1
|
Noori M, Azimirad M, Ghorbaninejad M, Meyfour A, Zali MR, Yadegar A. PPAR-γ agonist mitigates intestinal barrier dysfunction and inflammation induced by Clostridioides difficile SlpA in vitro. Sci Rep 2024; 14:32087. [PMID: 39738433 PMCID: PMC11686163 DOI: 10.1038/s41598-024-83815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells. Here, we investigated the role of PPAR-γ in SlpA-mediated inflammation in Caco-2 cells and THP-1 derived macrophages. The extraction of SlpA was carried out for three toxigenic C. difficile clinical strains (RT126, RT001, RT084) and a non-toxigenic strain (ATCC 700057). The gene expression of tight junction (TJ) proteins and inflammatory markers was determined using RT-qPCR. The production of proinflammatory cytokines and nitric oxide was measured by ELISA and Griss reaction, respectively. Western blotting was performed to detect PPAR-γ level before and after adding its agonist, pioglitazone. SlpA of C. difficile strains enhanced the expression of TLR-4, NF-κB, MyD88, IL-17, MCP-1, IL-8, IL-6, TNF-α, IL-1β, whilst the gene expression level of JAM-A, claudin-1, occludin, PPAR-γ and its receptor (CD36) was decreased in both Caco-2 cells and THP-1 derived macrophages. Moreover, pioglitazone caused a notable elevation in the expression level of PPAR-γ, only following treatment with RT126 SlpA. Besides, pioglitazone pretreatment improved TJ impairment in Caco-2 cells and attenuated proinflammatory cytokine expression in both SlpA-treated cell lines. SlpA can attenuate PPAR-γ expression, trigger TJ disruption, and stimulate inflammatory response in host cells. Notably, these events could be reversed by pretreatment of cells with PPAR-γ agonist. Further experiments are required to corroborate the present findings.
Collapse
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Noonin C, Putpim A, Thongboonkerd V. The direct inhibitory effects of Lactobacillus acidophilus, a commensal urinary bacterium, on calcium oxalate stone development. MICROBIOME 2024; 12:175. [PMID: 39289694 PMCID: PMC11406782 DOI: 10.1186/s40168-024-01877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. RESULTS L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 - 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. CONCLUSIONS L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability. Video Abstract.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anantaya Putpim
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Sogues A, Sleutel M, Petit J, Megrian D, Bayan N, Wehenkel AM, Remaut H. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611363. [PMID: 39282302 PMCID: PMC11398520 DOI: 10.1101/2024.09.05.611363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The polar-growing Corynebacteriales have a complex cell envelope architecture characterized by the presence of a specialized outer membrane composed of mycolic acids. In some Corynebacteriales, this mycomembrane is further supported by a proteinaceous surface layer or 'S-layer', whose function, structure and mode of assembly remain largely enigmatic. Here, we isolated ex vivo PS2 S-layers from the industrially important Corynebacterium glutamicum and determined its atomic structure by 3D cryoEM reconstruction. PS2 monomers consist of a six-helix bundle 'core', a three-helix bundle 'arm', and a C-terminal transmembrane (TM) helix. The PS2 core oligomerizes into hexameric units anchored in the mycomembrane by a channel-like coiled-coil of the TM helices. The PS2 arms mediate trimeric lattice contacts, crystallizing the hexameric units into an intricate semipermeable lattice. Using pulse-chase live cell imaging, we show that the PS2 lattice is incorporated at the poles, coincident with the actinobacterial elongasome. Finally, phylogenetic analysis shows a paraphyletic distribution and dispersed chromosomal location of PS2 in Corynebacteriales as a result of multiple recombination events and losses. These findings expand our understanding of S-layer biology and enable applications of membrane-supported self-assembling bioengineered materials.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France
| | - Daniela Megrian
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11200 Montevideo, Uruguay
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Herdman M, Isbilir B, von Kügelgen A, Schulze U, Wainman A, Bharat TAM. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat Commun 2024; 15:3355. [PMID: 38637514 PMCID: PMC11026435 DOI: 10.1038/s41467-024-47529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
5
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
6
|
Hunault L, Auria E, England P, Deschamps J, Briandet R, Kremer V, Iannascoli B, Vidal-Maison L, Guo C, Macdonald L, Péchiné S, Denève-Larrazet C, Dupuy B, Gorochov G, Bruhns P, Sterlin D. Anti-S-layer monoclonal antibodies impact Clostridioides difficile physiology. Gut Microbes 2024; 16:2301147. [PMID: 38289292 PMCID: PMC10829821 DOI: 10.1080/19490976.2023.2301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Clostridioides difficile (C. difficile), a gram-positive anaerobic and spore-forming bacterium, is the leading cause of nosocomial antibiotic-associated diarrhea in adults which is characterized by high levels of recurrence and mortality. Surface (S)-layer Protein A (SlpA), the most abundantly expressed protein on the bacterial surface, plays a crucial role in the early stages of infection although the nature of its involvement in C. difficile physiology is yet to be fully understood. Anti-S-layer antibodies have been identified in the sera of convalescent patients and have been correlated with improved outcomes of C. difficile infection (CDI). However, the precise mechanisms by which anti-S-layer antibodies confer protection to the host remain unknown. In this study, we report the first monoclonal antibodies (mAbs) targeting the S-layer of reference strain 630. Characterization of these mAbs unraveled important roles for the S-layer protein in growth, toxin secretion, and biofilm formation by C. difficile, with differential and even opposite effects of various anti-SlpA mAbs on these functions. Moreover, one anti-SlpA mAb impaired C. difficile growth and conferred sensitivity to lysozyme-induced lysis. The results of this study show that anti-S-layer antibody responses can be beneficial or harmful for the course of CDI and provide important insights for the development of adequate S-layer-targeting therapeutics.
Collapse
Affiliation(s)
- Lise Hunault
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Collège doctoral, Sorbonne Université, Paris, France
| | - Emile Auria
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Patrick England
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Plateforme de Biophysique Moléculaire, Paris, France
| | - Julien Deschamps
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Romain Briandet
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Vanessa Kremer
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Inserm, Châtenay-Malabry, France
| | - Bruno Iannascoli
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Léo Vidal-Maison
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | | | | | - Séverine Péchiné
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Cécile Denève-Larrazet
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Guy Gorochov
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | - Pierre Bruhns
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Delphine Sterlin
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| |
Collapse
|
7
|
Noori M, Azimirad M, Eslami G, Looha MA, Yadegar A, Ghalavand Z, Zali MR. Surface layer protein A from hypervirulent Clostridioides difficile ribotypes induce significant changes in the gene expression of tight junctions and inflammatory response in human intestinal epithelial cells. BMC Microbiol 2022; 22:259. [PMID: 36303110 PMCID: PMC9608920 DOI: 10.1186/s12866-022-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background
Surface layer protein A (SlpA), the primary outermost structure of Clostridioides difficile, plays an essential role in C. difficile pathogenesis, although its interaction with host intestinal cells are yet to be understood. The aim of this study was to investigate the effects of SlpA extracted from C. difficile on tight junction (TJ) proteins expression and induction of pro-inflammatory cytokines in human colon carcinoma cell line HT-29. SlpA was extracted from three toxigenic C. difficile clinical strains including RT126, RT001, RT084 as well as C. difficile ATCC 700057 as non-toxigenic strain. Cell viability was performed by MTT assay, and the mRNA expression of TJ proteins and inflammation-associated genes was determined using quantitative RT-PCR. Additionally, the secretion of IL-8, IL-1β and TNF-α cytokines was measured by ELISA. Results C. difficile SlpA from selected RTs variably downregulated the expression level of TJs-assassinated genes and increased the expression level of TLR-4 and pro-inflammatory cytokines in HT-29 treated cells. SlpA from RT126 significantly (padj<0.05) decreased the gene expression level of claudins family and JAM-A and increased the secretion of IL-8, TNF-α and IL1-β as compared to untreated cells. Moreover, only SlpA from RT001 could significantly induce the expression of IL-6 (padj<0.05). Conclusion
The results of the present study highlighted the importance of SlpA in the pathogenesis of CDI and C. difficile-induced inflammatory response in the gut. Further studies are required to unravel the significance of the observed results in promoting the intestinal inflammation and immune response induced by C. difficile SlpA from different RTs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02665-0.
Collapse
Affiliation(s)
- Maryam Noori
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- grid.411600.2Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fioravanti A, Mathelie-Guinlet M, Dufrêne YF, Remaut H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS NEXUS 2022; 1:pgac121. [PMID: 36714836 PMCID: PMC9802277 DOI: 10.1093/pnasnexus/pgac121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Surface layers (S-layers) are 2D paracrystalline protein monolayers covering the cell envelope of many prokaryotes and archaea. Proposed functions include a role in cell support, as scaffolding structure, as molecular sieve, or as virulence factor. Bacillus anthracis holds two S-layers, composed of Sap or EA1, which interchange in early and late exponential growth phase. We previously found that acute disruption of B. anthracis Sap S-layer integrity, by means of nanobodies, results in severe morphological cell surface defects and cell collapse. Remarkably, this loss of function is due to the destruction of the Sap lattice structure rather than detachment of monomers from the cell surface. Here, we combine force nanoscopy and light microscopy observations to probe the contribution of the S-layer to the mechanical, structural, and functional properties of the cell envelope, which have been so far elusive. Our experiments reveal that cells with a compromised S-layer lattice show a decreased compressive stiffness and elastic modulus. Furthermore, we find that S-layer integrity is required to resist cell turgor under hypotonic conditions. These results present compelling experimental evidence indicating that the S-layers can serve as prokaryotic exoskeletons that support the cell wall in conferring rigidity and mechanical stability to bacterial cells.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marion Mathelie-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Surface layer protein A from hypervirulent Clostridioides difficile ribotype 001 can induce autophagy process in human intestinal epithelial cells. Microb Pathog 2022; 169:105681. [PMID: 35850375 DOI: 10.1016/j.micpath.2022.105681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 μg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 μg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.
Collapse
|
10
|
Santos MGDC, Trindade CNDR, Vommaro RC, Domingues RMCP, Ferreira EDO. Binding of the extracellular matrix laminin-1 to Clostridioides difficile strains. Mem Inst Oswaldo Cruz 2022; 117:e220035. [PMID: 35730804 PMCID: PMC9208321 DOI: 10.1590/0074-02760220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Clostridioides difficile is the most common cause of nosocomial diarrhea associated with antibiotic use. The disease’s symptoms are caused by enterotoxins, but other surface adhesion factors also play a role in the pathogenesis. These adhesins will bind to components of extracellular matrix. OBJECTIVE There is a lack of knowledge on MSCRAMM, this work set-out to determine the adhesive properties of several C. difficile ribotypes (027, 133, 135, 014, 012) towards laminin-1 (LMN-1). METHODS A binding experiment revealed that different ribotypes have distinct adhesion capabilities. To identify this adhesin, an affinity chromatography column containing LMN-1 was prepared and total protein extracts were analysed using mass spectrometry. FINDINGS Strains from ribotypes 012 and 027 had the best adhesion when incubated with glucose supplementations (0.2%, 0.5%, and 1%), while RT135 had a poor adherence. The criteria were not met by RT014 and RT133. In the absence of glucose, there was no adhesion for any ribotype, implying that glucose is required and plays a significant role in adhesion. MAIN CONCLUSIONS These findings show that in the presence of glucose, each C. difficile ribotype interacts differently with LMN-1, and the adhesin responsible for recognition could be SlpA protein.
Collapse
Affiliation(s)
- Mayara Gil de Castro Santos
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Camilla Nunes Dos Reis Trindade
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Rossiane Cláudia Vommaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, Brasil
| | | | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
11
|
Precision materials: Computational design methods of accurate protein materials. Curr Opin Struct Biol 2022; 74:102367. [DOI: 10.1016/j.sbi.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
|
12
|
Lanzoni-Mangutchi P, Banerji O, Wilson J, Barwinska-Sendra A, Kirk JA, Vaz F, O'Beirne S, Baslé A, El Omari K, Wagner A, Fairweather NF, Douce GR, Bullough PA, Fagan RP, Salgado PS. Structure and assembly of the S-layer in C. difficile. Nat Commun 2022; 13:970. [PMID: 35217634 PMCID: PMC8881574 DOI: 10.1038/s41467-022-28196-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
Collapse
Affiliation(s)
- Paola Lanzoni-Mangutchi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oishik Banerji
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Royal Society of Chemistry, Burlington House, Piccadilly, London, UK
| | - Jason Wilson
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph A Kirk
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Filipa Vaz
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Shauna O'Beirne
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Per A Bullough
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Robert P Fagan
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Paula S Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Oliveira Paiva AM, Friggen AH, Douwes R, Wittekoek B, Smits WK. Practical observations on the use of fluorescent reporter systems in Clostridioides difficile. Antonie van Leeuwenhoek 2022; 115:297-323. [PMID: 35039954 DOI: 10.1007/s10482-021-01691-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Fluorescence microscopy is a valuable tool to study a broad variety of bacterial cell components and dynamics thereof. For Clostridioides difficile, the fluorescent proteins CFPopt, mCherryOpt and phiLOV2.1, and the self-labelling tags SNAPCd and HaloTag, hereafter collectively referred as fluorescent systems, have been described to explore different cellular pathways. In this study, we sought to characterize previously used fluorescent systems in C. difficile cells. We performed single cell analyses using fluorescence microscopy of exponentially growing C. difficile cells harbouring different fluorescent systems, either expressing these separately in the cytosol or fused to the C-terminus of HupA, under defined conditions. We show that the intrinsic fluorescence of C. difficile cells increases during growth, independent of sigB or spo0A. However, when C. difficile cells are exposed to environmental oxygen autofluorescence is enhanced. Cytosolic overexpression of the different fluorescent systems alone, using the same expression signals, showed heterogeneous expression of the fluorescent systems. High levels of mCherryOpt were toxic for C. difficile cells limiting the applicability of this fluorophore as a transcriptional reporter. When fused to HupA, a C. difficile histone-like protein, the fluorescent systems behaved similarly and did not affect the HupA overproduction phenotype. The present study compares several commonly used fluorescent systems for application as transcriptional or translational reporters in microscopy and summarizes the limitations and key challenges for live-cell imaging of C. difficile. Due to independence of molecular oxygen and fluorescent signal, SNAPCd appears the most suitable candidate for live-cell imaging in C. difficile to date.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert Wittekoek
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands. .,Center for Microbial Cell Biology, Leiden, The Netherlands.
| |
Collapse
|
14
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Gambelli L, Mesman R, Versantvoort W, Diebolder CA, Engel A, Evers W, Jetten MSM, Pabst M, Daum B, van Niftrik L. The Polygonal Cell Shape and Surface Protein Layer of Anaerobic Methane-Oxidizing Methylomirabilis lanthanidiphila Bacteria. Front Microbiol 2021; 12:766527. [PMID: 34925275 PMCID: PMC8671808 DOI: 10.3389/fmicb.2021.766527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands.,Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rob Mesman
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Christoph A Diebolder
- Netherlands Centre for Electron Nanoscopy (NeCEN), Leiden University, Leiden, Netherlands
| | - Andreas Engel
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Wiel Evers
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands.,Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Laura van Niftrik
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
16
|
Noori M, Ghalavand Z, Azimirad M, Yadegar A, Eslami G, Krutova M, Brajerova M, Goudarzi M, Zali MR. Genetic diversity and phylogenetic analysis of the surface layer protein A gene (slpA) among Clostridioides difficile clinical isolates from Tehran, Iran. Anaerobe 2021; 70:102403. [PMID: 34111549 DOI: 10.1016/j.anaerobe.2021.102403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile is the most common causative agent of healthcare-associated diarrhea. C. difficile strains produce a crystalline surface layer protein (SlpA), encoded by the slpA gene. Previous studies have shown that SlpA varies among C. difficile strains. In this study, we used the SlpA sequence-based typing system (SlpAST) for the molecular genotyping of C. difficile clinical isolates identified in Iran; the PCR ribotypes (RTs) and toxin profiles of the isolates were also characterized. Forty-eight C. difficile isolates were obtained from diarrheal patients, and characterized by capillary electrophoresis (CE) PCR ribotyping and the detection of toxin genes. In addition, the genetic diversity of the slpA gene was investigated by Sanger sequencing. The most common RTs were RT126 (20.8%), followed by RT001 (12.5%) and RT084 (10.4%). The intact PaLoc arrangement representing cdu2+/tcdR+/tcdB+/tcdE+/tcdA+/tcdC+/cdd3+ profile was the predominant pattern and cdtA and cdtB genes were found in one-third of the isolates. Using the SlpA genotyping, 12 main genotypes and 16 subtypes were identified. The SlpA type 078-1 was the most prevalent genotype (20.8%), and identified within the isolates of RT126. The yok-1, gr-1, cr-1 and kr-3 genotypes were detected in 14.5%, 12.5%, 12.5% and 8.3% of isolates, respectively. Almost all the isolates with the same RT were clustered in similar SlpA sequence types. In comparison to PCR ribotyping, SlpAST, as a simple and highly reproducible sequenced-based technique, can discriminate well between C. difficile isolates. This typing method appears to be a valuable tool for the epidemiological study of C. difficile isolates worldwide.
Collapse
Affiliation(s)
- Maryam Noori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. S-layers are monomolecular lattices composed of a single protein or glycoprotein species and have either oblique, square or hexagonal lattice symmetry with unit cell dimensions ranging from 3 to 30 nm. They are generally 5 to 10 nm thick (up to 70 nm in archaea) and represent highly porous protein lattices (30–70% porosity) with pores of uniform size and morphology in the range of 2 to 8 nm. Since S-layers can be considered as one of the simplest protein lattices found in nature and the constituent units are probably the most abundantly expressed proteins on earth, it seems justified to briefly review the different S-layer lattice types, the need for lattice imperfections and the discussion of S-layers from the perspective of an isoporous protein network in the ultrafiltration region. Finally, basic research on S-layers laid the foundation for applications in biotechnology, synthetic biology, and biomimetics.
Collapse
|
18
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
19
|
Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021; 12:663468. [PMID: 33889148 PMCID: PMC8056022 DOI: 10.3389/fmicb.2021.663468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.
Collapse
Affiliation(s)
- Janani Ravi
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|