1
|
Liu C, Guo H, Jin F. Research trends and hotspots in gastric carcinoma associated exosome: a bibliometric analysis. Front Oncol 2024; 14:1457346. [PMID: 39703839 PMCID: PMC11655325 DOI: 10.3389/fonc.2024.1457346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Background Stomach cancer is considered the fifth most common cancer worldwide. This study utilized bibliometric analysis to construct a visualization map of the relationship between stomach cancer and exosomes, aiming to reveal research trends and emerging themes, and provide direction for future research. Method Retrieve relevant literature on gastric cancer exosomes in the Web of Science Core Collection (WoSCC) over the past 25 years according to search criteria, and conduct bibliometric and visualization analysis using bibliometric software VOSviewer and CiteSpace. Results This study included a total of 727 articles, with an overall increasing trend in annual publication output. There were 68 countries involved, with China having the largest number of publications followed by the United States. A total of 957 research institutions were involved, with most of the top 10 institutions in terms of publication output being universities in China. The top 5 journals are Molecular Cancer, Cell death & disease, Cancers, International journal of molecular sciences, and Frontiers in oncology. A total of 4529 authors were involved, with 5 authors having a publication output of no less than 13 articles. A total of 35516 references were cited, with a total number of citations. The top publication is "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells". Conclusion Over the past 25 years, researchers have been dedicated to studying the field of exosomes related to gastric cancer, and research in this area is currently progressing steadily. Based on previous studies, exosomes in gastric adenocarcinoma serve as biomarkers, potential therapeutic targets, and post-resistance treatment, which represents current hotspots and emerging frontiers in research.
Collapse
Affiliation(s)
- Chunqiu Liu
- Integrated Traditional Chinese and Western Medicine Oncology Department, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Honglei Guo
- Department of Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangzhou Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Wu Y, Wang X, Zeng Y, Liu X. Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review). Exp Ther Med 2024; 28:439. [PMID: 39355518 PMCID: PMC11443591 DOI: 10.3892/etm.2024.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2024] [Indexed: 10/03/2024] Open
Abstract
Prostate cancer poses a serious threat to the well-being of men worldwide, with the leading cause of mortality being primarily through metastasis. Prostate cancer metastasis is dependent on cell communication, which is an essential component of this process; yet its exact mechanism remains obscure. Nonetheless, cell-to-cell communication plays a critical part in prostate cancer metastasis. Exosomes play an indispensable role in the development of metastatic growth by promoting intercellular communication. They are pivotal regulatory agents for both prostate cancer cells as well as their microenvironment. The present study investigated the makeup and function of exosomes in the tumor microenvironment, highlighting their significance to prostate cancer metastasis.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
Li N, Li Y, Li J, Tang S, Gao H, Li Y. Correlation of the abundance of MDSCs, Tregs, PD-1, and PD-L1 with the efficacy of chemotherapy and prognosis in gastric cancer. Lab Med 2024:lmae090. [PMID: 39566022 DOI: 10.1093/labmed/lmae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between tumor microenvironment markers (myeloid-derived suppressor cells [MDSCs], regulatory T cells [Tregs], programmed cell death 1 [PD-1], and programmed death ligand 1 [PD-L1]) and chemotherapy efficacy and prognosis in advanced gastric cancer, identifying potential monitoring indicators. METHODS Advanced gastric cancer patients' MDSC and Treg expression was measured by flow cytometry pre- and postchemotherapy; PD-1 and PD-L1 expression in cancer tissues was assessed by immunohistochemistry. Correlations with chemotherapy outcomes and prognosis were analyzed. RESULTS Postchemotherapy reductions in MDSC and Treg levels correlated with chemotherapy efficacy (P <.01). Negative PD-1 and PD-L1 expression in cancer tissues predicted better chemotherapy responses (P <.01). Patients with lower MDSC and Treg levels and negative PD-1 and PD-L1 had significantly longer median progression-free survival (PFS) and overall survival (OS) (P <.05). CONCLUSION In advanced gastric cancer, reduced peripheral blood MDSC and Treg levels postchemotherapy and negative PD-1 and PD-L1 expression in tissues are associated with improved chemotherapy efficacy and are independent prognostic factors for PFS and OS.
Collapse
Affiliation(s)
- Na Li
- Cancer Center of Suining Central Hospital, Suining 629000, China
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Yun Li
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Jing Li
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Shimin Tang
- Cancer Center of Suining Central Hospital, Suining 629000, China
| | - Hongbo Gao
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining 629000, China
| |
Collapse
|
4
|
Sengupta R, Topiwala IS, Shakthi A M, Dhar R, Devi A. Immune Cell-Derived Exosomes: A Cell-Free Cutting-Edge Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7076-7087. [PMID: 39495624 DOI: 10.1021/acsabm.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Extracellular vesicles (EVs) are cellular communication molecules and are classified into three major subpopulations, such as microvesicles, apoptotic bodies, and exosomes. Among these, exosomes-based cancer research is a cutting-edge investigation approach to cancer understanding. During cancer progression , tumor-derived exosomes can reprogram the cellular system and promote cancer. Circulating exosomes in the body fluids such as blood, plasma, serum, saliva, CSF, sweat, and tears play a key role in identifying diagnostic and prognostic cancer biomarkers. Diverse therapeutic sources of exosomes including stem cells, plants, and immune cells, etc. exhibit significant cancer-healing properties. Although cancer-targeting immunotherapy is an effective strategy, it has limitations such as toxicity, and high costs. In comparison, immune cell-derived exosomes-based immunotherapy is a cell-free approach for cancer treatment and has advantages like less toxicity, biocompatibility, reduced immunogenicity, and efficient, target-specific cancer therapeutic development. This review highlights the therapeutic signature of immune cell-derived exosomes for cancer treatment.
Collapse
Affiliation(s)
- Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| |
Collapse
|
5
|
Liu Z, Chen Z, Zhang J, Liu J, Li B, Zhang Z, Cai M, Zhang Z. Role of tumor-derived exosomes mediated immune cell reprograming in cancer. Gene 2024; 925:148601. [PMID: 38788817 DOI: 10.1016/j.gene.2024.148601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.
Collapse
Affiliation(s)
- Zening Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junqiu Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Baohong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenyong Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meichao Cai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
9
|
Restaino AC, Ahmadi M, Nikpoor AR, Walz A, Balood M, Eichwald T, Talbot S, Vermeer PD. TUMOR-INFILTRATING NOCICEPTOR NEURONS PROMOTE IMMUNOSUPPRESSION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609450. [PMID: 39253487 PMCID: PMC11382997 DOI: 10.1101/2024.08.23.609450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nociceptor neurons impact tumor immunity. Removing nociceptor neurons reduced myeloid-derived suppressor cell (MDSCs) tumor infiltration in mouse models of head and neck carcinoma and melanoma. Carcinoma-released small extracellular vesicles (sEVs) attract nociceptive nerves to tumors. sEV-deficient tumors fail to develop in mice lacking nociceptor neurons. Exposure of dorsal root ganglia (DRG) neurons to cancer sEVs elevated expression of Substance P, IL-6 and injury-related neuronal markers while treatment with cancer sEVs and cytotoxic CD8 T-cells induced an immunosuppressive state (increased exhaustion ligands and cytokines). Cancer patient sEVs enhanced DRG responses to capsaicin, indicating increased nociceptor sensitivity. Conditioned media from DRG and cancer cell co-cultures promoted expression of MDSC markers in primary bone marrow cells while DRG conditioned media together with cancer sEVs induced checkpoint expression on T-cells. Our findings indicate that nociceptor neurons facilitate CD8+ T cell exhaustion and enhance MDSC infiltration. Targeting nociceptor-released IL-6 emerges as a novel strategy to disrupt harmful neuro-immune interactions in cancer and enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| | - Maryam Ahmadi
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Amin Reza Nikpoor
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| | - Mohammad Balood
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
| | - Tuany Eichwald
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University. Kingston. Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, USA
| |
Collapse
|
10
|
Yang S, Wei S, Wei F. Extracellular vesicles mediated gastric cancer immune response: tumor cell death or immune escape? Cell Death Dis 2024; 15:377. [PMID: 38816455 PMCID: PMC11139918 DOI: 10.1038/s41419-024-06758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Gastric cancer (GC) is a major global health issue, being the fifth most prevalent cancer and the third highest contributor to cancer-related deaths. Although treatment strategies for GC have diversified, the prognosis for advanced GC remains poor. Hence, there is a critical need to explore new directions for GC treatment to enhance diagnosis, treatment, and patient prognosis. Extracellular vesicles (EVs) have emerged as key players in tumor development and progression. Different sources of EVs carry different molecules, resulting in distinct biological functions. For instance, tumor-derived EVs can promote tumor cell proliferation, alter the tumor microenvironment and immune response, while EVs derived from immune cells carry molecules that regulate immune function and possess tumor-killing capabilities. Numerous studies have demonstrated the crucial role of EVs in the development, immune escape, and immune microenvironment remodeling in GC. In this review, we discuss the role of GC-derived EVs in immune microenvironment remodeling and EVs derived from immune cells in GC development. Furthermore, we provide an overview of the potential uses of EVs in immunotherapy for GC.
Collapse
Affiliation(s)
- Shuo Yang
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China
| | - Shibo Wei
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China.
| | - Fang Wei
- Department of the Seventh General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000̥, Liaoning Province, PR China.
| |
Collapse
|
11
|
Kim SW, Kim CW, Moon YA, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst (Seoul) 2024; 28:123-136. [PMID: 38577621 PMCID: PMC10993762 DOI: 10.1080/19768354.2024.2336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
Collapse
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
13
|
Kzar Al-Shukri HH, Abdul-Jabbar Ali S, Al-Akkam KA, Hjazi A, Rasulova I, Mustafa YF, Al-Saidi DN, Alasheqi MQ, Alawadi A, Alsaalamy A. The role of exo-miRNA in diagnosis and treatment of cancers, focusing on effective miRNAs in colorectal cancer. Cell Biol Int 2024; 48:280-289. [PMID: 38225535 DOI: 10.1002/cbin.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Small extracellular (EV) particles known as exosomes are released by a variety of cell types, including immune system cells, stem cells, and tumor cells. They are regarded as a subgroup of EVs and have a diameter that ranges from 30 to 150 nm. Proteins, lipids, nucleic acids (including RNA and DNA), and different bioactive compounds are among the wide range of biomolecules that make up the cargo of exosomes. Exosomes are crucial for intercellular communication because they let cells share information and signaling chemicals. They are involved in various physiological and pathological processes, including immune responses, tissue regeneration, cancer progression, and neurodegenerative diseases. In conclusion, it is essential to continue research into exosome-based cancer medicines to advance understanding, improve treatment plans, create personalized tactics, ensure safety, and speed up clinical translation.
Collapse
Affiliation(s)
- Hamzah H Kzar Al-Shukri
- Department of Biochemistry, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Kirkuk, Iraq
| |
Collapse
|
14
|
Lei Y, Cai S, Zhang CD, Li YS. The biological role of extracellular vesicles in gastric cancer metastasis. Front Cell Dev Biol 2024; 12:1323348. [PMID: 38333593 PMCID: PMC10850573 DOI: 10.3389/fcell.2024.1323348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Gastric cancer (GC) is a tumor characterized by high incidence and mortality, with metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs) are an important intercellular communication medium. They contain bioactive substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological role in the process of GC metastasis. Through mechanisms such as remodeling the tumor microenvironment (TME), immune suppression, promoting angiogenesis, and facilitating epithelial-mesenchymal transition (EMT) and mesothelial-mesenchymal transition (MMT), EVs promote invasion and metastasis in GC. Further exploration of the biological roles of EVs will contribute to our understanding of the mechanisms underlying GC metastasis and may provide novel targets and strategies for the diagnosis and treatment of GC. In this review, we summarize the mechanisms by which EVs influence GC metastasis from four aspects: remodeling the TME, modulating the immune system, influencing angiogenesis, and modulating the processes of EMT and MMT. Finally, we briefly summarized the organotropism of GC metastasis as well as the potential and limitations of EVs in GC.
Collapse
Affiliation(s)
- Yun Lei
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Cai
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Shuang Li
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
16
|
Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH, Moon J, Park G, Choi SS, Kim SJ, Jung YJ, Song KY, Cho ML. Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer. Gut Microbes 2024; 16:2300846. [PMID: 38197259 PMCID: PMC10793689 DOI: 10.1080/19490976.2023.2300846] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Early detection and surgical treatment are essential to achieve a good outcome in gastric cancer (GC). Stage IV and recurrent GC have a poor prognosis. Therefore, new treatments for GC are needed. We investigated the intestinal microbiome of GC patients and attempted to reverse the immunosuppression of the immune and cancer cells of GC patients through the modulation of microbiome metabolites. We evaluated the levels of programmed death-ligand 1 (PD-L1) and interleukin (IL)-10 in the peripheral blood immunocytes of GC patients. Cancer tissues were obtained from patients who underwent surgical resection of GC, and stained sections of cancer tissues were visualized via confocal microscopy. The intestinal microbiome was analyzed using stool samples of healthy individuals and GC patients. Patient-derived avatar model was developed by injecting peripheral blood mononuclear cells (PBMCs) from advanced GC (AGC) patients into NSG mice, followed by injection of AGS cells. PD-L1 and IL-10 had higher expression levels in immune cells of GC patients than in those of healthy controls. The levels of immunosuppressive factors were increased in the immune and tumor cells of tumor tissues of GC patients. The abundances of Faecalibacterium and Bifidobacterium in the intestinal flora were lower in GC patients than in healthy individuals. Butyrate, a representative microbiome metabolite, suppressed the expression levels of PD-L1 and IL-10 in immune cells. In addition, the PBMCs of AGC patients showed increased levels of immunosuppressive factors in the avatar mouse model. Butyrate inhibited tumor growth in mice. Restoration of the intestinal microbiome and its metabolic functions inhibit tumor growth and reverse the immunosuppression due to increased PD-L1 and IL-10 levels in PBMCs and tumor cells of GC patients.
Collapse
Affiliation(s)
- Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun Hee Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goeun Park
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - So Jung Kim
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Alam MR, Rahman MM, Li Z. The link between intracellular calcium signaling and exosomal PD-L1 in cancer progression and immunotherapy. Genes Dis 2024; 11:321-334. [PMID: 37588227 PMCID: PMC10425812 DOI: 10.1016/j.gendis.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are small membrane vesicles containing microRNA, RNA, DNA fragments, and proteins that are transferred from donor cells to recipient cells. Tumor cells release exosomes to reprogram the factors associated with the tumor microenvironment (TME) causing tumor metastasis and immune escape. Emerging evidence revealed that cancer cell-derived exosomes carry immune inhibitory molecule program death ligand 1 (PD-L1) that binds with receptor program death protein 1 (PD-1) and promote tumor progression by escaping immune response. Currently, some FDA-approved monoclonal antibodies are clinically used for cancer treatment by blocking PD-1/PD-L1 interaction. Despite notable treatment outcomes, some patients show poor drug response. Exosomal PD-L1 plays a vital role in lowering the treatment response, showing resistance to PD-1/PD-L1 blockage therapy through recapitulating the effect of cell surface PD-L1. To enhance therapeutic response, inhibition of exosomal PD-L1 is required. Calcium signaling is the central regulator of tumorigenesis and can regulate exosome biogenesis and secretion by modulating Rab GTPase family and membrane fusion factors. Immune checkpoints are also connected with calcium signaling and calcium channel blockers like amlodipine, nifedipine, lercanidipine, diltiazem, and verapamil were also reported to suppress cellular PD-L1 expression. Therefore, to enhance the PD-1/PD-L1 blockage therapy response, the reduction of exosomal PD-L1 secretion from cancer cells is in our therapeutic consideration. In this review, we proposed a therapeutic strategy by targeting calcium signaling to inhibit the expression of PD-L1-containing exosome levels that could reduce the anti-PD-1/PD-L1 therapy resistance and increase the patient's drug response rate.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Md Mizanur Rahman
- Department of Medicine (Nephrology), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6E2H7, Canada
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Grahn A, Coleman JA, Eriksson Y, Gabrielsson S, Madsen JS, Tham E, Thomas K, Turney B, Uhlén P, Vollmer T, Zieger K, Osther PJS, Brehmer M. Consultation on UTUC II Stockholm 2022: diagnostic and prognostic methods-what's around the corner? World J Urol 2023; 41:3405-3411. [PMID: 37725130 PMCID: PMC10693501 DOI: 10.1007/s00345-023-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE To map current literature and provide an overview of upcoming future diagnostic and prognostic methods for upper tract urothelial carcinoma (UTUC), including translational medical science. METHODS A scoping review approach was applied to search the literature. Based on the published literature, and the experts own experience and opinions consensus was reached through discussions at the meeting Consultation on UTUC II in Stockholm, September 2022. RESULTS The gene mutational profile of UTUC correlates with stage, grade, prognosis, and response to different therapeutic strategies. Analysis of pathway proteins downstream of known pathogenic mutations might be an alternative approach. Liquid biopsies of cell-free DNA may detect UTUC with a higher sensitivity and specificity than urinary cytology. Extracellular vesicles from tumour cells can be detected in urine and may be used to identify the location of the urothelial carcinoma in the urinary tract. 3D microscopy of UTUC samples may add information in the analysis of tumour stage. Chemokines and chemokine receptors were linked to overall survival and responsiveness to neoadjuvant chemotherapy in muscle-invasive bladder cancer, which is potentially also of interest in UTUC. CONCLUSION Current diagnostic methods for UTUC have shortcomings, especially concerning prognostication, which is important for personalized treatment decisions. There are several upcoming methods that may be of interest for UTUC. Most have been studied for urothelial carcinoma of the bladder, and it is important to keep in mind that UTUC is a different entity and not all methods are adaptable or applicable to UTUC.
Collapse
Affiliation(s)
- Alexandra Grahn
- Division of Urology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan A Coleman
- Department of Surgery/Urology, Memorial Sloan Kettering Cancer Center, Weill-Cornell University Medical College, New York, USA
| | | | - Susanne Gabrielsson
- Division of Immunology and Allergy, Departments of Medicine, and Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonna Skov Madsen
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kay Thomas
- Guy's Stone Unit, Guy's and St Thomas' Hospital, London, UK
| | - Ben Turney
- Department of Urology, Churchill Hospital, Oxford, UK
| | - Per Uhlén
- Deptartment of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tino Vollmer
- Department of Hematology and Oncology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Karsten Zieger
- Department of Urology, Lillebælt Hospital, Vejle, Denmark
| | - Palle Jörn Sloth Osther
- Department of Urology, Urological Research Center, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Marianne Brehmer
- Departments of Urology and Clinical Sciences, Stockholm South General Hospital Stockholm, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Hyung S, Ko J, Heo YJ, Blum SM, Kim ST, Park SH, Park JO, Kang WK, Lim HY, Klempner SJ, Lee J. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. SCIENCE ADVANCES 2023; 9:eadk1098. [PMID: 38000030 PMCID: PMC10672184 DOI: 10.1126/sciadv.adk1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | | | - Steven M. Blum
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Kobayashi S, Kondo N, Tomiyama T, Nakamura N, Masuda M, Matsumoto Y, Honzawa Y, Tahara T, Ikeura T, Fukui T, Okazaki K, Naganuma M. Intravenous injection of tumor extracellular vesicles suppresses tumor growth by reducing the regulatory T cell phenotype. Cancer Immunol Immunother 2023; 72:3651-3664. [PMID: 37597014 PMCID: PMC10991856 DOI: 10.1007/s00262-023-03517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Colorectal cancer is a disease of unmet medical need. Although extracellular vesicles (EVs) have been implicated in anti-tumor responses, discrepancies were observed among studies. We analyzed the role of tumor-derived EVs (TEVs) in tumor progression in vivo by focusing on regulatory T (Treg) cells, which play essential roles in tumor development and progression. METHODS A mouse model of colorectal cancer lung metastasis was generated using BALB/c mice by tail vein injection of the BALB/c colon adenocarcinoma cell line Colon-26. TEVs derived from Colon-26 and BALB/c lung squamous cell carcinoma ASB-XIV were retrieved from the culture media supernatants. A TEV equivalent to 10 µg protein was injected every other day for 2 weeks. RESULTS Histology and immunohistochemistry studies revealed that lung tumors reduced in the Colon-26-EV group when compared to the phosphate-buffered saline (PBS) group. The population of CD4 + FoxP3 + cells in the lung was upregulated in the PBS group mice when compared to the healthy mice (P < 0.001), but was significantly downregulated in the Colon-26-EV group mice when compared to the PBS group mice (P < 0.01). Programmed cell death protein 1, glucocorticoid-induced TNFR-related protein, and CD69 expression in lung Treg cells were markedly upregulated in the PBS group when compared to the healthy mice, but downregulated in the Colon-26-EV group when compared to the PBS group. The changes in expression were dose-dependent for Colon-26-EVs. ASB-EVs also led to significantly downregulated Treg cell expression, although non-cancer line 3T3-derived EVs did not. CONCLUSION Our study suggests that TEVs possess components for tumor suppression.
Collapse
Grants
- JP20K17066 Grant-in-Aid for Young Scientists JSPS KAKENHI
- 20590810, 23591017, 24591020, 12008507, 17877850, 17K09468, 15K09052 Grant-in-Aid for Scientific Research (C) of the Ministry of Culture and Science of Japan
- 17824893 Research Program from the Japan Medical Research and Development (AMED)
- Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Research Program on Intractable Diseases, from the Ministry of Labor and Welfare of Japan
- Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Sanshiro Kobayashi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Masataka Masuda
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yusuke Honzawa
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
21
|
Kwantwi LB. Exosome-mediated crosstalk between tumor cells and innate immune cells: implications for cancer progression and therapeutic strategies. J Cancer Res Clin Oncol 2023; 149:9487-9503. [PMID: 37154928 DOI: 10.1007/s00432-023-04833-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
The increasing number of cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Exosomes have become crucial players in tumor development and progression, largely due to the diverse nature of their cargo content released to recipient cells. Importantly, exosome-mediated crosstalk between tumor and stromal cells is essential in reprogramming the tumor microenvironment to facilitate tumor progression. As a result, exosomes have gradually become a marker for the early diagnosis of many diseases and an important tool in drug delivery systems. However, the precise mechanisms by which exosomes participate in tumor progression remain elusive, multifaceted, and a double-edged sword, thus requiring further clarification. The available evidence suggests that exosomes can facilitate communication between innate immune cells and tumor cells to either support or inhibit tumor progression. Herein, this review focused on exosome-mediated intercellular communication between tumor cells and macrophages, neutrophils, mast cells, monocytes, dendritic cells, and natural killer cells. Specifically, how such intercellular communication affects tumor progression has been described. It has also been discussed that, depending on their cargo, exosomes can suppress or promote tumor cell progression. In addition, the potential application of exosomes and strategies to target exosomes in cancer treatment has been comprehensively discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
22
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
23
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Nielsen TJ, Varga MG, Cronister CT, Ring BZ, Seitz RS, Ross DT, Schweitzer BL, McGregor K. The 27-gene IO score is associated with efficacy of PD-1/L1 inhibitors independent of FGFR expression in a real-world metastatic urothelial carcinoma cohort. Cancer Immunol Immunother 2023:10.1007/s00262-023-03401-x. [PMID: 36806983 DOI: 10.1007/s00262-023-03401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Multiple targeted therapeutics have been approved by the FDA for mUC, including immune checkpoint inhibitors (ICIs) and more recently targeted agents for both FGFR and Nectin-4. FGFR3-aberrant and Nectin-4 expressing cells have been associated with an immunosuppressed phenotype. Given that less than half of all patients respond to these agents as monotherapies and less than 20% are eligible to receive salvage therapy, effective personalized treatment plans are critical. Typical biomarkers for ICIs such as PD-L1 and TMB have not been definitive in mUC, yet a biomarker-driven optimization of first-line therapy and subsequent sequencing have the potential to achieve higher and more durable response rates. The IO score is a 27-gene tumor immune microenvironment (TIME) classifier that has been associated with the clinical benefits of ICIs in multiple cancer types, including mUC. This study demonstrates that the IO score was associated with both progression-free survival (PFS) and overall survival (OS) in a real-world cohort of mUC patients treated with ICIs. Furthermore, the IO score was independent of and provided information incremental to TMB. Interestingly, the IO score predicted benefit in patients with high FGFR expression, despite conflicting data regarding response rates among the FGFR aberrant population. Taken together, these results demonstrate that the IO score assessment of the TIME is associated with a clinical benefit from ICI therapy and that this novel biomarker may inform therapeutic sequencing decisions in mUC, potentially improving outcomes for this notoriously difficult-to-treat disease.
Collapse
Affiliation(s)
| | | | | | - Brian Z Ring
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Robert S Seitz
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Douglas T Ross
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | | | | |
Collapse
|
25
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
26
|
Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, Zhu Y, Yan F, Gu W, Lin Y. Exosomes and cancer immunotherapy: A review of recent cancer research. Front Oncol 2023; 12:1118101. [PMID: 36727049 PMCID: PMC9885269 DOI: 10.3389/fonc.2022.1118101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
As phospholipid extracellular vesicles (EVs) secreted by various cells, exosomes contain non-coding RNA (ncRNA), mRNA, DNA fragments, lipids, and proteins, which are essential for intercellular communication. Several types of cells can secrete exosomes that contribute to cancer initiation and progression. Cancer cells and the immune microenvironment interact and restrict each other. Tumor-derived exosomes (TDEs) have become essential players in this balance because they carry information from the original cancer cells and express complexes of MHC class I/II epitopes and costimulatory molecules. In the present study, we aimed to identify potential targets for exosome therapy by examining the specific expression and mechanism of exosomes derived from cancer cells. We introduced TDEs and explored their role in different tumor immune microenvironment (TIME), with a particular emphasis on gastrointestinal cancers, before briefly describing the therapeutic strategies of exosomes in cancer immune-related therapy.
Collapse
Affiliation(s)
- Yue Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Xu
- Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou, Jiangsu, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wei Wu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Min Chen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| | - Yan Lin
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| |
Collapse
|
27
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
28
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
29
|
Jin Y, Xing J, Xu K, Liu D, Zhuo Y. Exosomes in the tumor microenvironment: Promoting cancer progression. Front Immunol 2022; 13:1025218. [PMID: 36275738 PMCID: PMC9584056 DOI: 10.3389/fimmu.2022.1025218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes, which are extracellular vesicles produced by endosomes, are important performers of intercellular communication functions. For more than three decades, there has been a growing awareness of exosomes as the contents of the tumor microenvironment and their intimate connection to the development of cancer. The composition, generation, and uptake of exosomes as well as their roles in tumor metastasis, angiogenesis, and immunosuppression are discussed in this paper. In order to stop the progression of cancer, it is crucial to find new diagnostic biomarkers and therapeutic targets for the disease. Knowing the biological characteristics of exosomes and their functions in tumor development helps in this endeavor.
Collapse
Affiliation(s)
- Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jianming Xing
- School of Life Sciences, Jilin University, Changchun, China
| | - Kejin Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Da Liu, ; Yue Zhuo,
| | - Yue Zhuo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Da Liu, ; Yue Zhuo,
| |
Collapse
|
30
|
Tian Y, Sun H, Bao Y, Feng H, Pang J, En R, Jiang H, Wang T. ERp44 Regulates the Proliferation, Migration, Invasion, and Apoptosis of Gastric Cancer Cells Via Activation of ER Stress. Biochem Genet 2022; 61:809-822. [PMID: 36178559 DOI: 10.1007/s10528-022-10281-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies worldwide. Endoplasmic reticulum (ER) stress plays a key role in the progression of GC. Rapid proliferation of tumor cells interferes with ER homeostasis, leading to ER stress and triggering unfolded protein response. Therefore, it is very necessary to investigate abnormally expressed ER resident proteins (ERp) in cancer cells. This study aimed to investigate the possible roles of ERp44. The mRNA and protein expression of genes were detected using qRT-PCR and western blot. Cell apoptosis was calculated using flow cytometry. Cell proliferation was determined using CCK-8 and colony formation assay. Cell migration was detected by wound healing, and cell invasion was measured by transwell assay. We found that ERp44 was obviously decreased in GC tissues. Furthermore, ERp44 overexpression distinctly suppressed the proliferation, migration, and invasion of MGC-803 and KATO III cells. In contrast, apoptosis was promoted by ERp44 overexpression. Furthermore, mechanistic studies revealed that overexpression of ERp44 inhibited malignant biological processes by regulating the eIF-2α/CHOP signaling pathway. Taken together, our data demonstrated that ERp44 regulated the proliferation, migration, invasion, and apoptosis via ERp44/eIF-2α/CHOP axis in GC. Targeting the ERp44and ER stress may be a promising strategy for GC.
Collapse
Affiliation(s)
- Yongjing Tian
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haibin Sun
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Yinshengboer Bao
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haiping Feng
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Jian Pang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Riletu En
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Hongliang Jiang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Tengqi Wang
- Department of Cancer Center, Inner Mongolia Bayannur Hospital, No. 98, Ulan Buhe Road, Bayan Nur, Inner Mongolia, 015000, China.
| |
Collapse
|
31
|
Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. BIOLOGY 2022; 11:biology11081231. [PMID: 36009857 PMCID: PMC9405035 DOI: 10.3390/biology11081231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary A stroke occurs when there is a lack of blood flow to the brain. Stroke injures the brain and can have devastating outcomes depending on the size and location of the brain tissue affected. Currently, there are only a limited number of treatment options for stroke. Extracellular vesicles are small vesicles secreted by cells. Importantly, extracellular vesicles have specific markers indicating the cell they were released from and can pass from the brain into the blood. For these reasons, assessing extracellular vesicles in the blood may create a window into changes occurring in the brain. Assessing changes in extracellular vesicles in the blood during stroke may produce new insight into the cellular changes in the brain causing injury during stroke. This in turn may generate potential targets for the development of future treatments. We summarize what is known about changes in brain-cell-specific extracellular vesicles during stroke and stress the importance of continuing to study these changes. Abstract Stoke is a prevalent and devastating neurologic condition with limited options for therapeutic management. Since brain tissue is rarely accessible clinically, peripheral biomarkers for the central nervous system’s (CNS’s) cellular response to stroke may prove critical for increasing our understanding of stroke pathology and elucidating novel therapeutic targets. Extracellular vesicles (EVs) are cell-derived, membrane-enclosed vesicles secreted by all cell types within the CNS that can freely pass the blood-brain barrier (BBB) and contain unique markers and content linked to their cell of origin. These unique qualities make brain-derived EVs novel candidates for non-invasive blood-based biomarkers of both cell specificity and cell physiological state during the progression of stroke and recovery. While studies are continuously emerging that are assessing the therapeutic potential of EVs and profiling EV cargo, a vast minority of these studies link EV content to specific cell types. A better understanding of cell-specific EV release during the acute, subacute, and chronic stages of stroke is needed to further elucidate the cellular processes responsible for stroke pathophysiology. Herein, we outline what is known about EV release from distinct cell types of the CNS during stroke and the potential of these EVs as peripheral biomarkers for cellular function in the CNS during stroke.
Collapse
|
32
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
33
|
Console L, Scalise M. Extracellular Vesicles and Cell Pathways Involved in Cancer Chemoresistance. Life (Basel) 2022; 12:life12050618. [PMID: 35629286 PMCID: PMC9143651 DOI: 10.3390/life12050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a pharmacological condition that allows transformed cells to maintain their proliferative phenotype in the presence of administered anticancer drugs. Recently, extracellular vesicles, including exosomes, have been identified as additional players responsible for the chemoresistance of cancer cells. These are nanovesicles that are released by almost all cell types in both physiological and pathological conditions and contain proteins and nucleic acids as molecular cargo. Extracellular vesicles released in the bloodstream reach recipient cells and confer them novel metabolic properties. Exosomes can foster chemoresistance by promoting prosurvival and antiapoptotic pathways, affecting cancer stem cells and immunotherapies, and stimulating drug efflux. In this context, a crucial role is played by membrane transporters belonging to ABC, SLC, and P-type pump families. These proteins are fundamental in cell metabolism and drug transport in either physiological or pathological conditions. In this review, different roles of extracellular vesicles in drug resistance of cancer cells will be explored.
Collapse
Affiliation(s)
- Lara Console
- Correspondence: (L.C.); (M.S.); Tel.: +39-0984-492919 (L.C.); +39-0984-492938 (M.S.)
| | | |
Collapse
|
34
|
Zhu Y, Zhao Y, Cao Z, Chen Z, Pan W. Identification of three immune subtypes characterized by distinct tumor immune microenvironment and therapeutic response in stomach adenocarcinoma. Gene X 2022; 818:146177. [PMID: 35065254 DOI: 10.1016/j.gene.2021.146177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In primary stomach adenocarcinoma (STAD), the tumor immune microenvironment (TIME) is important for cancer occurrence and progression; however, its clinical significance remains unclear. This study investigated the association between patient survival, TIME, and therapeutic response to STAD. METHODS Gene expression profiles of STAD cases were collected from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus. Molecular subtypes were explored with consistent clustering methods according to 119 immune signatures and the infiltrating scores of 22 immune cells using the Multi-Omics Immuno-Oncology Biological Research algorithm. We determined IFNγ scores and immune cytolytic activity (CYT) scores on the basis of corresponding gene signatures via single-sample Gene Set Enrichment Analysis. Comparisons of survival, TIME, 10 immunity-related oncogenic pathways, immune checkpoint expression, and therapeutic response were conducted among the three subtypes. We further applied linear discriminant analysis to construct a characteristic index to classify the subtypes, and the Pearson correlation coefficient for the relationship between the index and immune checkpoint genes. Weighted Correlation Network Analysis (WGCNA) was used to mine the associated modules and specific genes. RESULTS We collected gene expression profiles from 352 STAD cases in the TCGA database, 300 in GSE62254, and 344 in GSE84437. Three STAD subtypes (IS1-IS3) were established according to the TIME signatures. The IS3 subtype had the highest immune score and the best prognosis, as well as markedly increased immune T-cell CYT, Th1/IFNγ scores, and immune checkpoint gene expression, compared to the other two subtypes. It was highly similar to the PD-1 response group in the previous study samples of GSE91061. The established TIME classification index performed well in classifying subtypes and was directly proportional to immune checkpoint-related gene expression levels. WGCNA explored 6 modules and 14 genes, namely DYSF, MAN1C1, HTRA3, EMCN, RFLNB, KANK3, MAGEH1, CD93, PCAT19, FUT11, BMP1, FOSB, DCHS1, and TCF3, which were associated with the established TIME classification index and STAD patient prognosis. CONCLUSION TIME phenotypes of STAD patients could be divided into three different molecular subtypes, which displayed different prognoses, immune features, and therapeutic responses. Our results shed new light on predicting patient outcomes and the discovery of new anti-STAD therapeutic strategies according to the TIME.
Collapse
Affiliation(s)
- Yimiao Zhu
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, People's Republic of China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Yu Zhao
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Zhongsheng Cao
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Zhihao Chen
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Wensheng Pan
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, People's Republic of China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
35
|
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME, Eskandari N. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer 2022; 21:15. [PMID: 35031075 PMCID: PMC8759167 DOI: 10.1186/s12943-021-01492-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamzeh Sarvnaz
- Department of Immunology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Student Research Committee, Department of Medical Genetics, School of Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Mohammad Esmaeil Akbari
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Kong H, Kim SB. Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application. Immune Netw 2022; 22:e38. [DOI: 10.4110/in.2022.22.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyunseok Kong
- Department of Animal Resource Science, Sahmyook University, Seoul 01795, Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
37
|
Abu N, Rus Bakarurraini NAA. The interweaving relationship between extracellular vesicles and T cells in cancer. Cancer Lett 2021; 530:1-7. [PMID: 34906625 DOI: 10.1016/j.canlet.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
The interdependency between cancer cells and immune cells is an important link in understanding cancer pathogenesis. T cells are important immune cells that are able to either impede or promote tumor growth. Extracellular vesicles or EVs are membrane-encapsulated vesicles that are released by both cancer and immune cells that can act as communicators. Studies have shown that tumor-derived EVs can interact with immune cells, particularly T cells. Vice versa, T cells-derived EVs have also been shown to possess immunomodulatory roles. Therefore, the purpose of this mini-review is to understand the role of tumor-derived EVs and T-cells derived EVs on cancer immunosuppression especially the interweaving role of different types of EVs and how it affects tumor immunity. We also discuss the role of EVs in different types of T cells namely CD8+, CD4+ Th17 and Treg cells. More importantly, we include the limitations and future directions involving this type of research. This will further elucidate our understanding of the important functions of these tiny mediators.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, 56000, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
38
|
Liu H, Zhao F, Zhang K, Zhao J, Wang Y. Investigating the growth performance, meat quality, immune function and proteomic profiles of plasmal exosomes in Lactobacillus plantarum-treated broilers with immunological stress. Food Funct 2021; 12:11790-11807. [PMID: 34761788 DOI: 10.1039/d1fo01936h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that carry functional molecules to mediate cell-to-cell communication. To date, whether probiotics improve the immune function of broilers by plasmal exosome cargo is unclear. In this study, 300 broilers were allocated to three treatments: control diet (CON group), control diet + dexamethasone injection (DEX group), and control diet containing 1 × 108 cfu g-1 P8 + DEX injection (P8 + DEX group). The growth performance, meat quality and immune function of plasma and jejunal mucosa were detected. Exosomes were isolated from the plasma and characterized. Then, the exosome protein profile was determined by proteomic analysis. Correlation analyses between the exosomal proteins and growth performance, meat quality, immune function were performed. Lastly, the related protein levels were verified by multiple reaction monitoring (MRM). Results showed that P8 treatment increased the growth performance, meat quality and immune function of DEX-induced broilers with immunological stress. Moreover, the average diameters, cup-shaped morphology and expressed exosomal proteins confirmed that the isolated extracellular vesicles were exosomes. A total of 784 proteins were identified in the exosomes; among which, 126 differentially expressed proteins (DEPs) were found between the DEX and CON groups and 102 DEPs were found between the P8 + DEX and DEX groups. Gene ontology analysis indicated that DEPs between the DEX and CON groups are mainly involved in the metabolic process, cellular anatomical entity, cytoplasm, etc. DEPs between the P8 + DEX and DEX groups are mainly involved in the multicellular organismal process, response to stimulus, cytoplasm, etc. Pathway analysis revealed that most of the DEPs between the DEX and CON groups participated in the ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, etc. Most of the DEPs between the P8 + DEX and DEX groups participated in the ErbB and PPAR signaling pathways. Moreover, many DEPs were correlated with the altered parameters of growth performance, meat quality and immunity in P8-treated broilers. MRM further revealed that the upregulated FABP6 and EPCAM in the DEX group were decreased by P8 + DEX treatment, and the downregulated C1QTNF3 in the DEX group was increased by P8 + DEX treatment. In conclusion, our findings demonstrated that P8 may promote the immune function, growth performance and meat quality of broilers with immunological stress by regulating the plasma exosomal proteins, especially the proteins of FABP6, EPCAM and C1QTNF3 and the pathway of PPAR (ILK/FABP6).
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
39
|
The Importance of Exosomal PD-L1 in Cancer Progression and Its Potential as a Therapeutic Target. Cells 2021; 10:cells10113247. [PMID: 34831468 PMCID: PMC8619537 DOI: 10.3390/cells10113247] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.
Collapse
|
40
|
Shenoy GN, Bhatta M, Bankert RB. Tumor-Associated Exosomes: A Potential Therapeutic Target for Restoring Anti-Tumor T Cell Responses in Human Tumor Microenvironments. Cells 2021; 10:cells10113155. [PMID: 34831378 PMCID: PMC8619102 DOI: 10.3390/cells10113155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive. In this review, we focus on the suppression of T cell function by exosomes in human tumor microenvironments. We start with a brief introduction to exosomes, with emphasis on their biogenesis, isolation and characterization. Next, we discuss the immunosuppressive effect of exosomes on T cells, reviewing in vitro studies demonstrating the role of different proteins, nucleic acids and lipids known to be associated with exosome-mediated suppression of T cell function. Here, we also discuss initial proof-of-principle studies that established the potential for rescuing T cell function by blocking or targeting exosomes. In the final section, we review different in vivo models that were utilized to study as well as target exosome-mediated immunosuppression, highlighting the Xenomimetic mouse (X-mouse) model and the Omental Tumor Xenograft (OTX) model that were featured in a recent study to evaluate the efficacy of a novel phosphatidylserine-binding molecule for targeting immunosuppressive tumor-associated exosomes.
Collapse
Affiliation(s)
- Gautam N. Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Maulasri Bhatta
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Correspondence: ; Tel.: +1-716-829-2701
| |
Collapse
|
41
|
Xing C, Li H, Li RJ, Yin L, Zhang HF, Huang ZN, Cheng Z, Li J, Wang ZH, Peng HL. The roles of exosomal immune checkpoint proteins in tumors. Mil Med Res 2021; 8:56. [PMID: 34743730 PMCID: PMC8573946 DOI: 10.1186/s40779-021-00350-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Targeting immune checkpoints has achieved great therapeutic effects in the treatment of early-stage tumors. However, most patients develop adaptive resistance to this therapy. The latest evidence demonstrates that tumor-derived exosomes may play a key role in systemic immune suppression and tumor progression. In this article, we highlight the role of exosomal immune checkpoint proteins in tumor immunity, with an emphasis on programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), as well as emerging evidence on roles of T cell immunoglobulin-3 (TIM-3), arginase 1 (ARG1), and estrogen receptor binding fragment-associated antigen 9 (EBAG9) expressed by exosomes.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Rui-Juan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Hui-Fang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Zi-Neng Huang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Ji Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Molecular Hematology, Central South University, Changsha, 410011, China
| | - Zhi-Hua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Institute of Molecular Hematology, Central South University, Changsha, 410011, China.
| | - Hong-Ling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Institute of Molecular Hematology, Central South University, Changsha, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, China.
| |
Collapse
|
42
|
New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2021; 1876:188624. [PMID: 34487817 DOI: 10.1016/j.bbcan.2021.188624] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in extracellular vesicle biology have uncovered a substantial role in maintaining cell homeostasis in health and disease conditions by mediating intercellular communication, thus catching the scientific community's attention worldwide. Extracellular microvesicles, some called exosomes, functionally transfer biomolecules such as proteins and non-coding RNAs from one cell to another, influencing the local environment's biology. Although numerous advancements have been made in treating cancer patients with immune therapy, controlling the disease remains a challenge in the clinic due to tumor-driven interference with the immune response and inability of immune cells to clear cancer cells from the body. The present review article discusses the recent findings and knowledge gaps related to the role of exosomes derived from tumors and the tumor microenvironment cells in tumor escape from immunosurveillance. Further, we highlight examples where exosomal non-coding RNAs influence immune cells' response within the tumor microenvironment and favor tumor growth and progression. Therefore, exosomes can be used as a therapeutic target for the treatment of human cancers.
Collapse
|
43
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
44
|
Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo. Sci Rep 2021; 11:15125. [PMID: 34302038 PMCID: PMC8302577 DOI: 10.1038/s41598-021-94584-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis is an essential regulator of angiogenesis and important therapeutic target in cancer. Ramucirumab is an anti-VEGFR2 monoclonal antibody used for the treatment of several cancers. Increased circulating VEGF-A levels after ramucirumab administration are associated with a worse prognosis, suggesting that excess VEGF-A induced by ramucirumab negatively affects treatment efficacy and that neutralizing VEGF-A may improve treatment outcomes. Here, we evaluated the effect of combination treatment with an anti-VEGFR2 antibody and anti-VEGF-A antibody on gastric tumor progression and normal tissues using a preclinical BALB/c-nu/nu mouse xenograft model. After anti-VEGFR2 antibody treatment in mice, a significant increase in plasma VEGF-A levels was observed, mirroring the clinical response. The elevated VEGF-A was host-derived. Anti-VEGF-A antibody co-administration enhanced the anti-tumor effect of the anti-VEGFR2-antibody without exacerbating the toxicity. Mechanistically, the combination treatment induced intra-tumor molecular changes closely related to angiogenesis inhibition and abolished the gene expression changes specifically induced by anti-VEGFR2 antibody treatment alone. We particularly identified the dual treatment-selective downregulation of ZEB1 expression, which was critical for gastric cancer cell proliferation. These data indicate that the dual blockade of VEGF-A and VEGFR2 is a rational strategy to ensure the anti-tumor effect of angiogenesis-targeting therapy.
Collapse
|
45
|
Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021; 12:685978. [PMID: 34326840 PMCID: PMC8313969 DOI: 10.3389/fimmu.2021.685978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor immune microenvironment plays a vital role in the metastasis of colorectal cancer. As one of the most important immune cells, macrophages act as phagocytes, patrol the surroundings of tissues, and remove invading pathogens and cell debris to maintain tissue homeostasis. Significantly, macrophages have a characteristic of high plasticity and can be classified into different subtypes according to the different functions, which can undergo reciprocal phenotypic switching induced by different types of molecules and signaling pathways. Macrophages regulate the development and metastatic potential of colorectal cancer by changing the tumor immune microenvironment. In tumor tissues, the tumor-associated macrophages usually play a tumor-promoting role in the tumor immune microenvironment, and they are also associated with poor prognosis. This paper reviews the mechanisms and stimulating factors of macrophages in the process of colorectal cancer metastasis and intends to indicate that targeting macrophages may be a promising strategy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
Chen X, Wang H, Huang Y, Chen Y, Chen C, Zhuo W, Teng L. Comprehensive Roles and Future Perspectives of Exosomes in Peritoneal Metastasis of Gastric Cancer. Front Oncol 2021; 11:684871. [PMID: 34268118 PMCID: PMC8276633 DOI: 10.3389/fonc.2021.684871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent digestive malignancies. A great number of patients at first visit or post curative resections are diagnosed with widespread metastasis within the peritoneal cavity. Overwhelming evidence has demonstrated that exosomes, a variety of biologically functional extracellular vesicles comprising active factors, mediate the progression and metastasis of GC. Although the regulatory mechanisms of exosomes remain fairly elusive, they are responsible for intercellular communication between tumor cells and normal stroma, cancer-related fibroblasts, immune cells within the primary tumor and metastatic niche. In this review, we provide new insight into the molecular signatures of GC-associated exosomes in reprogramming the tumor microenvironment and the subsequent promotion of peritoneal metastasis—including infiltration of the gastric wall, implantation of tumor cells onto the pre-metastatic peritoneum, and remodeling of the pre-metastatic niche. Based on this review, we hope to draw a more general conclusion for the functions of exosomes in the progression and peritoneal metastasis of GC and highlight the future perspective on strategies targeting exosomes in prognostic biomarkers and therapy for peritoneal metastasis.
Collapse
Affiliation(s)
- Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
48
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
49
|
Rincón-Riveros A, Lopez L, Villegas EV, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Cancers (Basel) 2021; 13:847. [PMID: 33671415 PMCID: PMC7922229 DOI: 10.3390/cancers13040847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are lipid membrane-enclosed vesicles released by all cell types that act at the paracrine or endocrine level to favor cell differentiation, tissue homeostasis, organ remodeling and immune regulation. Their biosynthesis begins with a cell membrane invagination which generates an early endosome that matures to a late endosome. By inward budding of the late endosome membrane, a multivesicular body (MVB) with intraluminal vesicles (ILVs) is generated. The fusion of MVBs with the plasma membrane releases ILVs into the extracellular space as exosomes, ranging in size from 30 to 100 nm in diameter. The bilipid exosome membrane is rich in cholesterol, ceramides and phosphatidylserine and can be loaded with DNA, RNA, microRNAs, proteins and lipids. It has been demonstrated that exosome secretion is a common mechanism used by the tumor to generate an immunosuppressive microenvironment that favors cancer development and progression, allowing tumor escape from immune control. Due to their ability to transport proteins, lipids and nucleic acids from the cell that gave rise to them, exosomes can be used as a source of biomarkers with great potential for clinical applications in diagnostic, prognostic or therapeutic areas. This article will review the latest research findings on exosomes and their contribution to cancer development.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Institute for Genetics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Liliana Lopez
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - E Victoria Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | | |
Collapse
|
50
|
The Significance of Exosomal RNAs in the Development, Diagnosis, and Treatment of Gastric Cancer. Genes (Basel) 2021; 12:genes12010073. [PMID: 33430032 PMCID: PMC7826966 DOI: 10.3390/genes12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. Exosomes, a subset of extracellular vesicles with an average diameter of 100 nm, contain and transfer a variety of functional macromolecules such as proteins, lipids, and nucleic acids. A large number of studies indicated that exosomes can play a significant role in the initiation and development of GC via facilitating intercellular communication between gastric cancer cells and microenvironment. Exosomal RNAs, one of the key functional cargos, are involved in the pathogenesis, development, and metastasis of GC. In addition, recent studies elucidated that exosomal RNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets for GC. In this review, we summarized the function of exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which may further unveil the functions of exosome and promote the potentially diagnostic and therapeutic application of exosomes in GC.
Collapse
|