1
|
González-Blanco L, Oliván M, Diñeiro Y, Bravo SB, Sierra V, Gagaoua M. Sequential window acquisition of all theoretical mass spectra (SWATH-MS) as an emerging proteomics approach for the discovery of dark-cutting beef biomarkers. Meat Sci 2024; 217:109618. [PMID: 39096797 DOI: 10.1016/j.meatsci.2024.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Recent advances in "omics" technologies have enabled the identification of new beef quality biomarkers and have also allowed for the early detection of quality defects such as dark-cutting beef, also known as DFD (dark, firm, and dry) beef. However, most of the studies conducted were carried out on a small number of animals and mostly applied gel-based proteomics. The present study proposes for the first time a Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) proteomics approach to characterize and comprehensively quantify the post-mortem muscle proteome of DFD (pH24 ≥ 6.2) and CONTROL (5.4 ≤ pH24 ≤ 5.6) beef samples within the largest database of DFD/CONTROL beef samples to date (26 pairs of the Longissimus thoracis muscle samples of young bulls from Asturiana de los Valles breed, n = 52). The pairwise comparison yielded 35 proteins that significantly differed in their abundances between the DFD and CONTROL samples. Chemometrics methods using both PLS-DA and OPLS-DA revealed 31 and 36 proteins with VIP > 2.0, respectively. The combination of different statistical methods these being Volcano plot, PLS-DA and OPLS-DA allowed us to propose 16 proteins as good candidate biomarkers of DFD beef. These proteins are associated with interconnected biochemical pathways related to energy metabolism (DHRS7B and CYB5R3), binding and signaling (RABGGTA, MIA3, BPIFA2B, CAP2, APOBEC2, UBE2V1, KIR2DL1), muscle contraction, structure and associated proteins (DMD, PFN2), proteolysis, hydrolases, and activity regulation (AGT, C4A, GLB1, CAND2), and calcium homeostasis (ANXA6). These results evidenced the potential of SWATH-MS and chemometrics to accurately identify novel biomarkers for meat quality defects, providing a deeper understanding of the molecular mechanisms underlying dark-cutting beef condition.
Collapse
Affiliation(s)
- Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain
| | - Susana B Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain.
| | | |
Collapse
|
2
|
Yang Z, Xi Y, Qi J, Li L, Bai L, Zhang J, Lv J, Li B, Liu H. Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck. Poult Sci 2024; 103:104211. [PMID: 39216264 PMCID: PMC11402601 DOI: 10.1016/j.psj.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
China has abundant local duck resource populations, and evaluating the characteristics of these breeds will help improve development and utilization. In this study, we conducted the first investigations of growth and slaughter performance on Sichuan Shelduck (n = 240), an endangered duck local breed. The average body weight is 1497.91 g at 90 d of age. According to the growth curve through data recorded every 2 wk, we observed a low relative growth rate (RGR) for the early growth stage. The RGR shows a decreasing trend with age increasing in the stage from 0 to 56 d of age. The SNP-based heritability estimation showed the growth rate has a relatively high heritability, indicating high genetic stability for this trait. In the correlation analysis, the percentage of leg muscle is positively correlated with the absolute growth rate (AGR) at 28 to 42 d of age, whereas it is negatively correlated with the earlier stages, exhibiting a time-specific correlation result. Additionally, genome-wide association studies (GWAS) identified PCSK6, TOX2, and TOMM7 as potential candidate genes influencing AGR (42-56) and AGR (56-90), while the candidate genes of slaughter traits were PTP4A2, FAM110B, TOX, UBXN2B, and FCHSD2. These results provide an important reference for further understanding the genetic basis of growth and meat production performance of Sichuan Shelduck.
Collapse
Affiliation(s)
- Zhao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jun Zhang
- Rural Revitalization Development Service Centre, Zigong, China
| | - Jia Lv
- Rural Revitalization Development Service Centre, Zigong, China
| | - Bo Li
- Farming Service Centre, Rong County, Zigong, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
3
|
Shokrollahi B, Park M, Baek YC, Jin S, Jang GS, Moon SJ, Um KH, Jang SS, Lee HJ. Differential gene expression in neonatal calf muscle tissues from Hanwoo cows overfed during mid to late pregnancy period. Sci Rep 2024; 14:23298. [PMID: 39375502 PMCID: PMC11458785 DOI: 10.1038/s41598-024-74976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Maternal nutrition significantly influences fetal development and postnatal outcomes. This study investigates the impact of maternal overfeeding during mid to late pregnancy on gene expression in the round and sirloin muscles of Hanwoo neonatal calves. Eight cows were assigned to either a control group receiving standard nutrition (100%) or a treated group receiving overnutrition (150%). After birth, tissue samples from the round and sirloin muscles of neonatal calves were collected and subjected to RNA sequencing to assess differentially expressed genes (DEGs). RNA sequencing identified 43 DEGs in round muscle and 15 in sirloin muscle, involving genes related to myogenesis, adipogenesis, and energy regulation. Key genes, including PPARGC1A, THBS1, CD44, JUND, CNN1, ENAH, and RUNX1, were predominantly downregulated. Gene ontology (GO) enrichment analyses revealed terms associated with muscle development, such as "biological regulation," "cellular process," and "response to stimulus." Protein-protein interaction networks highlighted complex interactions among DEGs. Random Forest analysis identified ARC, SLC1A5, and GNPTAB as influential genes for distinguishing between control and treated groups. Overall, maternal overnutrition during mid-to-late pregnancy results in the downregulation of genes involved in muscle development and energy metabolism in neonatal Hanwoo calves. These findings provide insights into the molecular effects of maternal nutrition on muscle development.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Myungsun Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Youl-Chang Baek
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Gi-Suk Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sung-Jin Moon
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Kyung-Hwan Um
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sun-Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, 55365, Wanju, Korea.
| |
Collapse
|
4
|
Li S, Liu L, Ahmed Z, Wang F, Lei C, Sun F. Identification of Heilongjiang crossbred beef cattle pedigrees and reveals functional genes related to economic traits based on whole-genome SNP data. Front Genet 2024; 15:1435793. [PMID: 39119576 PMCID: PMC11306169 DOI: 10.3389/fgene.2024.1435793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: To enhance the beef cattle industry, Heilongjiang Province has developed a new Crossbred beef cattle variety through crossbreeding with exotic commercial breeds. This new variety exhibits relatively excellent meat quality, and efficient reproductive performance, catering to market demands. Method: This study employed whole genome resequencing technology to analyze the genetic pedigree and diversity of 19 Heilongjiang Crossbred beef cattle, alongside 59 published genomes from East Asian, Eurasian, and European taurine cattle as controls. In addition, genes related to production traits were also searched by identifying Runs of Homozygosity (ROH) islands and important fragments from ancestors. Results: A total of 14,427,729 biallelic SNPs were discovered, with the majority located in intergenic and intron regions and a small percentage in exon regions, impacting protein function. Population genetic analyses including Principal Component Analysis (PCA), Neighbor-Joining (NJ) tree, and ADMIXTURE identified Angus, Holstein, and Mishima as the main ancestors of Crossbred beef cattle. In genetic diversity analysis, nucleotide diversity, linkage disequilibrium, and inbreeding coefficient analysis reveal that the genetic diversity of Crossbred beef cattle is at a moderate level, and a higher inbreeding coefficient indicates the need for careful breeding management. In addition, some genes related to economic traits are identified through the identification of Runs of Homozygosity (ROH) islands and important fragments from ancestors. Conclusion: This comprehensive genomic characterization supports the targeted improvement of economically important traits in Crossbred beef cattle, facilitating advanced breeding strategies.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Li Liu
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Fuwen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fang Sun
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Sun GB, Lu YF, Duan XJ. Exploration of the genetic influence of MYOT and MB genes on the plumage coloration of Muscovy ducks. Open Life Sci 2024; 19:20220836. [PMID: 38585635 PMCID: PMC10998670 DOI: 10.1515/biol-2022-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2024] Open
Abstract
Plumage color, a pivotal attribute delineating diverse Muscovy duck strains, assumes considerable significance within the field of Muscovy duck breeding research. This study extends the existing research by delving into the hereditary aspects of genes associated with plumage coloration in Muscovy ducks. The principal objective is to discern marker genes conducive to targeted breeding strategies based on plumage color, thereby furnishing indispensable technical foundations for the development of novel Muscovy duck varieties. Our investigation focused on scrutinizing the impact of MYOT and MB genes on the genetic expression of plumage color at both the RNA and protein levels in Muscovy ducks. The results elucidate that black Muscovy ducks manifest markedly elevated mRNA and protein expression levels of MYOT and MB genes in comparison to their white counterparts, indicating that both genes may play a constructive regulatory role in the context of plumage coloration in Muscovy ducks. The outcomes of this study delineate a discernible correlation between MYOT and MB genes and the plumage coloration in Muscovy ducks. Employing gene expression analysis, we successfully identified candidate genes that may be intricately linked to the determination of plumage color in these ducks.
Collapse
Affiliation(s)
- Guo-Bo Sun
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| | - Yan-Feng Lu
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| | - Xiu-Jun Duan
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China
| |
Collapse
|
6
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
7
|
Reis HBD, Carvalho ME, Espigolan R, Poleti MD, Ambrizi DR, Berton MP, Ferraz JBS, de Mattos Oliveira EC, Eler JP. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites 2023; 14:6. [PMID: 38276296 PMCID: PMC10818672 DOI: 10.3390/metabo14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
The meat market has enormous importance for the world economy, and the quality of the product offered to the consumer is fundamental for the success of the sector. In this study, we analyzed a database which contained information on 2470 animals from a commercial farm in the state of São Paulo, Brazil. Of this total, 2181 animals were genotyped, using 777,962 single-nucleotide polymorphisms (SNPs). After quality control analysis, 468,321 SNPs provided information on the number of genotyped animals. Genome-wide association analyses (GWAS) were performed for the characteristics of the rib eye area (REA), subcutaneous fat thickness (SFT), shear force at 7 days' ageing (SF7), and intramuscular fat (IMF), with the aid of the single-step genomic best linear unbiased prediction (ssGBLUP) method, with the purpose of identifying possible genomic windows (~1 Mb) responsible for explaining at least 0.5% of the genetic variance of the traits under analysis (≥0.5%). These genomic regions were used in a gene search and enrichment analyses using MeSH terms. The distributed heritability coefficients were 0.14, 0.20, 0.18, and 0.21 for REA, SFT, SF7, and IMF, respectively. The GWAS results indicated significant genomic windows for the traits of interest in a total of 17 chromosomes. Enrichment analyses showed the following significant terms (FDR ≤ 0.05) associated with the characteristics under study: for the REA, heat stress disorders and life cycle stages; for SFT, insulin and nonesterified fatty acids; for SF7, apoptosis and heat shock proteins (HSP27); and for IMF, metalloproteinase 2. In addition, KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis allowed us to highlight important metabolic pathways related to the studied phenotypes, such as the growth hormone synthesis, insulin-signaling, fatty acid metabolism, and ABC transporter pathways. The results obtained provide a better understanding of the molecular processes involved in the expression of the studied characteristics and may contribute to the design of selection strategies and future studies aimed at improving the productivity of Nellore cattle.
Collapse
Affiliation(s)
- Hugo Borges Dos Reis
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Minos Esperândio Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Rafael Espigolan
- Department of Animal Science and Biological Sciences, Federal University of Santa Maria (UFSM), Av. Independencia, 3751, Palmeira das Missões 98300-000, RS, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Dewison Ricardo Ambrizi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Mariana Piatto Berton
- School of Agricultural and Veterinary Studies (FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Elisângela Chicaroni de Mattos Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| |
Collapse
|
8
|
Wen Y, Wang E, Wang X, Qing S, Chaogetu B, Wang C, Xu Z, Zhang Z, Huang Y. Copy number variations of LRRFIP1 gene and the relationship with growth traits in four Chinese sheep. Anim Biotechnol 2023; 34:3008-3015. [PMID: 36170043 DOI: 10.1080/10495398.2022.2126981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CNVs (copy number variations) are the novel and common structural variants that could cover entire genes found in plenty of species. CNV may influence economically important traits or disease susceptibility in livestock species. Based on the whole genome resequencing results, we found that there was a CNV region on the LRRFIP1 gene. Then we used qPCR to detect the copy number type distribution in 553 individuals of four sheep breeds and used them for association analysis. The results showed that: (1) In the CKS, the sheep with gain type had a larger heart girth (p = 0.049). (2) For the HS, the CNV could significantly affect rump breadth (p = 0.037) and circumference of the cannon (p = 0.035). And the sheep with median type showed better performance in rump breadth and circumference of cannon. (3) At the STHS, the CNV was significantly correlated with chest width (p = 0.000) with loss type as the most favorable CNV type. Meanwhile, the best was the loss type, and the lowest was the median. (4) This CNV had no significant effect on the LTHS. So, the CNV of LRRFIP1 was related to the growth traits of these three sheep breeds and it may be used as a molecular marker for sheep.
Collapse
Affiliation(s)
- Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Si Qing
- Quality and Safety Inspection and Testing Center for Agricultural and Livestock Products of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Buren Chaogetu
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Chenglin Wang
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Jing K, Mipam TD, Zhang P, Peng W, Wang M, Yue B, Chen X, Wang J, Shu S, Fu C, Zhong J, Cai X. Transcriptomic analysis of yak longissimus dorsi muscle identifies genes associated with tenderness. Anim Biotechnol 2023; 34:3978-3987. [PMID: 37593948 DOI: 10.1080/10495398.2023.2248493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Meat tenderness is an important sensory index when consumers choose meat products, which determines the value of meat products and consumers' buying intentions. Yak meat is rich in nutrition and unique in flavor, which is favored by consumers. However, its meat has the deficiencies of low tenderness and poor taste, which has a negative impact on the value of its meat products and customer satisfaction. To identify the genes affecting the yak meat tenderness, we used RNA-seq to analyze the longissimus dorsi muscle of yaks with different tenderness, screened a total of 1120 differentially expressed genes (DEGs). Meanwhile, 23 pathways were significantly enriched. By further analysis, we identified eight genes related to yak meat tenderness (WNT5A, ARID5B, SERPINE1 KLHL40, RUNX1, MAFF, RFX7 and ARID5A). Notably, SERPINE1 was involved in the significant enrichment pathways of 'complement and coagulation cascade pathway', 'HIF-1 signaling pathway' and 'AGE-RAGE signaling pathway in diabetic complications' which can regulate meat tenderness. This implies that SERPINE1 may play an important regulatory role among them. The DEGs associated with yak meat quality screened in this work will be helpful to identify potential biomarkers related to meat tenderness.
Collapse
Affiliation(s)
- Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Tserang Donko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Shi Shu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Changqi Fu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Jourshari MG, Shadparvar AA, Ghavi Hossein-Zadeh N, Rafeie F, Banabazi MH, Johansson AM. Genome-wide association study on abdomen depth, head width, hip width, and withers height in native cattle of Guilan (Bos indicus). PLoS One 2023; 18:e0289612. [PMID: 37595009 PMCID: PMC10437930 DOI: 10.1371/journal.pone.0289612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023] Open
Abstract
Native breeds in any country are a national capital, and their preservation is of great importance. Native Cattle of Guilan (NCG) is one of the few pure native breeds in Iran and the West Asia region. During the last decade, NCG population has decreased by more than 40%. This study aimed to identify significant single nucleotide polymorphisms (SNPs) and candidate genes associated with meat production traits in NCG using a genome-wide association study (GWAS). The blood and hair samples were collected from 72 NCG individuals and genotyped using the Illumina Bovine SNP50 chip. The results of the genomic scan showed that several SNPs were associated with abdominal depth, head width, hip width, and withers height in NCG. Several candidate genes were identified, including multiple epidermal growth factor-like domains 11 (MEGF11), Methionine Sulfoxide Reductase A (MSRA), chondroitin sulfate synthase 3 (CHSY3), Cyclin-Dependent Kinase 7 (CDK7), and Parkin (PRKN) genes, which are involved in muscle growth, meat tenderness, differentiation of fat cells, fat metabolism, and adipogenesis. These genes can contribute to meat quantity and quality in NCG. This study provided valuable insights into the genetics of NCG and the identification of effective genes associated with meat production traits. The results of this study could be used for the preservation and sustainable use of this breed of native cattle, as an important genetic resource in Iran.
Collapse
Affiliation(s)
| | - Abdol Ahad Shadparvar
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Farjad Rafeie
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anna Maria Johansson
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
11
|
Li J, Chen C, Zhao R, Wu J, Li Z. Transcriptome analysis of mRNAs, lncRNAs, and miRNAs in the skeletal muscle of Tibetan chickens at different developmental stages. Front Physiol 2023; 14:1225349. [PMID: 37565148 PMCID: PMC10410567 DOI: 10.3389/fphys.2023.1225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: As a valuable genetic resource, native birds can contribute to the sustainable development of animal production. Tibetan chickens, known for their special flavor, are one of the important local poultry breeds in the Qinghai-Tibet Plateau. However, Tibetan chickens have a slow growth rate and poor carcass traits compared with broilers. Although most of the research on Tibetan chickens focused on their hypoxic adaptation, there were fewer studies related to skeletal muscle development. Methods: Here, we performed the transcriptional sequencing of leg muscles from Tibetan chicken embryos at E (embryonic)10, E14, and E18. Results: In total, 1,600, 4,610, and 2,166 DE (differentially expressed) mRNAs, 210, 573, and 234 DE lncRNAs (long non-coding RNAs), and 52, 137, and 33 DE miRNAs (microRNAs) were detected between E10 and E14, E10 and E18, and E14 and E18, respectively. Functional prediction showed several DE mRNAs and the target mRNAs of DE lncRNAs and DE miRNAs were significantly enriched in sarcomere organization, actin cytoskeleton organization, myofibril, muscle fiber development, and other terms and pathways related to muscle growth and development. Finally, a lncRNA-miRNA-mRNA ceRNA (competing endogenous RNA) network associated with muscle growth and development, which contained 6 DE lncRNAs, 13 DE miRNAs, and 50 DE mRNAs, was constructed based on the screened DE RNAs by Gene Ontology (GO) enrichment. These DE RNAs may play a critical regulatory role in the skeletal muscle development of chickens. Discussion: The results provide a genomic resource for mRNAs, lncRNAs, and miRNAs potentially involved in the skeletal muscle development of chickens, which lay the foundation for further studies of the molecular mechanisms underlying skeletal muscle growth and development in Tibetan chickens.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chuwen Chen
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruipeng Zhao
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jinbo Wu
- Institute of Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba Sichuan, China
| | - Zhixiong Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
13
|
Bruscadin JJ, Cardoso TF, da Silva Diniz WJ, Afonso J, de Souza MM, Petrini J, Nascimento Andrade BG, da Silva VH, Ferraz JBS, Zerlotini A, Mourão GB, Coutinho LL, de Almeida Regitano LC. Allele-specific expression reveals functional SNPs affecting muscle-related genes in bovine. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194886. [DOI: 10.1016/j.bbagrm.2022.194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
14
|
Genetic Architecture and Signatures of Selection in the Caqueteño Creole (Colombian Native Cattle). DIVERSITY 2022. [DOI: 10.3390/d14100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Evolutionary mechanisms have shaped the genomic architecture of Colombian Creole cattle breeds. The mating and selection processes have impacted several traits, promoting differences within and between populations. Studies of population structure and selection signatures in Colombian Creole breeds are scarce, and need more attention to better understand genetic differentiation, gene flow, and genetic distance. This study aimed to analyze the population structure and identify selection imprints in the Criollo Caqueteño (CAQ) population. It used 127 CAQ animals genotyped with Chip HD 777,000 SNPs. The population structure analyses used discriminant principal component analysis (DAPC), integrated haplotype scoring (iHS), and index-fixing (Fst) methodologies to detect selection signals. We can highlight SNP regions on the genes TMPRSS15, PGAM2, and EGFR, identified by the Fst method. Additionally, the iHS regions for cluster 1 identified candidate genes on BTA 3 (CMPK1 and FOXD2), BTA 11 (RCAN1), and BTA 22 (ARPP21). In group 2, we can highlight the genes on BTA 4 (SLC13A4, BRAF), BTA 9 (ULBP), BTA 14 (CSMD3) and BTA 19 (KRTAP9-2). These candidate genes have been associated with fertility traits, precocity, growth, and environmental and disease resistance, indicating a genetic potential in CAQ animals. All this promotes a better understanding of the diversity and genetic structure in the CAQ population. Based on that, our study can significantly assist the sustainable development and conservation of the breed in the Colombian Amazon.
Collapse
|
15
|
Pan J, Purev C, Zhao H, Zhang Z, Wang F, Wendoule N, Qi G, Liu Y, Zhou H. Discovery of exercise-related genes and pathway analysis based on comparative genomes of Mongolian originated Abaga and Wushen horse. Open Life Sci 2022; 17:1269-1281. [PMID: 36249530 PMCID: PMC9518662 DOI: 10.1515/biol-2022-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The Mongolian horses have excellent endurance and stress resistance to adapt to the cold and harsh plateau conditions. Intraspecific genetic diversity is mainly embodied in various genetic advantages of different branches of the Mongolian horse. Since people pay progressive attention to the athletic performance of horse, we expect to guide the exercise-oriented breeding of horses through genomics research. We obtained the clean data of 630,535,376,400 bp through the entire genome second-generation sequencing for the whole blood of four Abaga horses and ten Wushen horses. Based on the data analysis of single nucleotide polymorphism, we severally detected that 479 and 943 positively selected genes, particularly exercise related, were mainly enriched on equine chromosome 4 in Abaga horses and Wushen horses, which implied that chromosome 4 may be associated with the evolution of the Mongolian horse and athletic performance. Four hundred and forty genes of positive selection were enriched in 12 exercise-related pathways and narrowed in 21 exercise-related genes in Abaga horse, which were distinguished from Wushen horse. So, we speculated that the Abaga horse may have oriented genes for the motorial mechanism and 21 exercise-related genes also provided a molecular genetic basis for exercise-directed breeding of the Mongolian horse.
Collapse
Affiliation(s)
- Jing Pan
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Department of Reproductive Medicine, Inner Mongolia Maternal and Child Health Care Hospitaly, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Chimge Purev
- Mongolia-China Joint Laboratory of Applied Molecular Biology, “Administration of the Science Park” CSTI, Ulaanbaatar, Mongolia
| | - Hongwei Zhao
- Beijing 8omics Gene Technology Co. Ltd, Beijing, People’s Republic of China
| | - Zhipeng Zhang
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Feng Wang
- Faculty of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Nashun Wendoule
- Animal Husbandry Workstation of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Guichun Qi
- Bayanta Village of Animal Husbandry and Veterinary Station of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Yongbin Liu
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Huanmin Zhou
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| |
Collapse
|
16
|
Sölzer N, May K, Yin T, König S. Genomic analyses of claw disorders in Holstein cows: Genetic parameters, trait associations, and genome-wide associations considering interactions of SNP and heat stress. J Dairy Sci 2022; 105:8218-8236. [PMID: 36028345 DOI: 10.3168/jds.2022-22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study was an in-depth genomic analysis to understand the genomic mechanisms of the 3 claw disorders dermatitis digitalis (DD), interdigital hyperplasia (HYP), and sole ulcer (SU). In this regard, we estimated genetic parameters based on genomic relationship matrices, performed genome-wide association studies, annotated potential candidate genes, and inferred genetic associations with breeding goal traits considering the most important chromosomal segments. As a further novelty of this study, we inferred possible SNP × heat stress interactions for claw disorders. The study consisted of 17,264 first-lactation Holstein Friesian cows kept in 50 large-scale contract herds. The disease prevalence was 15.96, 2.36, and 8.20% for DD, HYP, and SU, respectively. The remaining breeding goal traits consisted of type traits of the feet and leg composite, female fertility, health traits, and 305-d production traits. The final genotype data set included 44,474 SNPs from the 17,264 genotyped cows. Heritabilities for DD, HYP, and SU were estimated in linear and threshold models considering the genomic relationship matrix (G matrix). Genetic correlations with breeding goal traits based on G were estimated in a series of bivariate linear models, which were verified via SNP effect correlations for specific chromosome segments (i.e., segments harboring potential candidate genes for DD, HYP, and SU). Genome-wide association studies were performed for all traits in a case-control design by applying a single SNP linear mixed model. Furthermore, for DD, HYP, and SU, we modeled SNP × heat stress interactions in genome-wide association studies. Single nucleotide polymorphism-based heritabilities were 0.04 and 0.08 for DD, 0.03 and 0.10 for SU, and 0.03 and 0.23 for HYP from linear and threshold models, respectively. The genetic correlations between DD, HYP, and SU with conformation traits from the feet and leg composite were positive throughout, indicating the value of indirect selection on conformation traits to improve claw health. Genetic correlations between DD, SU, and HYP with other breeding goal traits indicated impaired female fertility, impaired udder health status, and productivity decline of diseased cows. Genetic correlations among DD, SU, and HYP were moderate to large, indicating that different claw disorders have similar genetic mechanisms. Nevertheless, we identified disease-specific potential candidate genes, and genetic associations based on the surrounding SNPs partly differed from the genetic correlations. Especially for candidate genes contributing to 2 traits simultaneously, correlations based on SNP effects from the respective chromosome segment were close to 1 or to -1. In this regard, we annotated the candidate genes KRT33A and KRT33B for HYP and DD, KIF27 for HYP and calving to first insemination, and MAN1A1 for SU and the production traits. For SNP × heat stress interactions, we identified significant SNPs on BTA 2, 4, 5, 7, 8, 9, 13, 22, 25, and 28, and we annotated the potential candidate genes FSIP2, CLCN1, ADGRV1, DOP1A, THBD, and RHOBTB1. Results indicate gene-specific mechanisms of the claw disorders only in specific environments.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany.
| |
Collapse
|
17
|
Small genetic variation affecting mRNA isoforms associated with marbling and meat color in beef cattle. Funct Integr Genomics 2022; 22:451-466. [PMID: 35305194 DOI: 10.1007/s10142-022-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
Abstract
The aim of this study was to identify mRNA isoforms and small genetic variants that may be affecting marbling and beef color in Nellore cattle. Longissimus thoracis muscle samples from 20 bulls with different phenotypes (out of 80 bulls set) for marbling (moderate (n = 10) and low (n = 10) groups) and beef color (desirable (n = 10) and undesirable (n = 9) group) traits were used to perform transcriptomic analysis using RNA sequencing. Fourteen and 15 mRNA isoforms were detected as differentially expressed (DE) (P-value ≤ 0.001) between divergent groups for marbling and meat color traits, respectively. Some of those DE mRNA isoforms have shown sites of splicing modified by small structural variants as single nucleotide variant (SNV), insertion, and/or deletion. Enrichment analysis identified metabolic pathways, such as O2/CO2 exchange in erythrocytes, tyrosine biosynthesis, and phenylalanine degradation. The results obtained suggest potential key regulatory genes associated with these economically important traits for the beef industry and for the consumer.
Collapse
|
18
|
Rafter P, Gormley IC, Purfield D, Parnell AC, Naderi S, Berry DP. Genome-wide association analyses of carcass traits using copy number variants and raw intensity values of single nucleotide polymorphisms in cattle. BMC Genomics 2021; 22:757. [PMID: 34688258 PMCID: PMC8542340 DOI: 10.1186/s12864-021-08075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The carcass value of cattle is a function of carcass weight and quality. Given the economic importance of carcass merit to producers, it is routinely included in beef breeding objectives. A detailed understanding of the genetic variants that contribute to carcass merit is useful to maximize the efficiency of breeding for improved carcass merit. The objectives of the present study were two-fold: firstly, to perform genome-wide association analyses of carcass weight, carcass conformation, and carcass fat using copy number variant (CNV) data in a population of 923 Holstein-Friesian, 945 Charolais, and 974 Limousin bulls; and secondly to perform separate association analyses of carcass traits on the same population of cattle using the Log R ratio (LRR) values of 712,555 single nucleotide polymorphisms (SNPs). The LRR value of a SNP is a measure of the signal intensity of the SNP generated during the genotyping process. RESULTS A total of 13,969, 3,954, and 2,805 detected CNVs were tested for association with the three carcass traits for the Holstein-Friesian, Charolais, and Limousin, respectively. The copy number of 16 CNVs and the LRR of 34 SNPs were associated with at least one of the three carcass traits in at least one of the three cattle breeds. With the exception of three SNPs, none of the quantitative trait loci detected in the CNV association analyses or the SNP LRR association analyses were also detected using traditional association analyses based on SNP allele counts. Many of the CNVs and SNPs associated with the carcass traits were located near genes related to the structure and function of the spliceosome and the ribosome; in particular, U6 which encodes a spliceosomal subunit and 5S rRNA which encodes a ribosomal subunit. CONCLUSIONS The present study demonstrates that CNV data and SNP LRR data can be used to detect genomic regions associated with carcass traits in cattle providing information on quantitative trait loci over and above those detected using just SNP allele counts, as is the approach typically employed in genome-wide association analyses.
Collapse
Affiliation(s)
- Pierce Rafter
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Isobel Claire Gormley
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deirdre Purfield
- Department of Biological Sciences, Munster Technological University Institute, Cork, Bishopstown, Ireland
| | - Andrew C Parnell
- Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Kildare, Ireland
| | - Saeid Naderi
- Irish Cattle Breeding Federation, Cork, Bandon, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland.
| |
Collapse
|
19
|
Passamonti MM, Somenzi E, Barbato M, Chillemi G, Colli L, Joost S, Milanesi M, Negrini R, Santini M, Vajana E, Williams JL, Ajmone-Marsan P. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals (Basel) 2021; 11:2833. [PMID: 34679854 PMCID: PMC8532622 DOI: 10.3390/ani11102833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Livestock radiated out from domestication centres to most regions of the world, gradually adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid conditions to deserts. The climate is changing; generally global temperature is increasing, although there are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock welfare and productivity. This review describes advances in the methodology for studying livestock genomes and the impact of the environment on animal production, giving examples of discoveries made. Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling many traits, and population genetics has identified genomic regions under selection or introgressed from one breed into another to improve production or facilitate adaptation. Landscape genomics, which combines global positioning and genomics, has identified genomic features that enable animals to adapt to local environments. Combining the advances in genomics and methods for predicting changes in climate is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial intelligence and machine learning are now being used to study the interactions between the genome and the environment to identify historic effects on the genome and to model future scenarios.
Collapse
Affiliation(s)
- Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Elisa Somenzi
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Mario Barbato
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Licia Colli
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Research Center on Biodiversity and Ancient DNA—BioDNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Monia Santini
- Impacts on Agriculture, Forests and Ecosystem Services (IAFES) Division, Fondazione Centro Euro-Mediterraneo Sui Cambiamenti Climatici (CMCC), Viale Trieste 127, 01100 Viterbo, Italy;
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - John Lewis Williams
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Nutrigenomics and Proteomics Research Center—PRONUTRIGEN, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| |
Collapse
|
20
|
Ueda S, Hosoda M, Yoshino KI, Yamanoue M, Shirai Y. Gene Expression Analysis Provides New Insights into the Mechanism of Intramuscular Fat Formation in Japanese Black Cattle. Genes (Basel) 2021; 12:genes12081107. [PMID: 34440281 PMCID: PMC8391117 DOI: 10.3390/genes12081107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Japanese Black cattle (Japanese Wagyu) have a unique phenotype in which ectopic intramuscular fat accumulates in skeletal muscle, producing finely marbled beef. However, the mechanism of intramuscular fat formation in Japanese Black cattle remains unclear. To investigate the key genes involved in intramuscular fat accumulation, we comprehensively analyzed mRNA levels in subcutaneous and intramuscular fat tissues using RNA sequence (RNA-seq) analysis, which detected 27,606 genes. We identified eight key genes, namely carboxypeptidase E, tenascin C, transgelin, collagen type IV alpha 5 (COL4A5), cysteine and glycine-rich protein 2, PDZ, and LIM domain 3, phosphatase 1 regulatory inhibitor subunit 14A, and regulator of calcineurin 2. These genes were highly and specifically expressed in intramuscular fat tissue. Immunohistochemical analysis revealed a collagen network, including COL4A5, in the basement membrane around the intramuscular fat tissue. Moreover, pathway analysis revealed that, in intramuscular fat tissue, differentially expressed genes are related to cell adhesion, proliferation, and cancer pathways. Furthermore, pathway analysis showed that the transforming growth factor-β (TGF-β) and small GTPases regulators RASGRP3, ARHGEF26, ARHGAP10, ARHGAP24, and DLC were upregulated in intramuscular fat. Our study suggests that these genes are involved in intramuscular fat formation in Japanese Black cattle.
Collapse
Affiliation(s)
- Shuji Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (M.H.); (M.Y.); (Y.S.)
- Correspondence: ; Tel.: +81-78-803-5889
| | - Mana Hosoda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (M.H.); (M.Y.); (Y.S.)
| | - Ken-ichi Yoshino
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan;
| | - Minoru Yamanoue
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (M.H.); (M.Y.); (Y.S.)
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (M.H.); (M.Y.); (Y.S.)
| |
Collapse
|
21
|
Cortellari M, Barbato M, Talenti A, Bionda A, Carta A, Ciampolini R, Ciani E, Crisà A, Frattini S, Lasagna E, Marletta D, Mastrangelo S, Negro A, Randi E, Sarti FM, Sartore S, Soglia D, Liotta L, Stella A, Ajmone-Marsan P, Pilla F, Colli L, Crepaldi P. The climatic and genetic heritage of Italian goat breeds with genomic SNP data. Sci Rep 2021; 11:10986. [PMID: 34040003 PMCID: PMC8154919 DOI: 10.1038/s41598-021-89900-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups reflective of the Italian geography and its geo-political situation preceding the country unification around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, finding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and inflammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identified through landscape genomics to evaluate their long-term effect on the genetic structure of the Italian goat populations. Our results provide an insight into the past and the future of the Italian local goat populations, helping the institutions in defining new conservation strategy plans that could preserve their diversity and their link to local realities challenged by climate change.
Collapse
Affiliation(s)
- Matteo Cortellari
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mario Barbato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Andrea Talenti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Arianna Bionda
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Antonello Carta
- Unità di Ricerca di Genetica e Biotecnologie, Agris Sardegna, 07100, Sassari, Italy
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze Biotecnologie e Biofarmaceutica, Università degli Studi di Bari, Via Orabona 4, 70126, Bari, Italy
| | - Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015, Monterotondo, Rome, Italy
| | - Stefano Frattini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Donata Marletta
- Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - Alessio Negro
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Francesca M Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Stefano Sartore
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, largo Braccini 2, 10095, Grugliasco, Italy
| | - Dominga Soglia
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, largo Braccini 2, 10095, Grugliasco, Italy
| | - Luigi Liotta
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| | - Alessandra Stella
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Milan, Italy
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Fabio Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti Universitá degli Studi del Molise, 86100, Campobasso, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Paola Crepaldi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
22
|
Hidalgo J, Cesarani A, Garcia A, Sumreddee P, Larios N, Mancin E, García JG, Núñez R, Ramírez R. Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico. Animals (Basel) 2021; 11:ani11020321. [PMID: 33525405 PMCID: PMC7911603 DOI: 10.3390/ani11020321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the genetic background and inbreeding depression in the Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH). Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals; 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. A 1% increase in inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to sustainable breeding programs for the Mexican Romosinuano cattle breed. Abstract The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was −0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Alberto Cesarani
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Andre Garcia
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Pattarapol Sumreddee
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani 12000, Thailand;
| | - Neon Larios
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment-DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - José Guadalupe García
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
- Correspondence:
| | - Rafael Núñez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Rodolfo Ramírez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| |
Collapse
|
23
|
Xiang R, Breen EJ, Prowse-Wilkins CP, Chamberlain AJ, Goddard ME. Bayesian genome-wide analysis of cattle traits using variants with functional and evolutionary significance. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Context
Functional genomics studies have highlighted genomic regions with regulatory and evolutionary significance. Such information independent of association analysis may benefit fine-mapping and genomic selection of economically important traits. However, systematic evaluation of the use of functional information in mapping, and genomic selection of cattle traits, is lacking. Also, single-nucleotide polymorphisms (SNPs) from the high-density (HD) panel are known to tag informative variants, but the performance of genomic prediction using HD SNPs together with variants supported by different functional genomics is unknown.
Aims
We selected six sets of functionally important variants and modelled each set together with HD SNPs in Bayesian models to map and predict protein, fat and milk yield as well as mastitis, somatic cell count and temperament of dairy cattle.
Methods
Two models were used, namely (1) BayesR, which includes priors of four distribution of variant effects, and (2) BayesRC, which includes additional priors of different functional classes of variants. Bayesian models were trained in three breeds of 28 000 cows of Holstein, Jersey and Australian Red and predicted into 2600 independent bulls.
Key results
Adding functionally important variants significantly increased the enrichment of genetic variance explained for mapped variants, suggesting improved genome-wide mapping precision. Such improvement was significantly higher when the same set of variants was modelled by BayesRC than by BayesR. Combining functional variant sets with HD SNPs improves genomic prediction accuracy in the majority of the cases and such improvement was more common and stronger for non-Holstein breeds and traits such as mastitis, somatic cell count and temperament. In contrast, adding a large number of random sequence variants to HD SNPs reduces mapping precision and has a worse or similar prediction accuracy, compared with using HD SNPs alone to map or predict. While BayesRC tended to have better genomic prediction accuracy than did BayesR, the overall difference in prediction accuracy between the two models was insignificant.
Conclusions
Our findings demonstrated the usefulness of functional data in genomic mapping and prediction.
Implications
We have highlighted the need for effective tools exploiting complex functional datasets to improve genomic prediction.
Collapse
|