1
|
Wu J, Gong L, Li Y, Qu J, Yang Y, Wu R, Fan G, Ding M, Xie K, Li F, Li X. Tao-Hong-Si-Wu-Tang improves thioacetamide-induced liver fibrosis by reversing ACSL4-mediated lipid accumulation and promoting mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118456. [PMID: 38878839 DOI: 10.1016/j.jep.2024.118456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a generic fibrous scarring event resulting from accumulation of extracellular matrix (ECM) proteins, easily progressing to end-stage liver diseases. Tao-Hong-Si-Wu-Tang (THSWT) is a traditional Chinese medicine formula applied in clinics to treat gynecological and chronic liver diseases. However, the role of THSWT on thioacetamide (TAA)-induced hepatic fibrosis and the specific mechanisms remains unclear. AIM OF THE STUDY To investigate the improving effects of THSWT on TAA-insulted hepatic fibrosis and the underlying mechanisms. MATERIALS AND METHODS UHPLC-MS/MS was performed to explore the chemical characterization of THSWT. Mice were orally administered with THSWT once daily for 6 weeks along with TAA challenge. Liver function was reflected through serum biomarkers and histopathological staining. RNA sequencing, non-targeted metabolomics and molecular biology experiments were applied to investigate the underlying mechanisms. RESULTS THSWT profoundly repaired lipid metabolism dysfunction and blocked collagen accumulation both in TAA-stimulated mice and in hepatocytes. Results of RNA sequencing and non-targeted metabolomics revealed that the anti-fibrotic effects of THSWT mostly relied on lipid metabolism repairment by increasing levels of acetyl-CoA, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine and lysophosphatidylethanolamine, and decreasing relative abundances of acyl-CoA, total cholesterol, diacylglycerol, triacylglycerol and phosphatidylinositol. Mechanically, long-chain acyl-CoA synthetases 4 (ACSL4) was a key profibrotic target both in human and mice by disrupting lipid oxidation and metabolism in hepatic mitochondria. THSWT effectively blocked ACSL4 and promoted mitophagy to reverse above outcomes, which was verified by mitophagy depletion. CONCLUSION THSWT may be a promising therapeutic option for treating hepatic fibrosis and its complications by modulating lipid metabolism and promoting mitophagy in livers.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liping Gong
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Maulina N, Zachreini I, Gholib G, Suwandi A, Akmal M. Black garlic exhibited hepatoprotective effect against monosodium glutamate-induced hepatotoxicity in animal model. NARRA J 2024; 4:e799. [PMID: 39280321 PMCID: PMC11392005 DOI: 10.52225/narra.v4i2.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024]
Abstract
Monosodium glutamate (MSG) is commonly used as a flavor-enhancing agent in foods, and studies have demonstrated its toxic effects in animal models. Black garlic is known for its antioxidant and anti-inflammatory properties; however, there is a lack of studies on the potential hepatoprotective effect of black garlic ethanol extract (BGE) against MSG-induced hepatotoxicity in rats. The aim of this study was to investigate the hepatoprotective effects of ethanol extract of black garlic against MSG-induced liver damage in animal model. Twenty-five male Wistar rats were randomly assigned to five groups (n=5): negative control, MSG only, and MSG with three different doses of BGE. The MSG only and MSG with BGE groups were orally administered with 8 mg/kg MSG daily. After MSG treatment, the MSG with BGE groups received BGE orally at daily doses of 200, 400, or 600 mg/kg body weight for 16 consecutive days. Subsequently, the levels of serum liver enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2) were measured. Our data indicated that the group treated with 200 mg/kg BGE had significant lower levels of AST and ALT significantly compared to the MSG-only group. The MSG-treated group had higher levels of the inflammatory markers COX-2 and IFN-γ, which were lowered by administration of 200 mg/kg BGE. In contrast, higher doses of BGE led to greater levels of COX-2 and IFN-γ compared to those in the MSG-only group. This study suggested that BGE might have hepatoprotective effects at low dose, potentially mitigating MSG-induced liver damage. However, the higher dose of black garlic extract did not alleviate inflammation, as shown by the higher levels of COX-2 and IFN-γ.
Collapse
Affiliation(s)
- Nora Maulina
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Malikussaleh, Lhokseumawe, Indonesia
| | - Indra Zachreini
- Department of Ear and Throat Sciences, Faculty of Medicine, Universitas Malikussaleh, Lhokseumawe, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Abdulhadi Suwandi
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Muslim Akmal
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
3
|
Banerjee A, Das D, Mukherjee S, Maji BK. Comprehensive study of the interplay between immunological and metabolic factors in hepatic steatosis. Int Immunopharmacol 2024; 133:112091. [PMID: 38657500 DOI: 10.1016/j.intimp.2024.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The pathophysiology of hepatic steatosis is thoroughly reviewed in this comprehensive report, with particular attention to the complex interactions between inflammatory pathways, insulin resistance, lipid metabolism, metabolic dysregulation, and immunological responses in the liver including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). The study highlights the role of immune cell regulation in disease progression and explores the potential of immune cell-specific treatments for treating hepatic disorders. The development of liver disorders is significantly influenced by immune cells, including dendritic cells, T cells, and natural killer cells. Clinical investigations show that immune cell-specific treatments can effectively reduce liver fibrosis and inflammation. Future research should focus on finding new immunological targets for therapeutic interventions, as well as addressing the management challenges associated with NAFLD/NASH. Hepatic immune microorganisms also impact liver homeostasis and disorders. Improvements in immune cell regulation and liver transplantation methods give patients hope for better prognoses. Important phases include optimizing the selection of donors for malignancy of the liver, using machine perfusion for organ preservation, and fine-tuning immunosuppressive strategies. For focused treatments in hepatic steatosis, it is imperative to understand the intricate interactions between immune and metabolic variables. Understanding the liver's heterogeneous immune profile, encompassing a range of immune cell subpopulations, is crucial for formulating focused therapeutic interventions. To improve patient care and outcomes in hepatic illnesses, there is an urgent need for further research and innovation. Therefore, to effectively treat hepatic steatosis, it is important to enhance therapeutic techniques and maximize liver transplantation strategies.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly 712201, West Bengal, India.
| |
Collapse
|
4
|
Das D, Banerjee A, Manna K, Sarkar D, Shil A, Sikdar Ne E Bhakta M, Mukherjee S, Maji BK. Quercetin counteracts monosodium glutamate to mitigate immunosuppression in the thymus and spleen via redox-guided cellular signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155226. [PMID: 38387276 DOI: 10.1016/j.phymed.2023.155226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response. PURPOSE The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress. The goal of this work is to examine the therapeutic potential of quercetin against immunotoxicity brought on by M, revealing the molecular route implicated in such immunopathology by targeting the thymus and spleen, to support the development of future anti-inflammatory and antioxidant therapies. STUDY DESIGN AND METHODS M-fed rats were employed as an immunotoxicity model and were supplemented with quercetin for four weeks. Hematological and biochemical parameters were measured; H&E staining, immunohistochemistry, flow cytometry, real-time quantitative PCR, and western blotting were performed. RESULTS Based on the findings, TLR4 was activated by M to cause oxidative stress-mediated inflammation, which was alleviated by the supplementation of quercetin by modulating redox homeostasis to neutralize free radicals and suppress the inflammatory response. To prevent M-induced inflammation, quercetin demonstrated anti-inflammatory functions by blocking NF-kB activation, lowering the production of pro-inflammatory cytokines, and increasing the release of anti-inflammatory cytokines. By normalizing lipid profiles and lowering the potential risk of immunological deficiency caused by M, quercetin also improves lipid metabolism. Additionally, it has shown potential for modifying insulin levels, suggesting a possible function in controlling M-induced alteration in glucose metabolism. The addition of quercetin to M enhanced the immune response by improving immunoglobulin levels and CD4/CD8 expression in the thymus and spleen. Additionally, quercetin inhibited apoptosis by controlling mitochondrial caspase-mediated cellular signaling, suggesting that it may be able to halt cell death in M-fed rats. CONCLUSION The results of this study first indicate that quercetin, via modulating redox-guided cellular signaling, has a promising role in reducing immune disturbances. This study illuminates the potential of quercetin as a safe, natural remedy for immunopathology caused by M, including thymic hypoplasia and/or splenomegaly, and paves the way for future anti-inflammatory and antioxidant supplements.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Deotima Sarkar
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), Kolkata 700010, India
| | - Aparna Shil
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Mausumi Sikdar Ne E Bhakta
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India.
| |
Collapse
|
5
|
Das D, Banerjee A, Mukherjee S, Maji BK. Quercetin inhibits NF-kB and JAK/STAT signaling via modulating TLR in thymocytes and splenocytes during MSG-induced immunotoxicity: an in vitro approach. Mol Biol Rep 2024; 51:277. [PMID: 38319443 DOI: 10.1007/s11033-024-09245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The most widely used food additive monosodium glutamate (MSG) has been linked to immunopathology. Conversely, quercetin (Q), a naturally occurring flavonoid has been demonstrated to have immunomodulatory functions. Therefore, the purpose of the study is to determine if quercetin can mitigate the deleterious effects of MSG on immune cells, and the possible involvement of TLR, if any. METHODS AND RESULTS: This study was conducted on Q, to determine how it affects the inflammatory response triggered by MSG in primary cultured thymocytes and splenocytes from rats (n = 5). Q shielded cells by augmenting cell survival and decreasing lactate dehydrogenase leakage during MSG treatment. It decreased IL-1β, IL-6, IL-8, and TNF-α expression and release by hindering NF-kB activation and by inhibiting the JAK/STAT pathway. Moreover, Q prevented NLRP3 activation, lowered IL-1β production, and promoted an anti-inflammatory response by increasing IL-10 production. Q reduced MSG-induced cellular stress and inflammation by acting as an agonist for PPAR-γ and LXRα, preventing NF-kB activation, and lowering MMP-9 production via increasing TIMP-1. Additionally, Q neutralized free radicals, elevated intracellular antioxidants, and impeded RIPK3, which is involved in inflammation induced by oxidative stress, TNF-α, and TLR agonists in MSG-treated cells. Furthermore, it also modulated TYK2 and the JAK/STAT pathway, which exhibited an anti-inflammatory effect. CONCLUSIONS MSG exposure is associated with immune cell dysfunction, inflammation, and oxidative stress, and Q modulates TLR to inhibit NF-kB and JAK/STAT pathways, providing therapeutic potential. Further research is warranted to understand Q's downstream effects and explore its potential clinical applications in inflammation.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India.
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India.
| |
Collapse
|
6
|
Moldovan OL, Vari CE, Tero-Vescan A, Cotoi OS, Cocuz IG, Tabaran FA, Pop R, Fülöp I, Chis RF, Lungu IA, Rusu A. Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients 2023; 15:4436. [PMID: 37892513 PMCID: PMC10610236 DOI: 10.3390/nu15204436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Monosodium glutamate (MSG) is the sodium salt of glutamic acid (GLA), used as a flavour enhancer. MSG is considered a controversial substance. It is incriminated in disturbing the antioxidant system, but also has beneficial effects, as GLA metabolism plays a crucial role in homeostasis. This study highlights which positive or negative aspects of MSG sub-chronic consumption are better reflected in subjects potentially affected by advanced age. Daily doses of MSG were administered to four groups of two-year-old Wistar rats for 90 days: (I) 185 mg/kg bw, (II) 1500 mg/kg bw, (III) 3000 mg/kg bw and (IV) 6000 mg/kg bw, compared to a MSG non-consumer group. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, direct and total bilirubin, total cholesterol, triglycerides, creatinine and urea levels were analysed; stomach, liver and kidney samples were subjected to histopathological analysis. Although, in most cases, there were no statistical differences, interesting aspects of the dose-effect relationship were observed. After MSG sub-chronic consumption, the positive aspects of GLA seem to be reflected better than the negative ones. The hormesis effect, with low-level reactive oxygen species' protective effects and GLA metabolism, may represent the hypothesis of a potential defence mechanism triggered by MSG sub-chronic consumption in ageing rats.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Iuliu Gabriel Cocuz
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Flaviu Alexandru Tabaran
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Romelia Pop
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Ibolya Fülöp
- Toxicology and Biopharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Rafael Florin Chis
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
7
|
Noorian M, Chamani E, Salmani F, Rezaei Z, Khorsandi K. Effects of doxorubicin and apigenin on chronic myeloid leukemia cells (K562) in vitro: anti-proliferative and apoptosis induction assessments. Nat Prod Res 2023; 37:3335-3343. [PMID: 35503006 DOI: 10.1080/14786419.2022.2069765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/06/2022]
Abstract
In this study, we aimed to investigate the effect of the co-treatment with apigenin and doxorubicin (DOX) on K562 cells. Our results show that apigenin (0, 40, 60, 80 ,100 µM) and DOX (0-10 µM) as single therapy, could decrease K562 cell viability (after 24 h of treatment) in a dose-dependent manner. Additionally, the co-treatment with apigenin (60, 80 µM) and 10 µM of DOX led to a greater reduction in cell growth (CI: 0.92 and 0.97) after 24 h of treatment compared to the single DOX treatment (p < 0.05). Consequently, apigenin and DOX, either as single or as co-treatment (24 h of treatment), were indicated to induce apoptosis in K562 cells through morphological studies, RT-qPCR, and western-blot analysis. Eventually, the expressions of Caspase 3, 6, 7, and 9 genes in the single treatment with DOX had higher alteration compared to the co-treatment with DOX and apigenin (p < 0.05).
Collapse
Affiliation(s)
- Maryam Noorian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Salmani
- Departments of Epidemiology and Biostatistics, School of Health Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|
9
|
Liu J, Kong D, Ai D, Xu A, Yu W, Peng Z, Peng J, Wang Z, Wang Z, Liu R, Li W, Hai C, Zhang X, Wang X. Insulin resistance enhances binge ethanol-induced liver injury through promoting oxidative stress and up-regulation CYP2E1. Life Sci 2022; 303:120681. [PMID: 35662646 DOI: 10.1016/j.lfs.2022.120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Alcoholic liver disease (ALD) has caused a serious burden on public and personal health in crowd with ethanol abuse. The effects of insulin resistance (IR) on ALD and the mechanisms underlying these responses are still not well understood. In this study, we investigated the changes of liver injury, inflammation, apoptosis, mitochondrial dysfunction and CYP2E1 changes in liver of mice exposed to ethanol with IR or not. We found IR increased the sensitivity of liver injury in mice exposed to ethanol, manifested as the increase serum activities of AST and ALT, the accumulation of triglycerides, the deterioration of liver pathology and increase of inflammatory factors. IR also exacerbated apoptosis and mitochondrial dysfunction in liver of mice exposed to ethanol. The increase of oxidative stress and the decrease of antioxidant defense ability might be responsible for the sensitizing effects of IR on ethanol-induced liver injury, supported by the increase of MDA levels and the decline of GSH/GSSG, the inactivation of antioxidant enzymes SOD, GR through the inhibition of Nrf-2 pathway. The activation of CYP2E1 might be also involved in the sensitizing effects of IR on ethanol induced liver injury in mice. These results demonstrated that IR exhibited a significant pro-oxidative and pro-apoptosis effects to aggravate alcoholic liver injury. Our study helped us to better understand the sensitive role of IR on ALD and suggested that alcohol intake may be more harmful for people with IR.
Collapse
Affiliation(s)
- Jiangzheng Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Deqin Kong
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Duo Ai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Anqi Xu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Weihua Yu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhengwu Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jie Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rui Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wenli Li
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chunxu Hai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Zhang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Xin Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
10
|
Khezerlou A, Akhlaghi AP, Alizadeh AM, Dehghan P, Maleki P. Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. Toxicol Rep 2022; 9:1066-1075. [PMID: 36561954 PMCID: PMC9764193 DOI: 10.1016/j.toxrep.2022.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tert-butyl hydroquinone (TBHQ) is a food additive commonly used as a more effective protectant in the food, cosmetic and pharmaceutical industries. However, the long-term exposure to TBHQ at higher doses (0.7 mg/kg) results in substantial danger to public health and brings a series of side effects, including cytotoxic, genotoxic, carcinogenic, and mutagenic effects. As a result, the global burden of chronic diseases has fascinated consumers and governments regarding the safety assessment of food additives. Regarding contradictory reports of various research about the application of food additives, the accurate monitoring of food additives is urgent. Notwithstanding, there are reports of the therapeutic effects of TBHQ under pathologic conditions through activation of nuclear factor erythroid 2-related factor 2. Thus, further investigations are required to investigate the impact of TBHQ on public health and evaluate its mechanism of action on various organs and cells. Therefore, this review aimed to investigate TBHQ safety through an overview of its impacts on different tissues, cells, and biological macromolecules as well as its therapeutic effects under pathologic conditions.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir pouya Akhlaghi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Abdel-Hamid NM, Abass SA, Eldomany RA, Abdel-Kareem MA, Zakaria S. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats. Life Sci 2022; 294:120369. [DOI: 10.1016/j.lfs.2022.120369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
|
12
|
Li J, Liu X, Yang Q, Huang J, Zhou W, Tan Z, Li Z, Zhou D. The effect of docetaxel on retinal pigment epithelial cells. Toxicol Rep 2022; 9:670-678. [PMID: 35433274 PMCID: PMC9010520 DOI: 10.1016/j.toxrep.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 10/26/2022] Open
|
13
|
Kassab RB, Theyab A, Al-Ghamdy AO, Algahtani M, Mufti AH, Alsharif KF, Abdella EM, Habotta OA, Omran MM, Lokman MS, Bauomy AA, Albrakati A, Baty RS, Hassan KE, Alshiekheid MA, Abdel Moneim AE, Elmasry HA. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12208-12221. [PMID: 34562213 DOI: 10.1007/s11356-021-16578-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Monosodium glutamate (MSG), a commonly used flavor enhancer, has been reported to induce hepatic and renal dysfunctions. In this study, the palliative role of protocatechuic acid (PCA) in MSG-administered rats was elucidated. Adult male rats were assigned to four groups, namely control, MSG (4 g/kg), PCA (100 mg/kg), and the last group was co-administered MSG and PCA at aforementioned doses for 7 days. Results showed that MSG augmented the hepatic and renal functions markers as well as glucose, triglycerides, total cholesterol, and low-density lipoprotein levels. Moreover, marked increases in malondialdehyde levels accompanied by declines in glutathione levels and notable decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were observed in MSG-treated group. The MSG-mediated oxidative stress was further confirmed by downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression levels in both tissues. In addition, MSG enhanced the hepatorenal inflammation as witnessed by increased inflammatory cytokines (interleukin-1b and tumor necrosis factor-α) and elevated nuclear factor-κB (NF-κB) levels. Further, significant increases in Bcl-2-associated X protein (Bax) levels together with decreases in B-cell lymphoma 2 (Bcl-2) levels were observed in MSG administration. Histopathological screening supported the biochemical and molecular findings. In contrast, co-treatment of rats with PCA resulted in remarkable enhancement of the antioxidant cellular capacity, suppression of inflammatory mediators, and apoptosis. These effects are possibly endorsed for activation of Nrf-2 and suppression of NF-kB signaling pathways. Collectively, addition of PCA counteracted MSG-induced hepatorenal injuries through modulation of oxidative, inflammatory and apoptotic alterations.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Al Baha University, Al Baha, Almakhwah, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ali O Al-Ghamdy
- Department of Biology, Al Baha University, Al Baha, Almakhwah, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ehab M Abdella
- Zoology Department, Beni Suef University, Beni Suef, Egypt
- Biology Department, Al Baha University, Al Baha, Al Aqiq, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Mansoura University, Mansoura, Egypt
| | - Mohamed M Omran
- Chemistry Department, Helwan University, Cairo, 11795, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, 52719, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid E Hassan
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Heba A Elmasry
- Department of Zoology and Entomology, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
14
|
Das D, Banerjee A, Bhattacharjee A, Mukherjee S, Maji BK. Dietary food additive monosodium glutamate with or without high-lipid diet induces spleen anomaly: A mechanistic approach on rat model. Open Life Sci 2022; 17:22-31. [PMID: 35128066 PMCID: PMC8802345 DOI: 10.1515/biol-2022-0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Abstract
Globally, the trend of using food additives and eating ready-made fast food has led to a deleterious impact on immune organs. Monosodium glutamate (MSG), as a food additive in a high-lipid diet (HLD), acts as a silent killer of immune cells. Hence, the present study aimed to evaluate the role of MSG in HLD on spleen injury in rats. Results showed that a 2.52-fold and 1.91-fold increase in spleen index in MSG and MSG + HLD group indicates splenomegaly, whereas a 1.36-fold and 1.29-fold increase in pro-inflammatory cytokines in MSG and MSG + HLD-fed rats, respectively, promote the inflammatory response. Additionally, MSG and MSG + HLD induce oxidative stress by 1.81-fold and 1.1-fold increased generation of reactive oxygen species (ROS) in macrophage population, and 1.38-fold and 1.36-fold increased generation of ROS in lymphocytes population, respectively. Furthermore, mitochondrial membrane potential was significantly reduced by 1.43-fold and 1.18-fold in MSG and MSG + HLD groups. Therefore, the current study argues that MSG has more detrimental effects on the spleen than MSG + HLD due to the presence of antioxidants in HLD, which suppresses the deleterious impact of MSG. Hence, it can be inferred that MSG induces spleen injury via targeting redox-guided cellular signaling with inflammatory response, leading to severe immune system anomalies.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Physiology (UG & PG), Serampore College , 9 William Carey Road , Serampore, Hooghly-712201 , West Bengal , India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College , 9 William Carey Road , Serampore, Hooghly-712201 , West Bengal , India
| | - Ankita Bhattacharjee
- Department of Physiology (UG & PG), Serampore College , 9 William Carey Road , Serampore, Hooghly-712201 , West Bengal , India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College , 9 William Carey Road , Serampore, Hooghly-712201 , West Bengal , India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College , 9 William Carey Road , Serampore, Hooghly-712201 , West Bengal , India
| |
Collapse
|
15
|
Banerjee A, Mukherjee S, Maji BK. Coccinia grandis
alleviates flavor‐enhancing high‐lipid diet induced hepatocellular inflammation and apoptosis. J Food Biochem 2022; 46:e14092. [DOI: 10.1111/jfbc.14092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG) Serampore College Serampore India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG) Serampore College Serampore India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG) Serampore College Serampore India
| |
Collapse
|
16
|
Photo-activated proflavine degrades protein and impairs enzyme activity: Involvement of hydroxyl radicals. Toxicol Rep 2022; 9:78-86. [PMID: 35024344 PMCID: PMC8724948 DOI: 10.1016/j.toxrep.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/23/2023] Open
Abstract
Generation of hydroxyl radical (·OH) increased by proflavine upon illumination with fluorescent light. Proflavine resulted in oxidative modifications and degradation of protein and enzyme structure. The addition of Cu (II) augmented photo-illuminated proflavine to generate hydroxyl radicals. Proflavine-induced hydroxyl radicals have a deleterious influence on protein and enzyme activity.
Proflavine is a well-known antiseptic and bacteriostatic drug, however, it has the potential to be hazardous and mutagenic. Proflavine enters cells and intercalates between DNA base pairs, resulting in mutation and replication inhibition. Previously several investigators demonstrated that photo-activated proflavine generated double-stranded DNA breakage and protein structural alterations. The present study investigated the role of hydroxyl radical (·OH) due to activation of proflavine in the breakdown of protein and enzyme by photo-activated proflavine. The results show that the formation of hydroxyl radicals increased as the photo-illumination period increased, as did the concentrations of proflavine and Cu (II). As demonstrated by SDS-PAGE, the excess of free radicals due to proflavine resulted in oxidative modifications and degradation of BSA protein and trypsin enzyme. Additionally, with an increase in Cu (II) concentration, photo-illuminated proflavine induced a considerable loss of enzyme activity and also accelerated the degradation of the enzyme. Bathocuproine, a particular Cu (I)-sequestering agent, prevented protein degradation and enzyme inactivation. Hydroxyl radical scavengers inhibited the protein-damaging process, indicating that hydroxyl radicals play a substantial role in protein damage. The tryptophan moiety was quenched by proflavine, demonstrating that it binds to proteins and enzymes, changing their structure and activity. As a result, this study helps to better understand proflavine's deleterious influence on protein and enzyme degradation by oxygen-free radicals.
Collapse
|
17
|
Azab KS, Maarouf RE, Abdel-Rafei MK, El Bakary NM, Thabet NM. Withania somnifera (Ashwagandha) root extract counteract acute and chronic impact of γ-radiation on liver and spleen of rats. Hum Exp Toxicol 2022; 41:9603271221106344. [PMID: 35656930 DOI: 10.1177/09603271221106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The exposure to ionizing radiation has become inescapably because of increased dependence on radiation to execute works in different fields and also its influences on biological systems. Thus, the current study aimed at examination of the radio-protective effect of the natural ashwagandha (Ag) against acute and chronic doses of γ-radiation on liver and spleen of rats. The impact of Ag was inspected in rats exposed to acute exposure of 8 Gy (single dose) or to chronic exposure of 8 Gy (2 Gy every other day for 4 times). The data obtained reveals significant amelioration of the redox status (MDA, GSH and ROS) in spleen and liver tissues of rats treated with Ag and exposed to the 2-different modes of γ-radiation. Besides, the changes in inflammatory responses assessed by measurements of IL-17, IL-10 and α7-nAchR are less pronounced in rats received Ag and γ-radiation compared to irradiated rats. Further, the measurements of tissues structural damage markers (MMP-2, MMP-9 and TIMP-1) pointed to benefit of Ag against γ-radiation. The histopathological investigation of spleen and liver tissues confirmed this ameliorating action of Ag counter to γ-radiation hazards. It could be suggested that Ashwagandha could exerts radio-protective influences because of its antioxidants and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Khaled Sh Azab
- Department Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rokaya E Maarouf
- Department Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Department Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M El Bakary
- Department Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noura M Thabet
- Department Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
18
|
Kabel AM, Salama SA, Borg HM, Ali DA, Abd Elmaaboud MA. Targeting p-AKT/mTOR/MAP kinase signaling, NLRP3 inflammasome and apoptosis by fluvastatin with or without taxifolin mitigates gonadal dysfunction induced by bisphenol-A in male rats. Hum Exp Toxicol 2022; 41:9603271221089919. [PMID: 35465754 DOI: 10.1177/09603271221089919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol-A (BPA) is a chemical substance that is widely used in industry for manufacturing of plastic bottles and resins. Recent reports found that BPA may mimic the effects of estrogen to a great manner that might disrupt the normal hormonal balance in the human body. Fluvastatin is an agent used for treatment of hypercholesterolemia that was proven to possess promising antioxidant ant anti-inflammatory properties. Taxifolin is a polyphenolic compound with potential antioxidant and antiestrogenic effects. The present study investigated the prospect of fluvastatin with or without taxifolin to mitigate testicular dysfunction elicited by BPA in rats. In a model of BPA-induced testicular toxicity, the hormonal profile was assessed and the testicular tissues were examined by biochemical analysis, histopathology, and immunohistochemistry. Fluvastatin with or without taxifolin improved the body weight gain, hormonal profile, testicular weight and functions, sperm characteristics, the antioxidant status, and the anti-inflammatory mechanisms together with enhancement of autophagy and suppression of the proapoptotic events induced by BPA in the testicular tissues. In addition, fluvastatin with or without taxifolin significantly mitigated the histopathological and the immunohistochemical changes induced by BPA in the testicular tissues. These desirable effects were more pronounced with fluvastatin/taxifolin combination relative to the use of each of these agents alone. In tandem, fluvastatin/taxifolin combination might counteract the pathogenic events induced by BPA in the testicular tissues which may be considered as a novel strategy for amelioration of these disorders.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, 125895Taif University, Taif, Saudi Arabia
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, 289154Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| | - Maaly A Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Li WJ, Shen J. Antagonism of G protein-coupled receptor 55 prevents lipopolysaccharide-induced damages in human dental pulp cells. Hum Exp Toxicol 2022; 41:9603271221099598. [PMID: 35608548 DOI: 10.1177/09603271221099598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulpitis is a common oral inflammatory disease in dental pulp commonly associated with bacterial infection. G protein-coupled receptor 55 (GPR55) is a member of the G protein-coupled receptors family that has been found to regulate inflammatory response. However, its roles in dental pulp inflammation have not been investigated. In this study, we used lipopolysaccharide (LPS) to induce inflammation in human dental pulp cells (hDPCs) to simulate an in vitro model of pulpitis. We found that LPS markedly induced the GPR55 expression in hDPCs. Treatment with the GPR55 antagonist ML-193 ameliorated the LPS-caused decrease in cell viability and increase in lactate dehydrogenase release. The upregulated inflammatory cytokines, interleukin-6 (IL-6) and tumour necrosis factor α, in LPS-challenged hDPCs were also attenuated by ML-193. Treatment with ML-193 ameliorated LPS-induced production of the inflammatory mediators cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2), and inducible nitric oxide synthase/nitric oxide (iNOS/NO) in hDPCs. ML-193 also inhibited the activation of Toll-like receptor 4-myeloid differentiation primary response 88-nuclear factor-κB (TLR4-Myd88-NF-κB) signaling in LPS-induced hDPCs via decreased expressions of TLR4, Myd88, and p-NF-κB 65. Our study provides evidence that the GPR55 antagonist ML-193 exhibited anti-inflammatory activity in LPS-stimulated hDPCs through inhibiting TLR4-Myd88-NF-κB signaling. The results imply that ML-193 might be a novel agent for pulpitis.
Collapse
Affiliation(s)
- Wei-Jie Li
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Stomatology, 74753Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Wang Y, Shen Y. Exosomal miR-455-3p from BMMSCs prevents cardiac ischemia-reperfusion injury. Hum Exp Toxicol 2022; 41:9603271221102508. [PMID: 35577544 DOI: 10.1177/09603271221102508] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMMSCs) exert protective effects against myocardial infarction (MI). Here, we focused on the function and mechanism of miR-455-3p from BMMSCs-derived exosomes (BMMSCs-Exo) in myocardial infarction. MATERIALS AND METHODS BMMSCs were isolated from rat bone marrow, and the exosomes from the culture medium of BMMSCs were separated, and administered to H9C2 cells under hypoxia-reperfusion (H/R) stimulation. MTT and TUNEL staining analyzed cell viability and apoptosis, respectively. RT-qPCR determined miR-455-3p expression. Apoptosis-related proteins, autophagy-associated proteins, and the MEKK1-MKK4-JNK signaling pathway were detected. The interaction between miR-455-3p and MEKK1 was confirmed through dual luciferase activity and RIP assay. An in vivo ischemia reperfusion (I/R) model was established in rats. 2, 3, 5 triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (H&E) staining, Masson staining, and TUNEL staining evaluated the infarct volume and histopathological changes. RESULTS miR-455-3p's expression was down-regulated in BMMSCs-derived exosomes, I/R myocardial tissues, and H/R myocardial cells. miR-455-3p enriched by BMMSC exosomes reduced H/R-mediated cardiomyocyte damage and death-related autophagy. miR-455-3p upregulation suppressed MEKK1-MKK4-JNK. MEKK1 overexpression notably mitigated cell apoptosis, cramped cell viability, suppressed autophagy expansion, and attenuated Exo-miR-455-3p's protection on H/R myocardial cells. In-vivo trials reflected that BMMSC exosomes enriched with miR-455-3p repressed ischemia reperfusion-induced myocardial damage and myocardial cell function. CONCLUSION miR-455-3p, shuttled by exosomes from MSCs, targets the MEKK1-MKK4-JNK signaling pathway to guard against myocardial ischemia-reperfusion damage.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
21
|
Wu Z, Wang J, Feng J, Ying L. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway. Hum Exp Toxicol 2022; 41:9603271221084672. [PMID: 35303413 DOI: 10.1177/09603271221084672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Liver fibrosis is a wound-healing response and the activation of the hepatic stellate cell (HSC) is the core of hepatic fibrosis. MicroRNAs (miRNAs) participate in the development of fibrosis. It is reported that histone deacetylases (HDAC2) tyrosine phosphorylation by cellular-Abelsongene (c-Abl) induces malignant growth of cells. Here, we investigated the effect of miR-122-5p on the proliferation and apoptosis of HSCs. Normal human HSC line LX-2 and LX-2 cells stimulated by transforming growth factor (TGF)-β1 for 24 h were cultured and assigned into the blank group and the TGF-β1 group. The miR-122-5p inhibitor and its negative control were transfected into LX-2 cells and miR-122-5p mimic and its negative control were transfected into LX-2 cells stimulated by TGF-β1. The result showed that miR-122-5p expression was decreased in TGF-β1-stimulated LX-2 cells. miR-122-5p overexpression reduced the mRNA and protein levels of collagen I and α-smooth muscle actin, inhibited cell proliferation, and accelerated cell apoptosis. miR-122-5p targeted c-Abl. Meanwhile, miR-122-5p overexpression inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway. In summary, miR-122-5p overexpression exerted anti-fibrosis effect and inhibited HSC activation by suppressing the c-Abl/HDAC2 pathway.
Collapse
Affiliation(s)
- ZongYang Wu
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - JinBo Wang
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - JiYe Feng
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - LiPing Ying
- Department of Hepatobiliary and Pancreatic Surgery, 11797The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Mostafa EM, Tawfik AM, Abd-Elrahman KM. Egyptian perspectives on potential risk of paracetamol/acetaminophen-induced toxicities: Lessons learnt during COVID-19 pandemic. Toxicol Rep 2022; 9:541-548. [PMID: 35371923 PMCID: PMC8961937 DOI: 10.1016/j.toxrep.2022.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023] Open
Abstract
Paracetamol/Acetaminophen was widely used as a first-line antipyretic and analgesic for COVID-19 patients without giving any attention to the potential risk of related toxicities. A survey was conducted on 176 Egyptians using an online survey portal to assess their knowledge, and attitude regarding potential risk of paracetamol toxicities and whether COVID-19 pandemic affected their practices regarding safe use of paracetamol. The self-administered questionnaire was developed by the researchers and was validated by expert opinions. A pilot testing of the questionnaire was done. Alpha Cronbach test used to assess the internal consistency reliability of the survey revealed good reliability. Overall percent-score revealed that only 24.4% of participants had good knowledge about paracetamol and its related potential toxicities. 62.5% of participants considered paracetamol safer than other medications of the same indications. 42.6% of participants could advise others to use paracetamol without prescription. According to the participants' responses, physicians were less concerned to give instructions about possibility of overdosage. Our results also revealed that participants’ administration of paracetamol without physician prescription was more during COVID-19. Practice of paracetamol administration more than the allowed number of tablets/day was significantly more evident during the pandemic. We concluded that the unsupervised use of paracetamol is an alarming sign that should be addressed as this could lead to a high rate of accidental paracetamol toxicity. A lesson learnt from COVID-19 pandemic is the need to implement behavior change measures to mitigate the risk of accidental paracetamol toxicity. Survey on paracetamol safe usage and its potential toxicities among Egyptians. Paracetamol usage among participants of this study was more during COVID-19. 58% had fair knowledge about paracetamol and its related potential toxicities. 42.6% could advise others to use paracetamol without prescription. There is a need to implement measures to mitigate accidental paracetamol toxicity.
Collapse
Affiliation(s)
- Enas M.A. Mostafa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Correspondence to: Faculty of Medicine, Suez Canal University, Ring Road, P.O. Box: 41522, Ismailia, Egypt.
| | - Ayat M. Tawfik
- Public Health and Community Medicine Department, Faculty of Medicine, Port-Said University, Port-Said, Egypt
| | - Khadiga M. Abd-Elrahman
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
23
|
Astiti MA, Jittmittraphap A, Leaungwutiwong P, Chutiwitoonchai N, Pripdeevech P, Mahidol C, Ruchirawat S, Kittakoop P. LC-QTOF-MS/MS Based Molecular Networking Approach for the Isolation of α-Glucosidase Inhibitors and Virucidal Agents from Coccinia grandis (L.) Voigt. Foods 2021; 10:foods10123041. [PMID: 34945591 PMCID: PMC8701318 DOI: 10.3390/foods10123041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
Coccinia grandis or ivy gourd is an edible plant. Its leaves and fruits are used as vegetable in many countries. Many works on antidiabetic activity of a crude extract of C. grandis, i.e., in vitro, in vivo, and clinical trials studies, have been reported. Profiles of the antidiabetic compounds were previously proposed by using LC-MS or GC-MS. However, the compounds responsible for antidiabetic activity have rarely been isolated and characterized by analysis of 1D and 2D NMR data. In the present work, UHPLC-ESI-QTOF-MS/MS analysis and GNPS molecular networking were used to guide the isolation of α-glucosidase inhibitors from an extract of C. grandis leaves. Seven flavonoid glycosides including rutin (1), kaempferol 3-O-rutinoside (2) or nicotiflorin, kaempferol 3-O-robinobioside (3), quercetin 3-O-robinobioside (4), quercetin 3-O-β-D-apiofuranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (5) or CTN-986, kaempferol 3-O-β-D-api-furanosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (6), and kaempferol 3-O-β-D-apiofuranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-D-galactopyranoside (7) were isolated from C. grandis leaves. This is the first report of glycosides containing apiose sugar in the genus Coccinia. These glycosides exhibited remarkable α-glucosidase inhibitory activity, being 4.4–10.3 times more potent than acarbose. Moreover, they also displayed virucidal activity against influenza A virus H1N1, as revealed by the ASTM E1053-20 method.
Collapse
Affiliation(s)
- Maharani A. Astiti
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchadewee, Bangkok 10400, Thailand; (A.J.); (P.L.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchadewee, Bangkok 10400, Thailand; (A.J.); (P.L.)
| | - Nopporn Chutiwitoonchai
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand;
| | | | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand; (M.A.A.); (C.M.); (S.R.)
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10210, Thailand
- Correspondence: ; Tel.: +66-869-755777
| |
Collapse
|
24
|
Jiang HY, Bao YN, Lin FM, Jin Y. Triptolide regulates oxidative stress and inflammation leading to hepatotoxicity via inducing CYP2E1. Hum Exp Toxicol 2021; 40:S775-S787. [PMID: 34758665 DOI: 10.1177/09603271211056330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triptolide (TP), the main active compound extracted from medicine-tripterygium wilfordii Hook f. (TWHF). It has anti-tumor and immunomodulatory properties. Our study aimed to investigate the mechanisms of hepatotoxicity treated with TP in vivo and in vitro, as well as their relationship with the NF-κB (p65) signal pathway; and to assess TP-induced hepatotoxicity after CYP2E1 modulation by the known inhibitor, clomethiazole, and the known inducer, pyrazole. Mice were given TP to cause liver injury and IHHA-1 cells were given TP to cause hepatocyte injury. The enzyme activity and hepatotoxicity changed dramatically when the CYP2E1 inhibitor and inducer were added. In comparison to the control group, the enzyme inducer increased the activity of CYP2E1, whereas the enzyme inhibitor had the opposite effect. Our findings suggest that TP is an inducer of CYP2E1 via a time-dependent activation mechanism. In addition, TP can promote oxidative stress, inflammatory and involving the NF-κB (p65) signal pathway. Therefore, we used triptolide to stimulate C57 mice and IHHA-1 cells to determine whether TP can promote oxidative stress and inflammation by activating CYP2E1 in response to exacerbated liver damage and participate in NF-κB (p65) signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan-Ni Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Feng-Mei Lin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Li R, Tan CP, Xu Y, Liu Y. Alteration of Endogenous Fatty Acids Profile and Lipid Metabolism in Rats Caused by a High‐Colleseed Oil and a High‐Sunflower Oil Diet. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruizhi Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Chin Ping Tan
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Yong‐Jiang Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
26
|
Banerjee A, Mukherjee S, Maji BK. Monosodium glutamate causes hepato-cardiac derangement in male rats. Hum Exp Toxicol 2021; 40:S359-S369. [PMID: 34560825 DOI: 10.1177/09603271211049550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
People in the fast-food era rely on pre-packaged foods and engage in limited physical activity, which leads to a shift in eating patterns. Monosodium glutamate (MSG), a dietary ingredient used in this sort of cuisine, has been found to be hazardous to both experimental animals and humans. The objective of this study was to explore at the unnecessary changes caused by consuming MSG in secret and exceeding the recommended dosage. Hence, we decided to evaluate the impact of MSG by using three different doses (200, 400, and 600 mg/kg body weight orally) for 28 days in rats. We uncovered that all three MSG dosages result in a rise in body weight, dyslipidemia, inflammatory response, and hepato-cardiac marker enzymes, all of which imply hepatic and cardiac toxicity. Furthermore, changes in redox status suggest oxidative stress, which was higher in all three MSG dosages although not as much as in the MSG-600 group when compared to control. Such effects eventually manifested themselves in tissue architecture of the liver and heart, resulting in severe hepato-cardiac derangement, but the degree of tissue damage was greater in the MSG-600 group. As a result, it is possible that MSG has a negative influence on the liver and heart. However, the MSG-600 group showed a substantial effect, indicating that MSG should not be used in food preparation. Therefore, the findings of the study may aid in the formulation of health-care strategies and serve as a warning to the general public regarding the use of MSG in daily diet.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, West Bengal, India
| |
Collapse
|
27
|
Banerjee A, Mukherjee S, Maji BK. Manipulation of genes could inhibit SARS-CoV-2 infection that causes COVID-19 pandemics. Exp Biol Med (Maywood) 2021; 246:1643-1649. [PMID: 33899542 PMCID: PMC8090827 DOI: 10.1177/15353702211008106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The year 2020 witnessed an unpredictable pandemic situation due to novel coronavirus (COVID-19) outbreaks. This condition can be more severe if the patient has comorbidities. Failure of viable treatment for such viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to lack of identification. Thus, modern and productive biotechnology-based tools are being used to manipulate target genes by introducing the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system. Moreover, it has now been used as a tool to inhibit viral replication. Hence, it can be hypothesized that the CRISPR/Cas system can be a viable tool to target both the SARS-CoV-2 genome with specific target RNA sequence and host factors to destroy the SARS-CoV-2 community via inhibition of viral replication and infection. Moreover, comorbidities and COVID-19 escalate the rate of mortality globally, and as a result, we have faced this pandemic. CRISPR/Cas-mediated genetic manipulation to knockdown viral sequences may be a preventive strategy against such pandemic caused by SARS-CoV-2. Furthermore, prophylactic antiviral CRISPR in human cells (PAC-MAN) along with CRISPR/Cas13d efficiently degrades the specific RNA sequence to inhibit viral replication. Therefore, we suggest that CRISPR/Cas system with PAC-MAN could be a useful tool to fight against such a global pandemic caused by SARS-CoV-2. This is an alternative preventive approach of management against the pandemic to destroy the target sequence of RNA in SARS-CoV-2 by viral inhibition.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG),
Serampore College, Serampore, Hooghly 712201, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG),
Serampore College, Serampore, Hooghly 712201, India
| | - Bithin K Maji
- Department of Physiology (UG & PG),
Serampore College, Serampore, Hooghly 712201, India
| |
Collapse
|
28
|
Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicol Rep 2021; 8:938-961. [PMID: 34026558 PMCID: PMC8120859 DOI: 10.1016/j.toxrep.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Flavor enhancing high lipid diet acts as silent killer. Monosodium glutamate mixed with high lipid diet alters redox-status. Monosodium glutamate mixed with high lipid diet induces systemic anomalies.
In this fast-food era, people depend on ready-made foods and engage in minimal physical activities that ultimately change their food habits. Majorities of such foods have harmful effects on human health due to higher percentages of saturated fatty acids, trans-fatty acids, and hydrogenated fats in the form of high lipid diet (HLD). Moreover, food manufacturers add monosodium glutamate (MSG) to enhance the taste and palatability of the HLD. Both MSG and HLD induce the generation of reactive oxygen species (ROS) and thereby alter the redox-homeostasis to cause systemic damage. However, MSG mixed HLD (MH) consumption leads to dyslipidemia, silently develops non-alcoholic fatty liver disease followed by metabolic alterations and systemic anomalies, even malignancies, via modulating different signaling pathways. This comprehensive review formulates health care strategies to create global awareness about the harmful impact of MH on the human body and recommends the daily consumption of more natural foods rich in antioxidants instead of toxic ingredients to counterbalance the MH-induced systemic anomalies.
Collapse
|
29
|
Banerjee A, Mukherjee S, Maji BK. Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Hum Exp Toxicol 2021; 40:1825-1851. [PMID: 33887972 DOI: 10.1177/09603271211010895] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since prehistoric times Coccinia grandis has been used as traditional medicine for various diseases including diabetes, dyslipidemia, metabolic and digestive disorders. Although the rationality of efficacy as natural antioxidants with different bioactive compounds in Coccinia grandis against monosodium glutamate (MSG) induced hepato-cardiac damage remains to be disclosed. Six different solvent extracts of the leaves of Coccinia grandis were chosen to evaluate in vitro antioxidant and free radical (FR)-scavenging activity. Due to high antioxidant content and FR-scavenging property of ethanol extract of Coccinia grandis leaves (EECGL) and presence of different bioactive compounds in EECGL was further tested to evaluate in vivo hepato-protective and cardio-protective efficacy against MSG-induced anomalies. MSG-induced dyslipidemia, increased cell toxicity markers altered functional status and histopathological peculiarities of target organs were blunted by EECGL. Additionally, MSG incited increase level of interleukin (IL)-6, tumour necrosis factor (TNF)-α, IL-1β which activates nuclear factor kappa-B (NF-kB) guided inflammation via down regulation of IL-10; impaired redox-homeostasis subsequently promoted inflammation associated oxidative stress (OS) and increased vascular endothelial growth factor (VEGF) which provoked microvascular proliferation related cellular damage. On the contrary, increased lipid peroxidation and nitric oxide promotes reduced cell viability, deoxyribonucleic acid damage and apoptosis via activation of caspase 3. EECGL significantly reduced MSG-induced inflammation mediated OS and apoptosis via inhibition of pro-inflammatory factors and pro-apoptotic mediators to protect liver and heart. Therefore, it can be suggested that EECGL contributed competent scientific information to validate the demands for its use to treat MSG-induced hepato-cardiac OS mediated inflammation and apoptosis from natural origin.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG & PG), 212035Serampore College, Hooghly, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), 212035Serampore College, Hooghly, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), 212035Serampore College, Hooghly, West Bengal, India
| |
Collapse
|
30
|
Khatun H, Mitra M, Das K, Chattopadhyay A, Nandi DK. Reduction of oxidative stress and apoptosis in hyperlipidemic rats by composite oil (CO) of Sesamum indicum L. and Vicia faba L. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND: Hyperlipidemia associated with cardiovascular diseases (CVDs) is a global health issue that can be alleviated by functional foods. OBJECTIVES: The present study aimed to investigate the effect of composite oil (CO) of sesame seed oil (SSiO) and Vicia faba seed oil (SVfO) on inflammatory factors, ROS generation level, and cell apoptosis level on high lipid diet (HLD) induced hyperlipidemic rat model. METHODS: Hyperlipidemic rat model was developed by feeding HLD to the experimental rats for eight weeks. Male albino rats weighing around 200–210 g were randomly divided into three equal groups: group I: control, received a normal diet; group II: received HLD for eight weeks, and group III: received the HLD with CO orally. After 60 days of treatment, the levels of C-reactive protein (CRP), interleukin (IL)-10; tumor necrosis factor (TNF)-α, IL-18, reactive oxygen species (ROS), and cell apoptosis were serially assessed. RESULTS: After eight weeks of CO treatment, TNF- α, IL-18, CRP, and oxidative ROS generation significantly decreased in CO treated group (group III) compared to group II. On the other hand, IL-10 levels significantly increased in CO treated group compared to group II animals. It was also observed that the percentage of the late apoptotic cell reduced considerably in the CO treated group (group III) compared to HLD-fed animals (group II). CONCLUSION: The results indicate that the CO could prevent CVDs via suppressing oxidative stress, and ameliorating inflammation and apoptosis in hyperlipidemic rats.
Collapse
Affiliation(s)
- Holima Khatun
- Department of Nutrition, Raja Narendra Lal Khan Women’s College (Autonomous), India
| | - Mousumi Mitra
- Department of Physiology, Raja Narendra Lal Khan Women’s College (Autonomous), India
| | - Koushik Das
- Department of Nutrition, Belda College, India
| | | | - Dilip Kumar Nandi
- Department of Physiology, Raja Narendra Lal Khan Women’s College (Autonomous), India
| |
Collapse
|