivier C, Peyrin F, Boutin H, Rama N, Baron T, Meyronet D, Brun E, Rositi H, Wiart M, Chauveau F. Brain virtual histology with X-ray phase-contrast tomography Part II:3D morphologies of amyloid- β plaques in Alzheimer's disease models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1640-1653. [PMID: 35414980 PMCID: PMC8973161 DOI: 10.1364/boe.438890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
While numerous transgenic mouse strains have been produced to model the formation of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aβ plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aβ plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aβ aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Margaux Roux
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Carlie Boisvert
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
- Current affiliation: Faculty of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Coralie Gislard
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ignacio Arganda-Carreras
- University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Cécile Olivier
- Univ. Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon; Univ. Lyon 1, Lyon, France
| | - Françoise Peyrin
- Univ. Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon; Univ. Lyon 1, Lyon, France
| | - Hervé Boutin
- Univ. Manchester, Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Nicolas Rama
- Univ. Lyon, CRCL; INSERM U1052; CNRS UMR5286; Univ. Lyon 1; Centre Léon Bérard, Lyon, France
| | | | | | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm UA07 Strobe Grenoble, France
| | - Hugo Rositi
- Univ. Clermont Auvergne, Institut Pascal; CNRS UMR 6602; SIGMA Clermont, Clermont-Ferrand, France
| | - Marlène Wiart
- Univ. Lyon, CarMeN Laboratory; INSERM U1060; INRA U1397; Hospices Civils de Lyon, Lyon, France
- CNRS, Lyon, France
- These authors contributed equally to this work
| | - Fabien Chauveau
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
- CNRS, Lyon, France
- These authors contributed equally to this work
| |
Collapse
|
11
|
Romano M, Bravin A, Mittone A, Eckhardt A, Barbone GE, Sancey L, Dinkel J, Bartzsch S, Ricke J, Alunni-Fabbroni M, Hirner-Eppeneder H, Karpov D, Giannini C, Bunk O, Bouchet A, Ruf V, Giese A, Coan P. A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model. Cancers (Basel) 2021; 13:cancers13194953. [PMID: 34638437 PMCID: PMC8507698 DOI: 10.3390/cancers13194953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging-Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques.
Collapse
Affiliation(s)
- Mariele Romano
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität, Am Coulombwall 1, München, 85748 Garching, Germany; (M.R.); (A.E.); (G.E.B.)
| | - Alberto Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France; (A.B.); (A.M.); (D.K.)
- Department of Physics, Faculty of Physics, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alberto Mittone
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France; (A.B.); (A.M.); (D.K.)
- CELLS-ALBA Synchrotron, 08290 Cerdanyola del Valles, Spain
| | - Alicia Eckhardt
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität, Am Coulombwall 1, München, 85748 Garching, Germany; (M.R.); (A.E.); (G.E.B.)
| | - Giacomo E. Barbone
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität, Am Coulombwall 1, München, 85748 Garching, Germany; (M.R.); (A.E.); (G.E.B.)
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
| | - Lucie Sancey
- Centre de Recherche UGA/INSERM U1209/CNRS UMR5309, Institute for Advanced Biosciences, 38700 La Tronche, France;
| | - Julien Dinkel
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, 81675 Munich, Germany;
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
| | - Heidrun Hirner-Eppeneder
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
| | - Dmitry Karpov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France; (A.B.); (A.M.); (D.K.)
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland;
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70126 Bari, Italy;
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland;
| | - Audrey Bouchet
- Inserm U1296 Unit “Radiation: Defense, Health Environment”, 69008 Lyon, France;
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (V.R.); (A.G.)
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (V.R.); (A.G.)
| | - Paola Coan
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität, Am Coulombwall 1, München, 85748 Garching, Germany; (M.R.); (A.E.); (G.E.B.)
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (J.D.); (J.R.); (M.A.-F.); (H.H.-E.)
- Correspondence:
| |
Collapse
|
12
|
Massimi L, Partridge T, Astolfo A, Endrizzi M, Hagen CK, Munro PRT, Bate D, Olivo A. Optimization of multipoint phase retrieval in edge illumination X-ray imaging: A theoretical and experimental analysis. Med Phys 2021; 48:5884-5896. [PMID: 34387879 DOI: 10.1002/mp.15162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In this work, an analytical model describing the noise in the retrieved three contrast channels, transmission, refraction, and ultra small-angle scattering, obtained with edge illumination X-ray phase-based imaging system is presented and compared to experimental data. METHODS In EI, images acquired at different displacements of the presample mask (i.e., different illumination levels referred to as points on the "illumination curve"), followed by pixel-wise curve fitting, are exploited to quantitatively retrieve the three contrast channels. Therefore, the noise in the final image will depend on the error associated with the fitting process. We use a model based on the derivation of the standard error on fitted parameters, which relies on the calculation of the covariance matrix, to estimate the noise and the cross-channel correlation as a function of the position of the sampling points. In particular, we investigated the most common cases of 3 and 5 sampling points. In addition, simulations have been used to better understand the role of the integration time for each sampling point. Finally, the model is validated by comparison with the experimental data acquired with an edge illumination setup based on a tungsten rotating anode X-ray source and a photon counting detector. RESULTS We found a good match between the predictions of the model and the experimental data. In particular, for the investigated cases, an arrangement of the sampling points leading to minimum noise and cross-channel correlation can be found. Simulations revealed that, given a fixed overall scanning time, its distribution into the smallest possible number of sampling points needed for phase retrieval leads to minimum noise thanks to higher statistics per point. CONCLUSIONS This work presents an analytical model describing the noise in the various contrast channels retrieved in edge illumination as a function of the illumination curve sampling. In particular, an optimal sampling scheme leading to minimum noise has been determined for the case where 3 or 5 sampling points are used, which represent two of the most common acquisition schemes. In addition, the correlation between noise in the different channels and the role of the number of points and exposure time have been also investigated. In general, our results suggest a series of procedures that should be followed in order to optimize the experimental acquisitions.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tom Partridge
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Alberto Astolfo
- Nikon X-Tek Systems Ltd., Tring Business Centre, Tring, Hertfordshire, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Charlotte K Hagen
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Peter R T Munro
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David Bate
- Nikon X-Tek Systems Ltd., Tring Business Centre, Tring, Hertfordshire, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
13
|
Three-Dimensional X-ray Imaging of β-Galactosidase Reporter Activity by Micro-CT: Implication for Quantitative Analysis of Gene Expression. Brain Sci 2021; 11:brainsci11060746. [PMID: 34199780 PMCID: PMC8230009 DOI: 10.3390/brainsci11060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Acquisition of detailed anatomical and molecular knowledge from intact biological samples while preserving their native three-dimensional structure is still a challenging issue for imaging studies aiming to unravel a system's functions. Three-dimensional micro-CT X-ray imaging with a high spatial resolution in minimally perturbed naive non-transparent samples has recently gained increased popularity and broad application in biomedical research. Here, we describe a novel X-ray-based methodology for analysis of β-galactosidase (lacZ) reporter-driven gene expression in an intact murine brain ex vivo by micro-CT. The method relies on detection of bromine molecules in the product of the enzymatic β-galactosidase reaction. Enhancement of the X-ray signal is observed specifically in the regions of the murine brain where expression of the lacZ reporter gene is also detected histologically. We performed quantitative analysis of the expression levels of lacZ reporter activity by relative radiodensity estimation of the β-galactosidase/X-gal precipitate in situ. To demonstrate the feasibility of the method, we performed expression analysis of the Tsen54-lacZ reporter gene in the murine brain in a semi-quantitative manner. Human mutations in the Tsen54 gene cause pontocerebellar hypoplasia (PCH), a group of severe neurodegenerative disorders with both mental and motor deficits. Comparing relative levels of Tsen54 gene expression, we demonstrate that the highest Tsen54 expression is observed in anatomical brain substructures important for the normal motor and memory functions in mice.
Collapse
|
14
|
Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system. Sci Rep 2021; 11:5999. [PMID: 33727592 PMCID: PMC7966753 DOI: 10.1038/s41598-021-84579-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Amyloid plaques are small (~ 50 μm), highly-dense aggregates of amyloid beta (Aβ) protein in brain tissue, supposed to play a key role in pathogenesis of Alzheimer’s disease (AD). Plaques´ in vivo detection, spatial distribution and quantitative characterization could be an essential marker in diagnostics and evaluation of AD progress. However, current imaging methods in clinics possess substantial limits in sensitivity towards Aβ plaques to play a considerable role in AD screening. Contrast enhanced X-ray micro computed tomography (micro CT) is an emerging highly sensitive imaging technique capable of high resolution visualization of rodent brain. In this study we show the absorption based contrast enhanced X-ray micro CT imaging is viable method for detection and 3D analysis of Aβ plaques in transgenic rodent models of Alzheimer’s disease. Using iodine contrasted brain tissue isolated from the Tg-F344-AD rat model we show the micro CT imaging is capable of precise imaging of Aβ plaques, making possible to further analyze various aspects of their 3D spatial distribution and other properties.
Collapse
|
15
|
Massimi L, Buchanan I, Astolfo A, Endrizzi M, Olivo A. Fast, non-iterative algorithm for quantitative integration of X-ray differential phase-contrast images. OPTICS EXPRESS 2020; 28:39677-39687. [PMID: 33379512 DOI: 10.1364/oe.405755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
X-ray phase contrast imaging is gaining importance as an imaging tool. However, it is common for X-ray phase detection techniques to be sensitive to the derivatives of the phase. Therefore, the integration of differential phase images is a fundamental step both to access quantitative pixel content and for further analysis such as segmentation. The integration of noisy data leads to artefacts with a severe impact on image quality and on its quantitative content. In this work, an integration method based on the Wiener filter is presented and tested using simulated and real data obtained with the edge illumination differential X-ray phase imaging method. The method is shown to provide high image quality while preserving the quantitative pixel content of the integrated image. In addition, it requires a short computational time making it suitable for large datasets.
Collapse
|
16
|
Palermo F, Pieroni N, Maugeri L, Provinciali GB, Sanna A, Massimi L, Catalano M, Olbinado MP, Bukreeva I, Fratini M, Uccelli A, Gigli G, Kerlero de Rosbo N, Balducci C, Cedola A. X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Front Neurosci 2020; 14:584161. [PMID: 33240038 PMCID: PMC7680960 DOI: 10.3389/fnins.2020.584161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
We report a qualitative study on central nervous system (CNS) damage that demonstrates the ability of X-ray phase contrast tomography (XPCT) to confirm data obtained with standard 2D methodology and permits the description of additional features that are not detected with 2D or other 3D techniques. In contrast to magnetic resonance or computed tomography, XPCT makes possible the high-resolution 3D imaging of soft tissues classically considered "invisible" to X-rays without the use of additional contrast agents, or without the need for intense processing of the tissue required by 2D techniques. Most importantly for studies of CNS diseases, XPCT enables a concomitant multi-scale 3D biomedical imaging of neuronal and vascular networks ranging from cells through to the CNS as a whole. In the last years, we have used XPCT to investigate neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS), to shed light on brain damage and extend the observations obtained with standard techniques. Here, we show the cutting-edge ability of XPCT to highlight in 3D, concomitantly, vascular occlusions and damages, close associations between plaques and damaged vessels, as well as dramatic changes induced at neuropathological level by treatment in AD mice. We corroborate data on the well-known blood-brain barrier dysfunction in the animal model of MS, experimental autoimmune encephalomyelitis, and further show its extent throughout the CNS axis and at the level of the single vessel/capillary.
Collapse
Affiliation(s)
- Francesca Palermo
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Fisica, Università della Calabria, Rende, Italy
| | - Nicola Pieroni
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy.,Dipartimento di Morfogenesi e Ingegneria Tissutale, Sapienza Università di Roma, Rome, Italy
| | - Laura Maugeri
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Alessia Sanna
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | | | - Margie P Olbinado
- Swiss Light Source, Paul Scherrer Institut X-ray Tomography Group, Villigen, Switzerland
| | - Inna Bukreeva
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | | | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Università del Salento, Lecce, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy
| | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|