1
|
Vijayan VN, Kannan K, Sahadevan R, Jose A, Porel M, Sadhukhan S. ε-Poly-l-lysine: A Naturally Occurring Biodegradable Polypeptide for Selective Detection of 5-Nitroimidazole Antibiotics in Animal Products and Living Cells via Fluorescence. ACS APPLIED BIO MATERIALS 2024; 7:4654-4663. [PMID: 38867502 DOI: 10.1021/acsabm.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The 5-nitroimidazole (5-NI) class of antibiotics, such as metronidazole, ornidazole, secnidazole, and tinidazole, are widely used to prevent bacterial infection in humans and livestock industries. However, their overuse contaminates the farmed animal products and water bodies. Hence, a selective, sensitive, and cost-effective method to detect 5-NI antibiotics is the need of the hour. Herein, we report a rapid, inexpensive, and efficient sensing system to detect 5-NI drugs using an as-prepared solution of ε-poly-l-lysine (ε-PL), a naturally occurring and biodegradable homopolypeptide that has an intrinsic fluorescence via clustering-triggered emission. The low nanomolar detection limit (3.25-3.97 nM) for the aforementioned representative 5-NI drugs highlights the sensitivity of the system, outperforming most of the reported sensors alike. The resulting fluorescence quenching was found to be static in nature. Importantly, excellent recovery (100.26-104.41%) was obtained for all real samples and animal products tested. Visual detection was demonstrated by using paper strips and silica gel for practical applications. Furthermore, ε-PL could detect 5-NI antibiotics in living 3T3-L1 mouse fibroblast cells via cellular imaging. Taken together, the present work demonstrates the detection of 5-NI antibiotics using a biocompatible natural polypeptide, ε-PL, and represents a simple and inexpensive analytical tool for practical application.
Collapse
Affiliation(s)
- Vishnu N Vijayan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Anna Jose
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Mintu Porel
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
- Environmental Sciences and Sustainable Engineering Centre, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| |
Collapse
|
2
|
Song R, Wang X, Jiao L, Jiang H, Yuan S, Zhang L, Shi Z, Fan Z, Meng D. Epsilon-poly-l-lysine alleviates brown blotch disease of postharvest Agaricus bisporus mushrooms by directly inhibiting Pseudomonas tolaasii and inducing mushroom disease resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105759. [PMID: 38458662 DOI: 10.1016/j.pestbp.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 03/10/2024]
Abstract
The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.
Collapse
Affiliation(s)
- Rui Song
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhenchuan Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
3
|
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, Shuvalova AI, Ivanov NV, Popchenko MI, Samoilova AD, Polyakova AN, Dmitriev AA, Melnikova NV, Karpov DS, Bolsheva NL, Fedorova MS, Kudryavtseva AV. Culturable Bacterial Endophytes of Wild White Poplar ( Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. BIOLOGY 2023; 12:1519. [PMID: 38132345 PMCID: PMC10740426 DOI: 10.3390/biology12121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.
Collapse
Affiliation(s)
- Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Vsevolod V. Volodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Nikita V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Geography, Russian Academy of Sciences, Staromonetny Pereulok, 29/4, 119017 Moscow, Russia
| | - Aleksandra D. Samoilova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Aleksandra N. Polyakova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
5
|
Yaderets V, Karpova N, Glagoleva E, Shibaeva A, Dzhavakhiya V. Bacillus subtilis RBT-7/32 and Bacillus licheniformis RBT-11/17 as New Promising Strains for Use in Probiotic Feed Additives. Microorganisms 2023; 11:2729. [PMID: 38004741 PMCID: PMC10672880 DOI: 10.3390/microorganisms11112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The normal functioning of a gastrointestinal microflora in poultry and livestock is of significant importance, since its imbalance negatively influences an organism's functions. In this study, the UV mutagenesis and selection were used to obtain two Bacillus strains possessing antagonistic activity towards Escherichia coli and Staphylococcus aureus, and their potential as a probiotic feed additive was evaluated. Compared to the parental strains, the ability of B. subtilis RBT-7/32 and B. licheniformis RBT-11/17 strains to suppress E. coli increased by 77 and 63%, respectively; the corresponding ability of these strains to suppress S. aureus increased by 80 and 79%, respectively. RBT-11/17 could not utilize microcrystalline cellulose and carboxymethyl cellulose, whereas cellulolytic activity of RBT-7/32 was doubled compared to the initial strain. The amylolytic activity of new strains was increased by 40%. Cultivation of strains on media containing soybean, pea, and corn meal did not provide any difference in the biomass production compared to the control. The heating of a water suspension of a dried biomass of the strains for 10-20 min at 80 and 100 °C or incubation in water solutions of citric, ascorbic, acetic, and formic acids (pH 3.0) for 3 and 24 h at 40 °C did not provide any negative influence on the spore survivability. Both strains were evaluated for their resistance to a number of veterinary antibiotics. Thus, RBT-7/32 and RBT-11/17 strains have good prospects for use in feed additives.
Collapse
Affiliation(s)
- Vera Yaderets
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| | | | | | | | - Vakhtang Dzhavakhiya
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| |
Collapse
|
6
|
Hagh Ranjbar H, Hosseini-Abari A, Ghasemi SM, Hafezi Birgani Z. Antibacterial activity of epsilon-poly-l-lysine produced by Stenotrophomonas maltophilia HS4 and Paenibacillus polymyxa HS5, alone and in combination with bacteriophages. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001363. [PMID: 37477972 PMCID: PMC10433424 DOI: 10.1099/mic.0.001363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Over the past decades, antibiotic resistance has become a major clinical problem, and searching for new therapeutic strategies seems to be necessary. Using novel natural compounds, antimicrobial peptides, and bacteriophages is the most promising solution. In this study, various cationic metabolite-producer bacteria were isolated from different soil samples. Two isolates were identified as Stenotrophomonas maltophilia HS4 (accession number: MW791428) and Paenibacillus polymyxa HS5 (accession number: MW791430) based on biochemical characteristics and phylogenetic analysis using 16S rRNA gene sequences. The cationic compound in the fermentation broth was precipitated and purified with sodium tetraphenylborate salt. The purified cationic peptide was confirmed to be epsilon-poly-l-lysine by structural and molecular analysis using High-Performance Liquid Chromatography, Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis, and Fourier-transform infrared spectroscopy. The antibacterial activity of epsilon-poly-l-lysine was evaluated against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Serratia marcescens ATCC 13880, and Klebsiella pneumoniae ATCC 13883 by microdilution method. Furthermore, the antibacterial effects of purified epsilon-poly-l-lysine in combination with two long non-contractile tail bacteriophages against vancomycin-resistant Enterococcus faecalis and colistin-resistant Klebsiella pneumoniae were investigated. The results indicated great antibacterial activity of epsilon-poly-l-lysine which was produced by two novel bacteria. The epsilon-poly-l-lysine as a potent cationic antimicrobial peptide is demonstrated to possess great antimicrobial activity against pathogenic and also antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hamidreza Hagh Ranjbar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Afrouzossadat Hosseini-Abari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Mahdi Ghasemi
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Hafezi Birgani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| |
Collapse
|
7
|
Zhang S, Chen H, Shi Z, Liu Y, Yu J, Liu L, Fan Y. High internal phase Pickering emulsions stabilized by ε-poly-l-lysine grafted cellulose nanofiber for extrusion 3D printing. Int J Biol Macromol 2023:125142. [PMID: 37257524 DOI: 10.1016/j.ijbiomac.2023.125142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
An effective method for preparing food-grade three-dimensional (3D) printing materials was the use of highly concentrated oil-in-water emulsions. This research reported 3D printable materials constructed from food-grade high internal phase Pickering emulsions (HIPPEs) that were stabilized by ε-poly-l-lysine grafted cellulose nanofiber (ε-PL-TOCNs). The ε-PL-TOCNs were prepared via ε-poly-l-lysine grafting of 2, 2, 6, 6-tetramethylpiperidine-N-oxyl (TEMPO)-oxidized cellulose (TOC) and the successive mechanical treatment. Subsequently, the chemical structure, microstructure and surface properties of ε-PL-TOCNs were characterized. The results showed that the prepared ε-PL-TOCNs had excellent dispersion performances, cationic properties brought by amino groups, and hydrophilic/hydrophobic functions of chain structure, which confirmed the feasibility of preparing HIPPEs. The HIPPEs with an internal phase volume fraction of 82 % were obtained at 0.8 wt% ε-PL-TOCNs concentration and pre-emulsification followed by continuous oil feeding. The HIPPEs' storage stability, morphology, and rheological behavior were further discussed. The ultra stable HIPPEs with apparent shear-thinning behavior and high solid viscoelasticity were successful produced, which was suitable for 3D printing. This work expanded the application of nanocellulose in emulsions field and provided a new thinking to prepare food-grade 3D printable materials and porous foam.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zicong Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ying Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Aunina K, Ramata-Stunda A, Kovrlija I, Tracuma E, Merijs-Meri R, Nikolajeva V, Loca D. Exploring the Interplay of Antimicrobial Properties and Cellular Response in Physically Crosslinked Hyaluronic Acid/ε-Polylysine Hydrogels. Polymers (Basel) 2023; 15:polym15081915. [PMID: 37112064 PMCID: PMC10141856 DOI: 10.3390/polym15081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The reduction of tissue cytotoxicity and the improvement of cell viability are of utmost significance, particularly in the realm of green chemistry. Despite substantial progress, the threat of local infections remains a concern. Therefore, hydrogel systems that provide mechanical support and a harmonious balance between antimicrobial efficacy and cell viability are greatly needed. Our study explores the preparation of physically crosslinked, injectable, and antimicrobial hydrogels using biocompatible hyaluronic acid (HA) and antimicrobial ε-polylysine (ε-PL) in different weight ratios (10 wt% to 90 wt%). The crosslinking was achieved by forming a polyelectrolyte complex between HA and ε-PL. The influence of HA content on the resulting HA/ε-PL hydrogel physicochemical, mechanical, morphological, rheological, and antimicrobial properties was evaluated, followed by an inspection of their in vitro cytotoxicity and hemocompatibility. Within the study, injectable, self-healing HA/ε-PL hydrogels were developed. All hydrogels showed antimicrobial properties against S. aureus, P. aeruginosa, E. coli, and C. albicans, where HA/ε-PL 30:70 (wt%) composition reached nearly 100% killing efficiency. The antimicrobial activity was directly proportional to ε-PL content in the HA/ε-PL hydrogels. A decrease in ε-PL content led to a reduction of antimicrobial efficacy against S. aureus and C. albicans. Conversely, this decrease in ε-PL content in HA/ε-PL hydrogels was favourable for Balb/c 3T3 cells, leading to the cell viability of 152.57% for HA/ε-PL 70:30 and 142.67% for HA/ε-PL 80:20. The obtained results provide essential insights into the composition of the appropriate hydrogel systems able to provide not only mechanical support but also the antibacterial effect, which can offer opportunities for developing new, patient-safe, and environmentally friendly biomaterials.
Collapse
Affiliation(s)
- Kristine Aunina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Eliza Tracuma
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Remo Merijs-Meri
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Vizma Nikolajeva
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
9
|
Mansur AAP, Custódio DAC, Dorneles EMS, Coura FM, Carvalho IC, Lage AP, Mansur HS. Nanoplexes of ZnS quantum dot-poly-l-lysine/iron oxide nanoparticle-carboxymethylcellulose for photocatalytic degradation of dyes and antibacterial activity in wastewater treatment. Int J Biol Macromol 2023; 231:123363. [PMID: 36690232 DOI: 10.1016/j.ijbiomac.2023.123363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The contamination and pollution of wastewater with a wide diversity of chemical, microbiological, and hazardous substances is a field of raising environmental concern. In this study, we developed, for the first time, new hybrid multifunctional nanoplexes composed of ZnS semiconductor quantum dots (ZnS QDs) chemically biofunctionalized with epsilon-poly-l-lysine (ɛPL) and coupled with magnetic iron oxide nanoparticles (MION, Fe3O4) stabilized by carboxymethylcellulose (CMC) for the photodegradation (ZnS) of organic molecules and antibacterial activity (ɛPL) with a potential of recovery by an external magnetic field (Fe3O4). These nanosystems, which were synthesized entirely through a green aqueous process, were comprehensively characterized regarding their physicochemical properties combined with spectroscopic and morphological features. The results demonstrated that supramolecular colloidal nanoplexes were formed owing to the strong cationic/anionic electrostatic interactions between the biomacromolecule capping ligands of the two nanoconjugates (i.e., polypeptide in ZnS@ɛPL and polysaccharide in Fe3O4@CMC). Moreover, these nanosystems showed photocatalytic degradation of methylene blue (MB) used as a model dye pollutant in water. Besides MB, methyl orange, congo red, and rhodamine dyes were also tested for selectivity investigation of the photodegradation by the nanoplexes. The antibacterial activity ascribed to the ɛPL biomolecule was confirmed against Gram-positive and Gram-negative bacteria, including drug-resistance field strains. Hence, it is envisioned that these novel green nanoplexes offer a new avenue of alternatives to be employed for reducing organic pollutants and inactivating pathogenic bacteria in water and wastewater treatment, benefiting from easy magnetic recovery.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Dircéia A C Custódio
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Brazil
| | - Elaine M S Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Brazil
| | - Fernanda M Coura
- Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais - Campus Bambuí, IFMG, Brazil
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
10
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
11
|
Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater Today Bio 2022; 16:100429. [PMID: 36164504 PMCID: PMC9508611 DOI: 10.1016/j.mtbio.2022.100429] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
The wound healing process is usually susceptible to different bacterial infections due to the complex physiological environment, which significantly impairs wound healing. The topical application of antibiotics is not desirable for wound healing because the excessive use of antibiotics might cause bacteria to develop resistance and even the production of super bacteria, posing significant harm to human well-being. Wound dressings based on adhesive, biocompatible, and multi-functional hydrogels with natural antibacterial agents have been widely recognized as effective wound treatments. Hydrogels, which are three-dimensional (3D) polymer networks cross-linked through physical interactions or covalent bonds, are promising for topical antibacterial applications because of their excellent adhesion, antibacterial properties, and biocompatibility. To further improve the healing performance of hydrogels, various modification methods have been developed with superior biocompatibility, antibacterial activity, mechanical properties, and wound repair capabilities. This review summarizes hundreds of typical studies on various ingredients, preparation methods, antibacterial mechanisms, and internal antibacterial factors to understand adhesive hydrogels with natural antibacterial agents for wound dressings. Additionally, we provide prospects for adhesive and antibacterial hydrogels in biomedical applications and clinical research.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Minjun Bae
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| |
Collapse
|
12
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
13
|
Cai L, Kuo CJ. Epsilon poly-L-lysine as a novel antifungal agent for sustainable wood protection. Front Microbiol 2022; 13:908541. [PMID: 36160267 PMCID: PMC9490314 DOI: 10.3389/fmicb.2022.908541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a growing interest in seeking natural and biobased preservatives to prevent the wood from deteriorating during its service life, thereby prolonging carbon storage in buildings. This study aims to assess the in vitro and in vivo antifungal properties of epsilon poly-L-lysine (EPL), a secondary metabolite from Actinomyces, against four common wood-inhabiting fungi, including two brown-rot fungi, Gloeophyllum trabeum (GT) and Rhodonia placenta (RP), and two white-rot fungi, Trametes versicolor (TV) and Irpex lacteus (IL), which has rarely been reported. Our results indicate that these fungi responded differently due to EPL treatment. From the in vitro study, the minimal inhibitory concentration of EPL against GT, TV, and IL was determined to be 3 mg/ml, while that of RP was 5 mg/ml. EPL treatment also affects the morphology of fungal hyphae, changing from a smooth surface with a tubular structure to twisted and deformed shapes. Upon EPL treatment with wood samples (in vivo), it was found that EPL could possibly form hydrogen bonds with the hydroxy groups in wood and was uniformly distributed across the transverse section of the wood samples, as indicated by Fourier transform infrared spectroscopy and fluorescence microscopy analyses, respectively. Compared with control wood samples with a mass loss of over 15% across different fungi, wood samples treated with 1% EPL showed negligible or very low (<8%) mass loss. In addition, the thermal stability of EPL-treated wood was also improved by 50%. This study suggests that EPL could be a promising alternative to traditional metallic-based wood preservatives.
Collapse
Affiliation(s)
- Lili Cai
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, United States
| | | |
Collapse
|
14
|
Zhang X, Zhou Y, Wang G, Zhao Z, Jiang Z, Cui Y, Yue X, Huang Z, Huang Y, Pan X, Wu C. Co-spray-dried poly-L-lysine with L-leucine as dry powder inhalations for the treatment of pulmonary infection: Moisture-resistance and desirable aerosolization performance. Int J Pharm 2022; 624:122011. [PMID: 35820517 DOI: 10.1016/j.ijpharm.2022.122011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Poly-L-lysine (PLL) is a promising candidate for the treatment of pulmonary infection with lower occurrence of drug-resistance due to its unique antibacterial mechanisms. Dry powder inhalations (DPIs) are considered as the first choice for formulating PLL to treat pulmonary infection on account of direct delivery and satisfactory stability. However, hygroscopicity of PLL limited its therapeutic effect on pulmonary infection when PLL developed into DPIs. The hygroscopicity caused two obstacles including the low drug deposition in the lower respiratory tract and undesirable aerosolization performance deterioration. In this study, PLL was co-spray-dried with L-leucine (LL) to achieve moisture-resistance and desirable aerosolization performance. The ratio of PLL and LL was optimized to obtain particles with different morphology, hygroscopicity and aerodynamic properties. The obtained PLL DPIs were suitable for inhalation with a corrugated surface formed by hydrophobic LL. The anti-hygroscopicity, aerosolization performance and rheological properties of P2 DPIs were optimal when PLL:LL = 85:15. The DPIs particles were stable after being stored at high relative humidity (60 ± 5%), and their superiority in treating pulmonary infections was also proved by in vitro and in vivo experiments. The established PLL DPIs were proved to be a feasible and desirable approach to treat pulmonary infections.
Collapse
Affiliation(s)
- Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziyu Zhao
- Pharmacy Department, Guangzhou Red Cross Hospital, Guangzhou 510006, Guangdong, PR China.
| | - Zhongxiang Jiang
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing 401147, PR China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
15
|
A Study of Type II ɛ-PL Degrading Enzyme (pldII) in Streptomyces albulus through the CRISPRi System. Int J Mol Sci 2022; 23:ijms23126691. [PMID: 35743134 PMCID: PMC9223678 DOI: 10.3390/ijms23126691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
ε-Poly-L-lysine (ε-PL) is a widely used antibacterial peptide polymerized of 25–35 L-lysine residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. However, the mechanism of ε-PL degradation in S. albulus remains unclear. This study utilized the integrative plasmid pSET152-based CRISPRi system to transcriptionally repress the ε-PL degrading enzyme (pldII). The expression of pldII is regulated by changing the recognition site of dCas9. Through the ε-PL bacteriostatic experiments of repression strains, it was found that the repression of pldII improves the antibacterial effect of the ε-PL product. The consecutive MALDI-TOF-MS results confirmed that the molecular weight distribution of the ε-PL was changed after repression. The repression strain S1 showed a particular peak with a polymerization degree of 44, and other repression strains also generated ε-PL with a polymerization degree of over 40. Furthermore, the homology modeling and substrate docking of pldII, a typical endo-type metallopeptidase, were performed to resolve the degradation mechanism of ε-PL in S. albulus. The hydrolysis of ε-PL within pldII, initiated from the N-terminus by two amino acid-binding residues, Thr194 and Glu281, led to varying levels of polymerization of ε-PL.
Collapse
|
16
|
Park HS, Kang YK. Exploring Helical Folding in Oligomers of Cyclopentane-Based ϵ-Amino Acids: A Computational Study. Chemistry 2022; 11:e202100253. [PMID: 35083888 PMCID: PMC8886640 DOI: 10.1002/open.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Indexed: 11/28/2022]
Abstract
The conformational preferences of oligopeptides of an ϵ‐amino acid (2‐((1R,3S)‐3‐(aminomethyl)cyclopentyl)acetic acid, Amc5a) with a cyclopentane substituent in the Cβ−Cγ−Cδ sequence of the backbone were investigated using DFT methods in chloroform and water. The most preferred conformation of Amc5a oligomers (dimer to hexamer) was the H16 helical structure both in chloroform and water. Four residues were found to be sufficient to induce a substantial H16 helix population in solution. The Amc5a hexamer adopted a stable left‐handed (M)‐2.316 helical conformation with a rise of 4.8 Å per turn. The hexamer of Ampa (an analogue of Amc5a with replacing cyclopentane by pyrrolidine) adopted the right‐handed mixed (P)‐2.918/16 helical conformation in chloroform and the (M)‐2.416 helical conformation in water. Therefore, hexamers of ϵ‐amino acid residues exhibited different preferences of helical structures depending on the substituents in peptide backbone and the solvent polarity as well as the chain length.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing, Cheju Halla University, Cheju, 63092, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
17
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
18
|
Stagi L, De Forni D, Innocenzi P. Blocking viral infections by Lysine-based polymeric nanostructures. A critical review. Biomater Sci 2022; 10:1904-1919. [DOI: 10.1039/d2bm00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit...
Collapse
|
19
|
Nochi M, Ozaki Y, Sato H. Water-induced conformational changes in the powder and film of ε-poly(L)lysine studied by infrared and Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119900. [PMID: 34004424 DOI: 10.1016/j.saa.2021.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, we have investigated the water absorption-induced structural changes and thermal behavior of ε-poly(L)lysine-hydrochloride (EPLHCl) in the powder and film samples using infrared (IR) and Raman spectroscopy. An X-ray diffraction measurement reveals that the crystal structure of ε-poly(L)lysine (EPL) is similar to that of the γ-crystal of nylon-6. The powder form of EPLHCl absorbs water from the air and solidifies into a film (18% water content). The film does not transform into the powder form with increasing temperature; it remains as a film, suggesting that the transformation from powder to film is irreversible. The IR spectra in the amide Ⅰ region of the powder and film are distinctly different, indicating that the secondary structure of EPLHCl changes upon water absorption. The position of the amide I band suggests that the powder form of EPLHCl has a β-sheet structure, while the film has two types of β-sheet structures. Raman spectra of EPLHCl in the region 1490-1440 cm-1 indicate that the EPLHCl film has a trans amide structure, unlike its powder form. Hence, it is highly probable that the differences in the secondary structures of the EPLHCl powder and film originate due to the twisting of the amide group induced by water absorption.
Collapse
Affiliation(s)
- Mao Nochi
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yukihiro Ozaki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada, Kobe, Hyogo 657-8501, Japan; School of Biological and Environmental Sciences, Kwansei Gakuin University, b-a Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan; Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
20
|
Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021; 11:1481. [PMID: 34680114 PMCID: PMC8533414 DOI: 10.3390/biom11101481] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/23/2023] Open
Abstract
The biocidal properties of silver nanoparticles (AgNPs) prepared with the use of biologically active compounds seem to be especially significant for biological and medical application. Therefore, the aim of this research was to determine and compare the antibacterial and fungicidal properties of fifteen types of AgNPs. The main hypothesis was that the biological activity of AgNPs characterized by comparable size distributions, shapes, and ion release profiles is dependent on the properties of stabilizing agent molecules adsorbed on their surfaces. Escherichia coli and Staphylococcus aureus were selected as models of two types of bacterial cells. Candida albicans was selected for the research as a representative type of eukaryotic microorganism. The conducted studies reveal that larger AgNPs can be more biocidal than smaller ones. It was found that positively charged arginine-stabilized AgNPs (ARGSBAgNPs) were the most biocidal among all studied nanoparticles. The strongest fungicidal properties were detected for negatively charged EGCGAgNPs obtained using (-)-epigallocatechin gallate (EGCG). It was concluded that, by applying a specific stabilizing agent, one can tune the selectivity of AgNP toxicity towards desired pathogens. It was established that E. coli was more sensitive to AgNP exposure than S. aureus regardless of AgNP size and surface properties.
Collapse
Affiliation(s)
- Agnieszka Gibała
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Joanna Szaleniec
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| |
Collapse
|
21
|
Golonka I, Greber KE, Oleksy-Wawrzyniak M, Paleczny J, Dryś A, Junka A, Sawicki W, Musiał W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int J Mol Sci 2021; 22:ijms22147466. [PMID: 34299085 PMCID: PMC8306634 DOI: 10.3390/ijms22147466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1–P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1–P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4–P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
- Correspondence: ; Tel.: +48-717-840-231
| |
Collapse
|
22
|
Fatima F, Siddiqui S, Khan WA. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res 2021; 199:2552-2564. [PMID: 33030657 DOI: 10.1007/s12011-020-02394-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 01/21/2023]
Abstract
Microorganisms are highly resistant to the antibiotics that are commonly used and thus are becoming serious public health problem. There is an urgent need for new approaches to monitor microbial behavior, and hence, nanomaterial can be a very promising solution. Nanotechnology has led to generation of novel antimicrobial agents such as gold, silver, zinc, copper, poly-£-lysine, iron, and chitosan which have shown remarkable potential, demonstrating their applicability as proficient antibiotic agents against various pathogenic bacterial species. The antimicrobial nanoproduct physically kills the organism's cell membranes that prevent the production of drug-resistant microorganisms. These nanosized particles can also be used as diagnostic agents, targeted drug delivery vehicle, noninvasive imaging technologies, and in vivo visual monitoring of tumors angiogenesis. These nanomaterials provide a promising platform for diagnostics, prognostic, drug delivery, and treatment of diseases by means of nanoengineered products/devices. This owes to their small size, prolonged antimicrobial efficacy with insignificant toxicity creating less environmental hazard or toxicity. Scientists address several problems such as health, bioethical problems, toxicity risks, physiological, and pharmaceutical concerns related with the usage of NPs as antimicrobial agents as current research lack adequate data and information on the safe use of certain tools and materials.
Collapse
Affiliation(s)
- Faria Fatima
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India.
| | - Saba Siddiqui
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India
| | - Waqar Ahmad Khan
- Department of Business Management, Ishik University, Kurdistan, Erbil, Iraq
| |
Collapse
|
23
|
LC-MS/MS-based profiling of bioactive metabolites of endophytic bacteria from Cannabis sativa and their anti-Phytophthora activity. Antonie van Leeuwenhoek 2021; 114:1165-1179. [PMID: 33945066 DOI: 10.1007/s10482-021-01586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Protection of crop plants from phytopathogens through endophytic bacteria is a newly emerged area of biocontrol. In this study, endophytic bacteria were isolated from the rhizosphere of Cannabis sativa. Based on initial antimicrobial screening, three (03) bacteria Serratia marcescens MOSEL-w2, Enterobacter cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 were selected. Antimicrobial assays of these selected bacteria against Phytophthora parasitica revealed that E. cloacae MOSEL-w7 and Paenibacillus sp. MOSEL-w13 possessed strong activity against P. parasitica. All these bacterial extracts showed strong inhibition against P. parasitica at different concentrations (4-400 µg mL-1). P. parasitica hyphae treated with ethyl acetate extract of E. cloacae MOSEL-w7 resulted in severe growth abnormalities compared to control. The extracts were further evaluated for in vivo detached-leaf assay against P. parasitica on the wild type tobacco. Application of 1% ethyl acetate bacterial extract of S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus sp. MOSEL-w13 reduced P. parasitica induced lesion sizes and lesion frequencies by 60-80%. HPLC based fractions of each extract also showed bioactivity against P. parasitica. A total of 24 compounds were found in the S. marcescens MOSEL-w2, 15 compounds in E. cloacae MOSEL-w7 and 20 compounds found in Paenibacillus sp. MOSEL-w13. LC-MS/MS analyses showed different bioactive compounds in the bacterial extracts such as Cotinine (alkylpyrrolidine), L-tryptophan, L-lysine, L-Dopa, and L-ornithine. These results suggest that S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 are a source of bioactive metabolites and could be used in combination with other biocontrol agents, with other modes of action for controlling diseases caused by Phytophthora in crops. They could be a clue for the broad-spectrum biopesticides for agriculturally significant crops.
Collapse
|
24
|
Chen S, Huang S, Li Y, Zhou C. Recent Advances in Epsilon-Poly-L-Lysine and L-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications. Front Chem 2021; 9:659304. [PMID: 33869146 PMCID: PMC8044885 DOI: 10.3389/fchem.2021.659304] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
With the advantages in biocompatibility, antimicrobial ability, and comparative facile synthesis technology, poly-L-lysine (PLL) has received considerable attention in recent years. Different arrangement forms and structures of the backbone endow lysine-based polymers with versatile applications, especially for ε-poly-L-lysine (EPL) and lysine-based dendrimer (LBD) compounds. This review summarized the advanced development of the synthesis and modification strategies of EPL and LBD, focus on the modification of bio-synthesis and artificial synthesis, respectively. Meanwhile, biomedical fields, where EPL and LBD are mainly utilized, such as agents, adjuvants, or carriers to anti-pathogen or used in tumor or gene therapies, are also introduced. With the deeper of knowledge of pharmacodynamics and pharmacokinetics of the drug system, the design and synthesis of these drugs can be further optimized. Furthermore, the performances of combination with other advanced methodologies and technologies demonstrated that challenges, such as scale production and high expenses, will not hinder the prospective future of lysine-based polymers.
Collapse
Affiliation(s)
| | | | - Yan Li
- School of Material Science and Engineering, Tongji University, Shanghai, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Meng Z, He Y, Wang F, Hang R, Zhang X, Huang X, Yao X. Enhancement of Antibacterial and Mechanical Properties of Photocurable ε-Poly-l-lysine Hydrogels by Tannic Acid Treatment. ACS APPLIED BIO MATERIALS 2021; 4:2713-2722. [PMID: 35014310 DOI: 10.1021/acsabm.0c01633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a photocurable hydrogel based on an ε-poly-l-lysine (EPL) composite was fabricated by a grafting reaction using glycidyl methacrylate and then complexed with tannic acid (TA) to improve the mechanical stability and antibacterial performance of the EPL hydrogels. UV-visible spectrophotometry, nuclear magnetic resonance, and Fourier transform infrared spectroscopy were introduced to characterize the chemical construction. The obtained EPLMA hydrogel was immersed into TA solution to induce the forming of the H-bond between EPL and TA, resulting in double networks in the composite hydrogel (EPLMA-TA). Due to the additional hydrogen-bond interaction between TA and EPLMA, the mechanical properties of hydrogels were improved and supported cell growth and proliferation. In addition, the antibacterial properties and antioxidant activities of the EPLMA-TA hydrogels were greatly enhanced due to the addition of TA. All the findings indicate that the EPLMA-TA hydrogels with multiple properties show great potential for biomedicine applications.
Collapse
Affiliation(s)
- Zhen Meng
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Yongji He
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, 79 Longcheng Street, Taiyuan 030031, Shanxi Province, PR China
| | - Fan Wang
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Xiaobo Huang
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surface and Interface, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, PR China
| |
Collapse
|
26
|
de Souza JB, Almeida-Souza HO, Zaini PA, Alves MN, de Souza AG, Pierry PM, da Silva AM, Goulart LR, Dandekar AM, Nascimento R. Xylella fastidiosa subsp. pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int J Mol Sci 2020; 21:E6769. [PMID: 32942709 PMCID: PMC7555403 DOI: 10.3390/ijms21186769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Xylella fastidiosa colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of X. fastidiosa. The reference strain 9a5c produces a robust biofilm compared to Fb7 that remains mostly planktonic, and both were isolated from symptomatic citrus trees. This work deepens our understanding of these distinct behaviors at the molecular level, by comparing the cellular and secreted proteomes of these two CVC strains. Out of 1017 identified proteins, 128 showed differential abundance between the two strains. Different protein families were represented such as proteases, hemolysin-like proteins, and lipase/esterases, among others. Here we show that the lipase/esterase LesA is among the most abundant secreted proteins of CVC strains as well, and demonstrate its functionality by complementary activity assays. More severe symptoms were observed in Nicotiana tabacum inoculated with strain Fb7 compared to 9a5c. Our results support that systemic symptom development can be accelerated by strains that invest less in biofilm formation and more in plant colonization. This has potential application in modulating the bacterial-plant interaction and reducing disease severity.
Collapse
Affiliation(s)
- Jessica Brito de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Hebréia Oliveira Almeida-Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Adriano Zaini
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Mônica Neli Alves
- Department of Technology, School of Agricultural and Veterinary Studies, São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal SP 14884-900, Brazil;
- Citriculture Defense Fund (Fundecitrus), Av. Dr. Adhemar Pereira de Barros 201, Araraquara SP 14807-040, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Marques Pierry
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Rafael Nascimento
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| |
Collapse
|