1
|
Jaffe IS, Aljabban I, Stern JM. Xenotransplantation: future frontiers and challenges. Curr Opin Organ Transplant 2025; 30:81-86. [PMID: 39851187 DOI: 10.1097/mot.0000000000001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW Recent advancements in genetic engineering have propelled the field of xenotransplantation from preclinical models to early compassionate use cases. As first-in-human clinical trials (FIHCTs) approach, we examine recent developments, ethical and regulatory challenges, immunological considerations, and the clinical infrastructure necessary for successful xenotransplantation trials. RECENT FINDINGS Expanded access transplants of pig hearts, kidneys, and livers have identified key challenges. Heart xenotransplants revealed risks of antibody-mediated rejection and zoonotic infections, while kidney xenotransplants suggest that patient selection, rather than immune rejection, may have caused failures. While there has been a report of auxiliary liver transplantation conducted abroad, profound thrombocytopenia poses an obstacle. As FIHCTs draw near, critical clinical challenges include determining the optimal donor genetic constructs and immunosuppressive regimens. Enrollment criteria and patient selection pose additional complexity, alongside ethical concerns such as lifelong zoonosis monitoring. Only a limited number of centers have the expertise needed to conduct these complex trials. SUMMARY Xenotransplantation holds great promise as a solution to organ shortages, but success in FIHCTs will require careful design, multidisciplinary collaboration, and strong infrastructure. Addressing immunologic, ethical, and patient selection challenges will be critical. With proper preparation, xenotransplantation could transform organ transplantation.
Collapse
Affiliation(s)
- Ian S Jaffe
- Transplant Institute, New York University Langone Health
- Department of Surgery, New York University Grossman School of Medicine
| | - Imad Aljabban
- Transplant Institute, New York University Langone Health
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Jeffrey M Stern
- Transplant Institute, New York University Langone Health
- Department of Surgery, New York University Grossman School of Medicine
| |
Collapse
|
2
|
Denner J. Role of a Porcine Herpesvirus, PCMV/PRV, in Xenotransplantation. Transpl Int 2025; 38:14087. [PMID: 39967601 PMCID: PMC11832308 DOI: 10.3389/ti.2025.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Jhelum H, Kunec D, Papatsiros V, Kaufer BB, Denner J. Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs. Viruses 2025; 17:164. [PMID: 40006919 PMCID: PMC11860680 DOI: 10.3390/v17020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Dusan Kunec
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Vasileios Papatsiros
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, GR 43100 Karditsa, Greece;
| | - Benedikt B. Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| |
Collapse
|
4
|
Mueller NJ, Scobie L. Potential Infectious Complications in Pig Xenograft Donors and Recipients. Transpl Int 2025; 37:13594. [PMID: 39882566 PMCID: PMC11774647 DOI: 10.3389/ti.2024.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Preclinical and clinical xenotransplantation trials have shown that successful outcomes depend on a number of factors including the prevention of xenozoonoses. Preclinical trials involving pig kidneys and hearts transplanted into various non-human primates have revealed the potential impact of pig pathogens being present in the transplanted organ/tissue, mainly viruses. The concept of "designated pathogen-free donor animals" was developed to ensure elimination of pathogens during the breeding of donor animals to mitigate this occurrence. This is a challenging process as confirmation of presence and absence of some pathogen, in particular for latent viruses, requires a validated armamentarium of direct and indirect tests. The importance of using the correct diagnostic regimen was highlighted during the first pig-to-man cardiac transplantation with both porcine cytomegalovirus (PCMV), also known as porcine roseolovirus (PRV), and porcine circovirus (PCV) detected in the transplanted organ and in the patient. To further improve xenotransplantation and to achieve trials in Europe it is important that we use these data to inform process for diagnostics both in donor and recipients before and after xenotransplantation to ensure safety. As part of this sensitive and specific pathogen detection systems should be validated and readily available.
Collapse
Affiliation(s)
- Nicolas J. Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, United Kingdom
| |
Collapse
|
5
|
Singh AK, Goerlich CE, Zhang T, Lewis B, Hershfeld A, Braileanu G, Kurvi K, Rice K, Sentz F, Mudd S, Odonkor P, Strauss E, Williams B, Burke A, Gupta A, Drachenberg CB, Ayares D, Griffith BP, Mohiuddin MM. Genetically engineered pig heart transplantation in non-human primates. COMMUNICATIONS MEDICINE 2025; 5:6. [PMID: 39774817 PMCID: PMC11707197 DOI: 10.1038/s43856-025-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Improvement in gene modifications of donor pigs has led to the prevention of early cardiac xenograft rejection and significantly prolonged cardiac xenograft survival in both heterotopic and orthotopic preclinical non-human primate (NHP) models. This progress formed the basis for FDA approval for compassionate use transplants in two patients. METHODS Based on our earlier report of 9-month survival of seven gene-edited (7-GE) hearts transplanted (life-supporting orthotopic) in baboons, we transplanted 10 gene-edited pig hearts into baboons (n = 4) using non-ischemic continuous perfusion preservation (NICP) and immunosuppression regimen based on co-stimulation blockade by anti-CD40 monoclonal antibody. This pivotal study expands on the 7-GE backbone, with 3 additional gene edits, using 10-GE pigs as donors to baboon recipients. RESULTS 10 GE cardiac xenografts provide life-supporting function up to 225 days (mean 128 ± 36 days) in a non-human primate model. Undetectable or latent porcine cytomegalovirus (PCMV) does not influence cardiac xenograft survival in this study but still needs more exploration with a larger cohort. Xenograft histology demonstrates adipose (Fat) deposition (n = 1), chronic vasculopathy (n = 1), micro and macro thrombosis, and acute cellular rejection (n = 1). CONCLUSIONS These data demonstrate that 10 GE cardiac xenografts have variable cardiac xenograft survival in NHP due to perhaps presence of 4th antigen and require further study. However, these 10GE organs may be suitable for clinical cardiac xenotransplantation and have already been utilized in two human cases.
Collapse
Affiliation(s)
- Avneesh K Singh
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Corbin E Goerlich
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tianshu Zhang
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Billeta Lewis
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alena Hershfeld
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gheorghe Braileanu
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Kathryn Rice
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Faith Sentz
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Mudd
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Odonkor
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erik Strauss
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brittney Williams
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen Burke
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cinthia B Drachenberg
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Bartley P Griffith
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammad M Mohiuddin
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Denner J, Jhelum H, Ban J, Krabben L, Kaufer BB. How to Detect Porcine Endogenous Retrovirus (PERV) Infections in Patients After Transplantation of Pig Organs. Xenotransplantation 2025; 32:e70028. [PMID: 39994944 PMCID: PMC11850954 DOI: 10.1111/xen.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs and can infect human cells in culture. However, no PERV infections have been reported in recipients following preclinical or clinical xenotransplantation or deliberate infection experiments. Detection of PERV infection in transplanted recipients is challenging due to microchimerism, such as the presence of pig cells containing PERV proviruses in the recipient. Based on our previous publications on PERV detection in xenotransplant recipients, particularly from the first clinical trials, we developed a comprehensive strategy to screen for PERV infections. Recipients can be monitored for increasing levels of viral genomic RNA and mRNA using real-time reverse transcriptase (RT)-PCR, which can indicate PERV expression and replication. To test this strategy, explanted pig hearts and organs from baboons after pig heart transplantation were analyzed. No PERV genomic RNA or mRNA was detected in these tissues, although both were found in PERV-producing human control cells. Screening for antibodies against PERV as indirect evidence of infection is the method of choice. Recombinant viral proteins were prepared for use in Western blot assays. Animal antisera generated through immunization with recombinant PERV proteins served as positive controls. No antibodies against PERV were detected in transplanted baboons, even though microchimerism was observed in many of the animals' organs. For effective antibody screening, at least two PERV proteins should be used as antigens.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of VirologyFree University BerlinBerlinGermany
| | - Hina Jhelum
- Institute of VirologyFree University BerlinBerlinGermany
| | - Jinzhao Ban
- Institute of VirologyFree University BerlinBerlinGermany
| | - Ludwig Krabben
- Institute of VirologyFree University BerlinBerlinGermany
| | | |
Collapse
|
7
|
Schommer SK, Samuel MS, Whitworth KM, Byrne AK, Wells KD, Prather RS. Oral fluid testing can be used to monitor xenotransplant donor herds for porcine cytomegalovirus/roseolovirus status. Front Vet Sci 2024; 11:1471184. [PMID: 39748867 PMCID: PMC11693711 DOI: 10.3389/fvets.2024.1471184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
A major concern of xenotransplantation is that donor organs may be a source of pathogens. One pathogen in particular, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV), is thought to result in donor organ failure in an immunosuppressed state. Porcine cytomegalovirus is difficult to detect in organ donor swine because of its ability to establish latency. Establishment of an antemortem testing protocol to monitor and maintain PCMV/PRV negative herd status decreases the risk of inadvertently using an organ harboring the virus. Oral fluid has become a common sample for detecting a number of porcine pathogens. A real-time PCR assay was adapted to include an internal control for inhibition and results from antemortem samples (blood, oral fluid) were compared to postmortem spleen from pigs in a known positive herd. When using both oral fluid and blood to test pigs over 12 months of age 13/20 animals with positive spleens tested real-time PCR positive. Animals younger than 12 months of age were tested individually and in group housing with all pigs positive by oral fluid and/or blood. PCMV/PRV testing of oral fluid in young animals and a combination of blood and oral fluid in older animals can be used to verify that a herd has been kept PCMV/PRV free, as in the high biosecurity facility of the National Swine Resource and Research Center.
Collapse
Affiliation(s)
- Susan K. Schommer
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Melissa S. Samuel
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Kristin M. Whitworth
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Addison K. Byrne
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Kevin D. Wells
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Randall S. Prather
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Jacobsen KR, Mota J, Salerno M, Willis A, Pitts D, Denner J. Prevalence of Antibodies against Adeno-Associated Viruses (AAVs) in Göttingen Minipigs and Its Implications for Gene Therapy and Xenotransplantation. Viruses 2024; 16:1613. [PMID: 39459946 PMCID: PMC11512330 DOI: 10.3390/v16101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Adeno-associated viruses (AAV) are widely used as delivery vectors in clinical trials for in vivo gene therapy due to their unique features. Göttingen minipigs are a well-established animal model for several diseases and can be used for the efficacy and safety testing of AAV-based gene therapy. Pre-existing antibodies against AAV may influence the results of testing and, therefore, the animals should be tested for the presence of antibodies against relevant AAV serotypes. The detection of AAVs in pigs may be also important for the virus safety of xenotransplantation. In this study, we screened Göttingen minipigs from Ellegaard Göttingen Minipigs A/S, Denmark, and Marshall BioResources, USA, for antibodies against AAV1, AAV2, AAV6, AAV9 serotypes. Of the 20 animals tested, 18 had no neutralizing antibodies for all AAVs tested, none had antibodies against AAV9, only one had antibodies against AAV6, and the titers of antibodies against AAV1 and AAV2 were less than 1:100, with two exceptions. For total binding IgG, more individuals showed positivity for all the tested serotypes but, in general, the levels were low or zero. Three animals had no antibodies at all against the AAVs tested. Therefore, Göttingen minipigs could be considered an attractive animal model for gene therapy studies. Since some animals were negative for all AAVs tested, these may be selected and used as donor animals for xenotransplantation.
Collapse
Affiliation(s)
| | - Javier Mota
- VRL Diagnostics, San Antonio, TX 78229, USA; (J.M.); (D.P.)
| | - Michelle Salerno
- Marshall BioResources, North Rose, NY 14516, USA; (M.S.); (A.W.)
| | - Alexis Willis
- Marshall BioResources, North Rose, NY 14516, USA; (M.S.); (A.W.)
| | - Dennis Pitts
- VRL Diagnostics, San Antonio, TX 78229, USA; (J.M.); (D.P.)
| | - Joachim Denner
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
9
|
Längin M, Bender M, Schmoeckel M, Reichart B. Progress in Orthotopic Pig Heart Transplantation in Nonhuman Primates. Transpl Int 2024; 37:13607. [PMID: 39399753 PMCID: PMC11466817 DOI: 10.3389/ti.2024.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Xenotransplantation of porcine hearts has become a promising alternative to human allotransplantation, where organ demand still greatly surpasses organ availability. Before entering the clinic, however, feasibility of cardiac xenotransplantation needs to be proven, ideally in the life supporting orthotopic pig-to-nonhuman primate xenotransplantation model. In this review, we shortly outline the last three decades of research and then discuss in detail its most recent advances. These include the genetic modifications of donor pigs to overcome hyperacute rejection and coagulation dysregulation, new organ preservation methods to prevent perioperative xenograft dysfunction, experimental immunosuppressive and immunomodulatory therapies to inhibit the adaptive immune system and systemic inflammation in the recipient, growth control concepts to avoid detrimental overgrowth of the porcine hearts in nonhuman primates, and lastly, the avoidance of porcine cytomegalovirus infections in donor pigs. With these strategies, consistent survival of 6-9 months was achieved in the orthotopic xenotransplantation model, thereby fulfilling the prerequisites for the initiation of a clinical trial.
Collapse
Affiliation(s)
- Matthias Längin
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Bender
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Bender M, Abicht JM, Reichart B, Neumann E, Radan J, Mokelke M, Buttgereit I, Leuschen M, Wall F, Michel S, Ellgass R, Steen S, Paskevicius A, Lange A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Burgmann JM, Figueiredo C, Milusev A, Zollet V, Salimi-Afjani N, Despont A, Rieben R, Ledderose S, Walz C, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Binder U, Gebauer M, Skerra A, Längin M. Combination of Anti-CD40 and Anti-CD40L Antibodies as Co-Stimulation Blockade in Preclinical Cardiac Xenotransplantation. Biomedicines 2024; 12:1927. [PMID: 39200391 PMCID: PMC11351779 DOI: 10.3390/biomedicines12081927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies. To address these issues, we conducted six orthotopic pig-to-baboon cardiac xenotransplantation experiments, combining a chimeric anti-CD40 antibody with an investigational long-acting PASylated anti-CD40L Fab fragment. The combination therapy effectively resulted in animal survival with a rate comparable to a previous study that utilized anti-CD40 monotherapy. Importantly, no incidence of thromboembolic events associated with the administration of the anti-CD40L PAS-Fab was observed. Two experiments failed early because of technical reasons, two were terminated deliberately after 90 days with the baboons in excellent condition and two were extended to 120 and 170 days, respectively. Unexpectedly, and despite the absence of any clinical signs, histopathology revealed fungal infections in all four recipients. This study provides, for the first time, insights into a combination therapy with anti-CD40/anti-CD40L antibodies to block this immune checkpoint.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Valentina Zollet
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Neda Salimi-Afjani
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uli Binder
- XL-protein GmbH, 85354 Freising, Germany
| | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
11
|
Saito S, Miyagawa S, Kawamura T, Yoshioka D, Kawamura M, Kawamura A, Misumi Y, Taguchi T, Yamauchi T, Miyagawa S. How should cardiac xenotransplantation be initiated in Japan? Surg Today 2024; 54:829-838. [PMID: 38733536 PMCID: PMC11266268 DOI: 10.1007/s00595-024-02861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
The world's first clinical cardiac xenotransplantation, using a genetically engineered pig heart with 10 gene modifications, prolonged the life of a 57-year-old man with no other life-saving options, by 60 days. It is foreseeable that xenotransplantation will be introduced in clinical practice in the United States. However, little clinical or regulatory progress has been made in the field of xenotransplantation in Japan in recent years. Japan seems to be heading toward a "device lag", and the over-importation of medical devices and technology in the medical field is becoming problematic. In this review, we discuss the concept of pig-heart xenotransplantation, including the pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental heart overgrowth, as well as genetic modification strategies in pigs to prevent or minimize these problems. Moreover, we summarize the necessity for and current status of xenotransplantation worldwide, and future prospects in Japan, with the aim of initiating xenotransplantation in Japan using genetically modified pigs without a global delay. It is imperative that this study prompts the initiation of preclinical xenotransplantation research using non-human primates and leads to clinical studies.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masashi Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Misumi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | - Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Schmoeckel M, Längin M, Reichart B, Abicht JM, Bender M, Denner J, Marckmann G, Brenner P, Wolf E, Hagl C. [Xenotransplantation of solid organs]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:603-609. [PMID: 38748210 PMCID: PMC11286678 DOI: 10.1007/s00104-024-02093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 07/30/2024]
Abstract
Transplantation of genetically modified porcine hearts and kidneys could become a solution to the persistent shortage of human organ donors. Progress has been made in genetic engineering of donor pigs, preservation techniques after organ harvesting and immunosuppression using co-stimulation blockade with anti-CD40/CD40L monoclonal antibodies. Progress has also been made in in the development of methods that detect pathogenic porcine viruses and prevent their transmission to the recipient. As normal land breed pig organs continue to grow in the recipient to their original size, different pig breeds (such as Auckland Island pigs) are now used which reach a final size suitable for humans. Alternatively, a knock-out of the growth hormone receptor gene has been established, e.g., in the 10GM genetically modified pigs from Revivicor/United Therapeutics, USA. The first clinical pilot studies including patients suffering from terminal heart failure are expected to start in Germany in about 2 years.
Collapse
Affiliation(s)
- Michael Schmoeckel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland.
| | - Matthias Längin
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Bruno Reichart
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, München, Deutschland
| | - Jan-Michael Abicht
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Martin Bender
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Joachim Denner
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Institut für Virologie, Fachbereich für Veterinärmedizin, FU Berlin, Berlin, Deutschland
| | - Georg Marckmann
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Institut für Ethik, Geschichte und Theorie der Medizin, LMU München, München, Deutschland
| | - Paolo Brenner
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Eckhard Wolf
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Genzentrum und Center for Innovative Medical Models (CIMM), LMU München, München, Deutschland
| | - Christian Hagl
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland
- Partner Site München, Deutsches Zentrum für Herz- und Kreislaufforschung e. V. (DZHK), München, Deutschland
| |
Collapse
|
13
|
Jhelum H, Kaufer B, Denner J. Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs. Viruses 2024; 16:1119. [PMID: 39066281 PMCID: PMC11281539 DOI: 10.3390/v16071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions.
Collapse
Affiliation(s)
| | | | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (B.K.)
| |
Collapse
|
14
|
Bender M, Reichart B, Figueiredo C, Burgmann JM, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Egerer S, Lange A, Baehr A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Hagl C, Gebauer M, Binder U, Skerra A, Ayares D, Wolf E, Schmoeckel M, Brenner P, Längin M, Abicht JM. An Approach to Controlling Inflammation and Coagulation in Pig-to-Baboon Cardiac Xenotransplantation. Xenotransplantation 2024; 31:e12877. [PMID: 39077824 DOI: 10.1111/xen.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Antonia W Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
16
|
Schmoeckel M, Längin M, Reichart B, Abicht JM, Bender M, Michel S, Kamla CE, Denner J, Tönjes RR, Schwinzer R, Marckmann G, Wolf E, Brenner P, Hagl C. Current Status of Cardiac Xenotransplantation: Report of a Workshop of the German Heart Transplant Centers, Martinsried, March 3, 2023. Thorac Cardiovasc Surg 2024; 72:273-284. [PMID: 38154473 PMCID: PMC11147670 DOI: 10.1055/a-2235-8854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
This report comprises the contents of the presentations and following discussions of a workshop of the German Heart Transplant Centers in Martinsried, Germany on cardiac xenotransplantation. The production and current availability of genetically modified donor pigs, preservation techniques during organ harvesting, and immunosuppressive regimens in the recipient are described. Selection criteria for suitable patients and possible solutions to the problem of overgrowth of the xenotransplant are discussed. Obviously microbiological safety for the recipient and close contacts is essential, and ethical considerations to gain public acceptance for clinical applications are addressed. The first clinical trial will be regulated and supervised by the Paul-Ehrlich-Institute as the National Competent Authority for Germany, and the German Heart Transplant Centers agreed to cooperatively select the first patients for cardiac xenotransplantation.
Collapse
Affiliation(s)
- Michael Schmoeckel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
| | - Matthias Längin
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Bruno Reichart
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Jan-Michael Abicht
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Martin Bender
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Sebastian Michel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | | | - Joachim Denner
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Virologie, Fachbereich für Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Ralf Reinhard Tönjes
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Paul-Ehrlich-Institut, Langen, Germany
| | - Reinhard Schwinzer
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Georg Marckmann
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Ethik, Geschichte und Theorie der Medizin, LMU München, Germany
| | - Eckhard Wolf
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Genzentrum der LMU München, Germany
| | - Paolo Brenner
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Christian Hagl
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich, Germany
| |
Collapse
|
17
|
Vadori M, Cozzi E. Current challenges in xenotransplantation. Curr Opin Organ Transplant 2024; 29:205-211. [PMID: 38529696 PMCID: PMC11064916 DOI: 10.1097/mot.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW In recent years, the xenotransplantation science has advanced tremendously, with significant strides in both preclinical and clinical research. This review intends to describe the latest cutting-edge progress in knowledge and methodologies developed to overcome potential obstacles that may preclude the translation and successful application of clinical xenotransplantation. RECENT FINDINGS Preclinical studies have demonstrated that it is now possible to extend beyond two years survival of primate recipients of life saving xenografts. This has been accomplished thanks to the utilization of genetic engineering methodologies that have allowed the generation of specifically designed gene-edited pigs, a careful donor and recipient selection, and appropriate immunosuppressive strategies.In this light, the compassionate use of genetically modified pig hearts has been authorized in two human recipients and xenotransplants have also been achieved in human decedents. Although encouraging the preliminary results suggest that several challenges have yet to be fully addressed for a successful clinical translation of xenotransplantation. These challenges include immunologic, physiologic and biosafety aspects. SUMMARY Recent progress has paved the way for the initial compassionate use of pig organs in humans and sets the scene for a wider application of clinical xenotransplantation.
Collapse
Affiliation(s)
- Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua
- Transplant Immunology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health Padua University Hospital, Padua, Italy
| |
Collapse
|
18
|
Denner J. Limited availability of methods for the detection of xenotransplantation-relevant viruses in veterinary laboratories. Xenotransplantation 2024; 31:e12851. [PMID: 38747130 DOI: 10.1111/xen.12851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2025]
Abstract
BACKGROUND The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
19
|
Kwon OK, Jeong ES, Lee KW, Choi MR, Sonn CH, Cho B, Shim J, Choi K, Kim SJ, Park JB. Monitoring Porcine Cytomegalovirus in Both Donors and Recipients is Crucial for Recipient's Survival in Pig-to-Cynomolgus Xenotransplantation. Transplant Proc 2024; 56:686-691. [PMID: 38378341 DOI: 10.1016/j.transproceed.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Xenotransplantation, particularly when involving pig donors, presents challenges related to the transmission of porcine cytomegalovirus (pCMV) and its potential impact on recipient outcomes. This study aimed to investigate the relationship between pCMV positivity in both donors and recipients and the survival time of cynomolgus monkey recipients after xenogeneic kidney transplantation. METHODS We conducted 20 cynomolgus xenotransplants using 18 transgenic pigs. On the surgery day, donor pig blood was sampled, and DNA was extracted from serum and peripheral blood mononuclear cells. Recipient DNA extraction followed the same protocol from pre-transplantation to post-transplantation. Porcine cytomegalovirus detection used real-time polymerase chain reaction (real-time PCR) with the ViroReal kit, achieving a sensitivity of 50 copies/reaction. A Ct value of 37.0 was the pCMV positivity threshold. RESULTS Of 20 cynomolgus recipients, when donors tested negative for pCMV, recipients also showed negative results in 9 cases. In 4 cases where donors were negative, recipients tested positive. All 5 cases with pCMV-positive donors resulted in positive assessments for recipients. Detection of donor pCMV correlated with shorter recipient survival. Continuous recipient positivity during observation correlated with shorter survival, whereas transient detection showed no significant change in survival rates. However, donor pig phenotypes and transplantation protocols did not significantly impact survival. CONCLUSION The detection of pCMV in both donors and recipients plays a crucial role in xenotransplantation outcomes. These findings suggest the importance of monitoring and managing pCMV in xenotransplantation to enhance long-term outcomes.
Collapse
Affiliation(s)
- O Kyung Kwon
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Eun Sung Jeong
- Department of Surgery, Dongguk University Ilsan Hospital, Dongguk University School of Medicine, Goyang, Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Ran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Bumrae Cho
- GenNBio Co, Ltd, 80, Dreamsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co, Ltd, 80, Dreamsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Lange A, Medugorac I, Ali A, Kessler B, Kurome M, Zakhartchenko V, Hammer SE, Hauser A, Denner J, Dobenecker B, Wess G, Tan PLJ, Garkavenko O, Reichart B, Wolf E, Kemter E. Genetic diversity, growth and heart function of Auckland Island pigs, a potential source for organ xenotransplantation. Xenotransplantation 2024; 31:e12858. [PMID: 38646921 DOI: 10.1111/xen.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.
Collapse
Affiliation(s)
- Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Hauser
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Britta Dobenecker
- Chair for Animal Nutrition, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | | | - Bruno Reichart
- Walter-Brendel-Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Opriessnig T, Xiao CT, Mueller NJ, Denner J. Emergence of novel circoviruses in humans and pigs and their possible importance for xenotransplantation and blood transfusions. Xenotransplantation 2024; 31:e12842. [PMID: 38501706 DOI: 10.1111/xen.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 03/20/2024]
Abstract
BACKGROUND As sequencing is becoming more broadly available, virus discovery continues. Small DNA viruses contribute to up to 60% of the overall virus load in pigs. Porcine circoviruses (PCVs) are small DNA viruses with a single-stranded circular genome. They are common in pig breeds and have not been properly addressed for their potential risk in xenotransplantation. Whereas PCV1 is non-pathogenic in pigs, PCV2 has been associated with various disease manifestations. Recently two new circoviruses have been described, PCV3 and PCV4. While PCV4 is currently present mainly in Asia, PCV3 is widely distributed, and has been identified in commercial pigs, wild boars, and pigs generated for xenotransplantation. In one case PCV3 was transmitted by pigs to baboons via heart transplantation. PCV3 pathogenicity in pigs was controversial initially, however, the virus was found to be associated with porcine dermatitis and nephropathy syndrome (PDNS), reproductive failure, and multisystemic inflammation. Inoculation studies with PCV3 infectious clones confirmed that PCV3 is pathogenic. Most importantly, recently discovered human circoviruses (CV) are closely related to PCV3. METHODS Literature was evaluated and summarized. A dendrogram of existing circoviruses in pigs, humans, and other animal species was created and assessed at the species level. RESULTS We found that human circoviruses can be divided into three species, human CV1, CV2, and CV3. Human CV2 and CV3 are closest to PCV3. CONCLUSIONS Circoviruses are ubiquitous. This communication should create awareness of PCV3 and the newly discovered human circoviruses, which may be a problem for blood transfusions and xenotransplantation in immune suppressed individuals.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, UK
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
22
|
Hawthorne WJ. Ethical and legislative advances in xenotransplantation for clinical translation: focusing on cardiac, kidney and islet cell xenotransplantation. Front Immunol 2024; 15:1355609. [PMID: 38384454 PMCID: PMC10880189 DOI: 10.3389/fimmu.2024.1355609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
In this state-of-the-art review we detail the journey of xenotransplantation from its infancy, detailing one of the first published cases and the subsequent journey the field took in its inception and development. With a focus on the science, technological advances, precautions required along with the potential limitations in application, the ethics, guidance's, and legislative advances that are required to reach the safe and efficacious clinical application of xenotransplantation. Along with a view over the past several decades with the overall significant advancements in pre-clinical study outcomes particularly in islet, kidney, and heart xenotransplantation, to ultimately reach the pinnacle of successful clinical heart and kidney xenotransplants. It outlines the importance for the appropriate guidance's required to have been developed by experts, scientists, clinicians, and other players who helped develop the field over the past decades. It also touches upon patient advocacy along with perspectives and expectations of patients, along with public opinion and media influence on the understanding and perception of xenotransplantation. It discusses the legislative environment in different jurisdictions which are reviewed in line with current clinical practices. All of which are ultimately based upon the guidance's developed from a strong long-term collaboration between the International Xenotransplantation Association, the World Health Organisation and The Transplantation Society; each having constantly undertaken consultation and outreach to help develop best practice for clinical xenotransplantation application. These clearly helped forge the legislative frameworks required along with harmonization and standardization of regulations which are detailed here. Also, in relation to the significant advances in the context of initial xeno-kidney trials and the even greater potential for clinical xeno-islet trials to commence we discuss the significant advantages of xenotransplantation and the ultimate benefit to our patients.
Collapse
Affiliation(s)
- Wayne J. Hawthorne
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Department of Surgery, School of Medical Sciences, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
23
|
Jhelum H, Papatsiros V, Papakonstantinou G, Krabben L, Kaufer B, Denner J. Screening for Viruses in Indigenous Greek Black Pigs. Microorganisms 2024; 12:315. [PMID: 38399719 PMCID: PMC10893322 DOI: 10.3390/microorganisms12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Vasileios Papatsiros
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, 43100 Karditsa, Greece; (V.P.); (G.P.)
| | - Georgios Papakonstantinou
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, 43100 Karditsa, Greece; (V.P.); (G.P.)
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| |
Collapse
|
24
|
Fiebig U, Krüger L, Denner J. Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C. Microorganisms 2024; 12:98. [PMID: 38257925 PMCID: PMC10820294 DOI: 10.3390/microorganisms12010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated.
Collapse
Affiliation(s)
- Uwe Fiebig
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Luise Krüger
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Joachim Denner
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
25
|
Jou S, Mendez SR, Feinman J, Mitrani LR, Fuster V, Mangiola M, Moazami N, Gidea C. Heart transplantation: advances in expanding the donor pool and xenotransplantation. Nat Rev Cardiol 2024; 21:25-36. [PMID: 37452122 DOI: 10.1038/s41569-023-00902-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Approximately 65 million adults globally have heart failure, and the prevalence is expected to increase substantially with ageing populations. Despite advances in pharmacological and device therapy of heart failure, long-term morbidity and mortality remain high. Many patients progress to advanced heart failure and develop persistently severe symptoms. Heart transplantation remains the gold-standard therapy to improve the quality of life, functional status and survival of these patients. However, there is a large imbalance between the supply of organs and the demand for heart transplants. Therefore, expanding the donor pool is essential to reduce mortality while on the waiting list and improve clinical outcomes in this patient population. A shift has occurred to consider the use of organs from donors with hepatitis C virus, HIV or SARS-CoV-2 infection. Other advances in this field have also expanded the donor pool, including opt-out donation policies, organ donation after circulatory death and xenotransplantation. We provide a comprehensive overview of these various novel strategies, provide objective data on their safety and efficacy, and discuss some of the unresolved issues and controversies of each approach.
Collapse
Affiliation(s)
- Stephanie Jou
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA.
| | - Sean R Mendez
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Jason Feinman
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Lindsey R Mitrani
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Massimo Mangiola
- Transplant Institute, New York University Langone Health, New York, NY, USA
| | - Nader Moazami
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Claudia Gidea
- The Zena and Michael A. Wiener Cardiovascular Institute, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
26
|
Zhou Y, Zhou S, Wang Q, Zhang B. Mitigating Cross-Species Viral Infections in Xenotransplantation: Progress, Strategies, and Clinical Outlook. Cell Transplant 2024; 33:9636897241226849. [PMID: 38258759 PMCID: PMC10807386 DOI: 10.1177/09636897241226849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Xenotransplantation holds great promise as a solution to address the critical shortage of organs, but it raises concerns regarding the potential transmission of porcine viruses to recipients, leading to infections and even zoonotic diseases. Data used in this review were mainly from literature of Pubmed database. Keywords included xenotransplantation, infection, virus, and epidemiology. The original articles and critical reviews selected were relevant to this review's theme. We review the major viral infections of concern in xenotransplantation, their risk of transmission, diagnosis, treatment, and ways to prevent infection. Then, we pivot to a comprehensive overview of the current status of xenotransplantation. In addition, we offer our own insights and recommendations for propelling xenotransplantation forward, transitioning from preclinical experiments to the critical phase of clinical trials. Viral infections pose considerable safety concerns within xenotransplantation, particularly with the possibility of emerging or currently unidentified viruses. Clinical trials serve as a crucial platform to progress the safety standards of xenotransplantation. However, further studies and dedicated efforts are required to effectively translate findings into practical applications that can improve safety measures in this field.
Collapse
Affiliation(s)
- Yenong Zhou
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuyu Zhou
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qian Wang
- Nutriology Department, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
27
|
Längin M, Buttgereit I, Reichart B, Panelli A, Radan J, Mokelke M, Neumann E, Bender M, Michel S, Ellgass R, Ying J, Fresch AK, Mayr T, Steen S, Paskevicius A, Egerer S, Bähr A, Kessler B, Klymiuk N, Binder U, Skerra A, Ledderose S, Müller S, Walz C, Hagl C, Wolf E, Ayares D, Brenner P, Abicht JM. Xenografts Show Signs of Concentric Hypertrophy and Dynamic Left Ventricular Outflow Tract Obstruction After Orthotopic Pig-to-baboon Heart Transplantation. Transplantation 2023; 107:e328-e338. [PMID: 37643028 DOI: 10.1097/tp.0000000000004765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Orthotopic cardiac xenotransplantation has seen substantial advancement in the last years and the initiation of a clinical pilot study is close. However, donor organ overgrowth has been a major hurdle for preclinical experiments, resulting in loss of function and the decease of the recipient. A better understanding of the pathogenesis of organ overgrowth after xenotransplantation is necessary before clinical application. METHODS Hearts from genetically modified ( GGTA1-KO , hCD46/hTBM transgenic) juvenile pigs were orthotopically transplanted into male baboons. Group I (control, n = 3) received immunosuppression based on costimulation blockade, group II (growth inhibition, n = 9) was additionally treated with mechanistic target of rapamycin inhibitor, antihypertensive medication, and fast corticoid tapering. Thyroid hormones and insulin-like growth factor 1 were measured before transplantation and before euthanasia, left ventricular (LV) growth was assessed by echocardiography, and hemodynamic data were recorded via a wireless implant. RESULTS Insulin-like growth factor 1 was higher in baboons than in donor piglets but dropped to porcine levels at the end of the experiments in group I. LV mass increase was 10-fold faster in group I than in group II. This increase was caused by nonphysiological LV wall enlargement. Additionally, pressure gradients between LV and the ascending aorta developed, and signs of dynamic left ventricular outflow tract (LVOT) obstruction appeared. CONCLUSIONS After orthotopic xenotransplantation in baboon recipients, untreated porcine hearts showed rapidly progressing concentric hypertrophy with dynamic LVOT obstruction, mimicking hypertrophic obstructive cardiomyopathy in humans. Antihypertensive and antiproliferative drugs reduced growth rate and inhibited LVOT obstruction, thereby preventing loss of function.
Collapse
Affiliation(s)
- Matthias Längin
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Alessandro Panelli
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Martin Bender
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jiawei Ying
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ann Kathrin Fresch
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Arne Skerra
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Susanna Müller
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Paolo Brenner
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Adams A, Cendales LC, Cooper DKC, Cozzi E, Gill J, Judd E, Katz E, Kirk AD, Fishman JA, Reese PP, Wall A, Markmann JF. American Society of Transplant Surgeons-American Society of Transplantation report of FDA meeting on regulatory expectations for xenotransplantation products. Am J Transplant 2023; 23:1290-1299. [PMID: 37217005 DOI: 10.1016/j.ajt.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
In June 2022, the US Food and Drug Administration Center for Biologics Evaluation and Research held the 73rd meeting of the Cellular, Tissue, and Gene Therapies Advisory Committee for public discussion of regulatory expectations for xenotransplantation products. The members of a joint American Society of Transplant Surgeons/American Society of Transplantation committee on xenotransplantation compiled a meeting summary focusing on 7 topics believed to be key by the committee: (1) preclinical evidence supporting progression to a clinical trial, (2) porcine kidney function, (3) ethical aspects, (4) design of initial clinical trials, (5) infectious disease issues, (6) industry perspectives, and (7) regulatory oversight.
Collapse
Affiliation(s)
- Andrew Adams
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Linda C Cendales
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuele Cozzi
- Department of Cardiothoracic and Vascular Surgery, University of Padua, Padua, Italy
| | - John Gill
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Judd
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Jay A Fishman
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA; Transplant Infectious Disease and Compromised Host Program and MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter P Reese
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anji Wall
- Division of Abdominal Transplantation, Baylor University Medical Center, Dallas, Texas, USA
| | - James F Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Denner J. Zoonosis and xenozoonosis in xenotransplantation: A proposal for a new classification. Zoonoses Public Health 2023; 70:578-579. [PMID: 37432075 DOI: 10.1111/zph.13074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
30
|
Goldstone AB, Bacha EA, Sykes M. On cardiac xenotransplantation and the role of xenogeneic tolerance. J Thorac Cardiovasc Surg 2023; 166:968-972. [PMID: 36621453 PMCID: PMC10267285 DOI: 10.1016/j.jtcvs.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew B Goldstone
- Section of Congenital and Pediatric Cardiac Surgery, Division of Cardiothoracic Surgery, Morgan Stanley Children's Hospital of New York, Columbia University, New York, NY
| | - Emile A Bacha
- Section of Congenital and Pediatric Cardiac Surgery, Division of Cardiothoracic Surgery, Morgan Stanley Children's Hospital of New York, Columbia University, New York, NY
| | - Megan Sykes
- Departments of Medicine, Microbiology and Immunology, and Surgery, Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY.
| |
Collapse
|
31
|
Konstantinov IE, Cooper DKC, Adachi I, Bacha E, Bleiweis MS, Chinnock R, Cleveland D, Cowan PJ, Fynn-Thompson F, Morales DLS, Mohiuddin MM, Reichart B, Rothblatt M, Roy N, Turek JW, Urschel S, West L, Wolf E. Consensus statement on heart xenotransplantation in children: Toward clinical translation. J Thorac Cardiovasc Surg 2023; 166:960-967. [PMID: 36184321 PMCID: PMC10124772 DOI: 10.1016/j.jtcvs.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Igor E Konstantinov
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Mass
| | - Iki Adachi
- Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Emile Bacha
- Columbia University Medical Center, Morgan Stanley Children's Hospital, New York, NY
| | | | | | - David Cleveland
- Department of Surgery, University of Alabama, Birmingham, Ala
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | - David L S Morales
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, University of Maryland School of Medicine, Baltimore, Md
| | - Bruno Reichart
- Transregional Collaborative Research Center, Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Nathalie Roy
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Simon Urschel
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lori West
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
32
|
Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, Crossan C, Burke A, Drachenberg C, Oguz C, Zhang T, Lewis B, Hershfeld A, Sentz F, Tatarov I, Mudd S, Braileanu G, Rice K, Paolini JF, Bondensgaard K, Vaught T, Kuravi K, Sorrells L, Dandro A, Ayares D, Lau C, Griffith BP. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 2023; 402:397-410. [PMID: 37393920 PMCID: PMC10552929 DOI: 10.1016/s0140-6736(23)00775-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING The University of Maryland School of Medicine, and the University of Maryland Medical Center.
Collapse
Affiliation(s)
- Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Avneesh K Singh
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Corbin E Goerlich
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grazioli
- Cardiac Surgery Intensive Care Unit, University of Maryland Medical Center, Baltimore, MD, USA
| | - Kapil Saharia
- Institute of Human Virology, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Allen Burke
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tianshu Zhang
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Billeta Lewis
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alena Hershfeld
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Faith Sentz
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivan Tatarov
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Mudd
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gheorghe Braileanu
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn Rice
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | | | | | | | | | | | - Christine Lau
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Jhelum H, Bender M, Reichart B, Mokelke M, Radan J, Neumann E, Krabben L, Abicht JM, Kaufer B, Längin M, Denner J. Evidence for Microchimerism in Baboon Recipients of Pig Hearts. Viruses 2023; 15:1618. [PMID: 37515304 PMCID: PMC10385208 DOI: 10.3390/v15071618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.
Collapse
Affiliation(s)
- Hina Jhelum
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ludwig Krabben
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedikt Kaufer
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
34
|
Jhelum H, Grand N, Jacobsen KR, Halecker S, Salerno M, Prate R, Krüger L, Kristiansen Y, Krabben L, Möller L, Laue M, Kaufer B, Kaaber K, Denner J. First virological and pathological study of Göttingen Minipigs with Dippity Pig Syndrome (DPS). PLoS One 2023; 18:e0281521. [PMID: 37319233 PMCID: PMC10270609 DOI: 10.1371/journal.pone.0281521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Michelle Salerno
- Marshall BioResources, North Rose, New York, NY, United States of America
| | - Robert Prate
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Lars Möller
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Koh J, Chee HK, Kim KH, Jeong IS, Kim JS, Lee CH, Seo JW. Historical Review and Future of Cardiac Xenotransplantation. Korean Circ J 2023; 53:351-366. [PMID: 37271743 DOI: 10.4070/kcj.2022.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Keun Chee
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyung-Hee Kim
- Division of Cardiology, Incheon Sejong Hospital, Incheon, Korea
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Chang-Ha Lee
- Department of Thoracic and Cardiovascular Surgery, Bucheon Sejong Hospital, Bucheon, Korea
| | - Jeong-Wook Seo
- Department of Pathology, Incheon Sejong Hospital, Incheon, Korea.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The aim of this study was to highlight recent progress in xenotransplantation and discuss the remaining obstacles/steps before the FDA is likely to approve a clinical trial. RECENT FINDINGS Long-term survival of life-supporting xenografts in preclinical models has led to discussion of clinical trials of xenotransplantation. The reports of clinical cardiac xenotransplant based on compassionate use FDA approval and renal xenotransplants to brain-dead humans have led to further considerations of clinical trials. Discussions between the transplant community and the FDA have established critical next steps before a clinical trial of xenotransplants is likely to be approved. These steps include testing the clinical immunosuppression protocol and the organ from a genetically modified source animal in nonhuman primates with reproducible survival of at least 6 months. In addition, appropriate viral surveillance protocols and confirmation that the xenografts support appropriate human physiology are likely to be critical elements for FDA-approval. Finally, further studies in the human decedent model are likely to provide critical information about human immune and physiologic responses to xenografts. SUMMARY This review highlights the current progress in nonhuman primate models and recent reports of human xenotransplantation. It also describes the remaining hurdles and currently understood FDA requirements that remain to be achieved before a clinical trial of xenotransplantation can be approved.
Collapse
Affiliation(s)
- Daniel H Wolbrom
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons
| | - Jacqueline I Kim
- NYU Langone Medical Center, Transplant Institute, New York, New York, USA
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons
- NYU Langone Medical Center, Transplant Institute, New York, New York, USA
| |
Collapse
|
38
|
Mehta SA, Saharia KK, Nellore A, Blumberg EA, Fishman JA. Infection and clinical xenotransplantation: Guidance from the Infectious Disease Community of Practice of the American Society of Transplantation. Am J Transplant 2023; 23:309-315. [PMID: 36695690 DOI: 10.1016/j.ajt.2022.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 01/04/2023]
Abstract
This guidance was developed to summarize current approaches to the potential transmission of swine-derived organisms to xenograft recipients, health care providers, or the public in clinical xenotransplantation. Limited specific data are available on the zoonotic potential of pig pathogens. It is anticipated that the risk of zoonotic infection in xenograft recipients will be determined by organisms present in source animals and relate to the nature and intensity of the immunosuppression used to maintain xenograft function. Based on experience in allotransplantation and with preclinical models, viral infections are of greatest concern, including porcine cytomegalovirus, porcine lymphotropic herpesvirus, and porcine endogenous retroviruses. Sensitive and specific microbiological assays are required for routine microbiological surveillance of source animals and xenograft recipients. Archiving of blood samples from recipients, contacts, and hospital staff may provide a basis for microbiological investigations if infectious syndromes develop. Carefully implemented infection control practices are required to prevent zoonotic pathogen exposures by clinical care providers. Informed consent practices for recipients and their close contacts must convey the lack of specific data for infectious risk assessment. Available data suggest that infectious risks of xenotransplantation are manageable and that clinical trials can advance with carefully developed protocols for pretransplant assessment, syndrome evaluation, and microbiological monitoring.
Collapse
Affiliation(s)
- Sapna A Mehta
- Transplant Infectious Diseases, NYU Langone Transplant Institute and NYU Grossman School of Medicine, New York, New York, USA
| | - Kapil K Saharia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anoma Nellore
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emily A Blumberg
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay A Fishman
- Transplant and Compromised Host Infectious Disease Program and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
39
|
Chan JCY, Chaban R, Chang SH, Angel LF, Montgomery RA, Pierson RN. Future of Lung Transplantation: Xenotransplantation and Bioengineering Lungs. Clin Chest Med 2023; 44:201-214. [PMID: 36774165 PMCID: PMC11078107 DOI: 10.1016/j.ccm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xenotransplantation promises to alleviate the issue of donor organ shortages and to decrease waiting times for transplantation. Recent advances in genetic engineering have allowed for the creation of pigs with up to 16 genetic modifications. Several combinations of genetic modifications have been associated with extended graft survival and life-supporting function in experimental heart and kidney xenotransplants. Lung xenotransplantation carries specific challenges related to the large surface area of the lung vascular bed, its innate immune system's intrinsic hyperreactivity to perceived 'danger', and its anatomic vulnerability to airway flooding after even localized loss of alveolocapillary barrier function. This article discusses the current status of lung xenotransplantation, and challenges related to immunology, physiology, anatomy, and infection. Tissue engineering as a feasible alternative to develop a viable lung replacement solution is discussed.
Collapse
Affiliation(s)
- Justin C Y Chan
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA.
| | - Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Langenbeckstr. 1, Bau 505, 5. OG55131 Mainz, Germany
| | - Stephanie H Chang
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Luis F Angel
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Robert A Montgomery
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
40
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
41
|
Hansen S, Fischer K, Krabben L, Rinke Carrapeiro A, Klinger B, Schnieke A, Kaufer B, Denner J. Detection of porcine cytomegalovirus, a roseolovirus, in pig ovaries and follicular fluid: implications for somatic cells nuclear transfer, cloning and xenotransplantation. Virol J 2023; 20:15. [PMID: 36707837 PMCID: PMC9881377 DOI: 10.1186/s12985-023-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.
Collapse
Affiliation(s)
- Sabrina Hansen
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Konrad Fischer
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Ludwig Krabben
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Alexander Rinke Carrapeiro
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Bernhard Klinger
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Angelika Schnieke
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Benedikt Kaufer
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Denner J. Microchimerism, PERV and Xenotransplantation. Viruses 2023; 15:190. [PMID: 36680230 PMCID: PMC9862020 DOI: 10.3390/v15010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Microchimerism is the presence of cells in an individual that have originated from a genetically distinct individual. The most common form of microchimerism is fetomaternal microchimerism, i.e., cells from a fetus pass through the placenta and establish cell lineages within the mother. Microchimerism was also described after the transplantation of human organs in human recipients. Consequently, microchimerism may also be expected in xenotransplantation using pig cells or organs. Indeed, microchimerism was described in patients after xenotransplantations as well as in non-human primates after the transplantation of pig organs. Here, for the first time, a comprehensive review of microchimerism in xenotransplantation is given. Since pig cells contain porcine endogenous retroviruses (PERVs) in their genome, the detection of proviral DNA in transplant recipients may be misinterpreted as an infection of the recipient with PERV. To prevent this, methods discriminating between infection and microchimerism are described. This knowledge will be important for the interpretation of screening results in forthcoming human xenotransplantations.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
43
|
Hansen S, Menandro ML, Franzo G, Krabben L, Marino SF, Kaufer B, Denner J. Presence of porcine cytomegalovirus, a porcine roseolovirus, in wild boars in Italy and Germany. Arch Virol 2023; 168:55. [PMID: 36609605 PMCID: PMC9825524 DOI: 10.1007/s00705-022-05690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/27/2022] [Indexed: 01/09/2023]
Abstract
Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs.
Collapse
Affiliation(s)
- Sabrina Hansen
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Stephen F Marino
- Parasites in Foodstuffs, Department of Biological Safety, Unit Diagnostics, German Federal Institute for Risk Assessment, 10589, Berlin, Germany
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany.
| |
Collapse
|
44
|
Denner J. Systemic inflammation in xenograft recipients (SIXR) or undetected PCMV/PRV transmission? Xenotransplantation 2023; 30:e12788. [PMID: 36398361 DOI: 10.1111/xen.12788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
45
|
Affiliation(s)
- Jay A Fishman
- From the Transplant and Immunocompromised Host Program, Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
46
|
Halecker S, Hansen S, Krabben L, Ebner F, Kaufer B, Denner J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci Rep 2022; 12:21545. [PMID: 36513687 PMCID: PMC9747970 DOI: 10.1038/s41598-022-25624-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine cytomegalovirus (PCMV), that is actually a porcine roseolovirus (PRV), is a common herpesvirus in domestic pigs and wild boars. In xenotransplantation, PCMV/PRV has been shown to significantly reduce the survival time of pig kidneys and hearts in preclinical trials with different non-human primates. Furthermore, PCMV/PRV has been transmitted in the first pig to human heart xenotransplantation and contributed to the death of the patient. Although transmitted to the recipient, there is no evidence that PCMV/PRV can infect primate cells including human cells. PCMV/PRV is closely related to the human herpesviruses 6 and 7, and only distantly related to the human CMV (HCMV). Antiviral drugs used for the treatment of HCMV are less effective against PCMV/PRV. However, there are well described strategies to eliminate the virus from pig facilities. In order to detect the virus and to eliminate it, highly sensitive detection methods and the knowledge of how, where and when to screen the donor pigs is required. Here, a comparative testing of organs from pigs of different ages using polymerase chain reaction (PCR)-based and immunological methods was performed. Testing young piglets, PCMV/PRV was detected effectively by PCR in blood, bronchoalveolar lavage fluid, tonsils and heart. In adult animals, detection by PCR was not successful in most cases, because the virus load was below the detection limit or the virus was in its latent stage. Therefore, detection of antibodies against selected recombinant proteins corresponding to epitopes detected by nearly all infected animals in a Western blot assay is advantageous. By contrast, immunological testing is not beneficial in young animals as piglets might have PCMV/PRV-specific antibodies obtained from their infected mother via the colostrum. Using a thoughtful combination of PCR-based and immunological methods, detection of PCMV/PRV in donor pigs for xenotransplantation is feasible and a controlled elimination of the virus by early weaning or other methods is possible.
Collapse
Affiliation(s)
- S Halecker
- Institute of Virology, Free University, Berlin, Germany
| | - S Hansen
- Institute of Virology, Free University, Berlin, Germany
| | - L Krabben
- Institute of Virology, Free University, Berlin, Germany
| | - F Ebner
- Institute of Immunology, Free University, Berlin, Germany
| | - B Kaufer
- Institute of Virology, Free University, Berlin, Germany
| | - J Denner
- Institute of Virology, Free University, Berlin, Germany.
| |
Collapse
|
47
|
Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, Buhler LH. Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps. Front Immunol 2022; 13:1031185. [PMID: 36561750 PMCID: PMC9766364 DOI: 10.3389/fimmu.2022.1031185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation has the potential to solve the shortfall of human organ donors. Genetically modified pigs have been considered as potential animal donors for human xenotransplantation and have been widely used in preclinical research. The genetic modifications aim to prevent the major species-specific barriers, which include humoral and cellular immune responses, and physiological incompatibilities such as complement and coagulation dysfunctions. Genetically modified pigs can be created by deleting several pig genes related to the synthesis of various pig specific antigens or by inserting human complement- and coagulation-regulatory transgenes. Finally, in order to reduce the risk of infection, genes related to porcine endogenous retroviruses can be knocked down. In this review, we focus on genetically modified pigs and comprehensively summarize the immunological mechanism of xenograft rejection and recent progress in preclinical and clinical studies. Overall, both genetically engineered pig-based xenografts and technological breakthroughs in the biomedical field provide a promising foundation for pig-to-human xenotransplantation in the future.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | | | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H. Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
48
|
Karpov DS, Demidova NA, Kulagin KA, Shuvalova AI, Kovalev MA, Simonov RA, Karpov VL, Snezhkina AV, Kudryavtseva AV, Klimova RR, Kushch AA. Complete and Prolonged Inhibition of Herpes Simplex Virus Type 1 Infection In Vitro by CRISPR/Cas9 and CRISPR/CasX Systems. Int J Mol Sci 2022; 23:ijms232314847. [PMID: 36499174 PMCID: PMC9738314 DOI: 10.3390/ijms232314847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-135-98-01
| | - Natalia A. Demidova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Kirill A. Kulagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Ruslan A. Simonov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Regina R. Klimova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Alla A. Kushch
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| |
Collapse
|
49
|
Abstract
Recent advances raise hope for a promising solution to the transplant organ shortage.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Mueller NJ, Denner J. Porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV): A threat for xenotransplantation? Xenotransplantation 2022; 29:e12775. [PMID: 36082418 DOI: 10.1111/xen.12775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023]
Abstract
The potential for a donor-derived transmission of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) to the recipient has been recognized since pigs were considered candidate donors for xenotransplantation. This review gives a short description of the viral properties and summarizes the current evidence of the effects of PCMV/PRV transmission in preclinical xenotransplantation. Despite evidence that PCMV/PRV does not infect human and non-human primate cells, activation in the transplanted organ and detrimental systemic complications have been described. As PCMV/PRV is a herpesvirus able to establish latency, the importance of adequate screening of donor pigs is emphasized, as no efficient treatment is available. Furthermore, easy and successful ways of elimination of PCMV/PRV from pig herds are indicated.
Collapse
Affiliation(s)
- Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, and University Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Joachim Denner
- Institut of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|