1
|
da Silva Dias G, Chaves JTL, Santos TRS, Garcia QS, Artur MAS, Bicalho EM. Be prepared: how does discontinuous hydration in Tabebuia heterophylla seeds induce stress tolerance in seedlings? PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39265058 DOI: 10.1111/plb.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
Discontinuous hydration and dehydration (HD) cycles refer to controlled imbibition followed by dehydration before seed germination. Here, we investigated whether the level of imbibition before HD cycles affects the physiology of Tabebuia heterophylla seeds and seedlings. Seeds were imbibed for 10 h (T1; phase I of imbibition) or 35 h (T2; phase II), dehydrated, and progressively rehydrated one to four times (HD cycles). Germination and biochemical parameters (membrane integrity; total soluble, reducing, and nonreducing (NRS) sugars; proteins, amino acids, proline, H2O2, catalase, ascorbate peroxidase, and glutathione reductase activity) were quantified at the last rehydration step of each cycle. Biometric and biochemical parameters (including pigments) were analysed in seedlings 60 days after germination. HD cycles at T1 led to reduced seed germination and greater plasma membrane damage, higher enzyme activity (catalase and glutathione reductase) and accumulation of NRS, total amino acids, and proline compared to the controls and T2 treatment. Cellular damage became more severe with more HD cycles. HD cycles at T2 synchronized germination regardless of the number of cycles and also had a priming effect. T2 seeds had less NRS, total amino acids, and proline content than T1. HD cycles at T1 produced seedlings with higher carotenoid and total chlorophyll content than controls and T2, while seedlings from HD cycles at T2 had higher amounts of osmoprotectants. HD cycles at T2 benefited seeds and seedlings more than at T1. This suggests that the physiological and biochemical effects of HD cycles in seeds modulate seedling plasticity, depending on water availability, potentially promoting increased tolerance to recurrent droughts that will be intensified with ongoing climate changes.
Collapse
Affiliation(s)
- G da Silva Dias
- Federal University of Lavras, Campus Universitário, Lavras, Brazil
| | - J T L Chaves
- Federal University of Lavras, Campus Universitário, Lavras, Brazil
| | - T R S Santos
- Federal University of Minas Gerais, Lavras, Brazil
| | - Q S Garcia
- Federal University of Minas Gerais, Lavras, Brazil
| | - M A S Artur
- Wageningen University, Wageningen, Netherlands
| | - E M Bicalho
- Federal University of Lavras, Campus Universitário, Lavras, Brazil
| |
Collapse
|
2
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
3
|
Nourbakhsh V, Majidi MM, Mirmohammady Maibody SAM, Abtahi M. Drought stress memory in orchard grass and the role of marker-based parental selection for physiological and antioxidant responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108061. [PMID: 37847971 DOI: 10.1016/j.plaphy.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Drought stress memory occurring in some plants plays a crucial role in their adaptation to unfavorable conditions. However, in open-pollinated plants, this phenomenon is assumed to be affected by population plasticity resulting from kind and level of diversity and inbreeding depression. Physiological perspectives of drought stress memory in four synthetic poly-crossed populations (groups) of orchard grass (Dactylis glomerata) constructed from parental genotypes with contrasting levels (narrow and wide) of molecular and morphological genetic variation were assessed. Populations of two generations (Syn1 and Syn2) were developed and were subjected to three moisture treatments, including normal irrigation (C), primary mild stress-secondary intense stress (D1D2), and secondary intense stress (D2). Pre-exposure to drought significantly improved the mean values of leaf water, chlorophyll, proline, and ascorbate peroxidase compared to intense stress, leading to more effective memory responses. Superiority of groups with high levels of molecular diversity for most traits, suggesting that the molecular genetic distance among parents is an effective predictor of progeny performance. The results indicated that the fitness of progenies of the four polycross groups declines significantly from Syn1 to Syn2, however the magnitude of observed inbreeding depends on the level of diversity and moisture conditions. We propose a hypothesis that underscores the interplay between genetic diversity among parents and drought stress memory providing valuable insights for developing new synthetic varieties in open-pollinated grasses. Specifically, we posit that higher molecular diversity among parental genotypes enhances the potential for robust drought stress memory, thereby contributing to improved progeny fitness under unfavorable conditions.
Collapse
Affiliation(s)
- Venus Nourbakhsh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
Fang T, Qian C, Daoura BG, Yan X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. A novel TF molecular switch-mechanism found in two contrasting ecotypes of a psammophyte, Agriophyllum squarrosum, in regulating transcriptional drought memory. BMC PLANT BIOLOGY 2023; 23:167. [PMID: 36997861 PMCID: PMC10061855 DOI: 10.1186/s12870-023-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prior drought stress may change plants response patterns and subsequently increase their tolerance to the same condition, which can be referred to as "drought memory" and proved essential for plants well-being. However, the mechanism of transcriptional drought memory in psammophytes remains unclear. Agriophyllum squarrosum, a pioneer species on mobile dunes, is widely spread in Northern China's vast desert areas with outstanding ability of water use efficiency. Here we conducted dehydration-rehydration treatment on A. squarrosum semi-arid land ecotype AEX and arid land ecotype WW to dissect the drought memory mechanism of A. squarrosum, and to determine the discrepancy in drought memory of two contrasting ecotypes that had long adapted to water heterogeneity. RESULT Physiological traits monitoring unveiled the stronger ability and longer duration in drought memory of WW than that of AEX. A total of 1,642 and 1,339 drought memory genes (DMGs) were identified in ecotype AEX and WW, respectively. Furthermore, shared DMGs among A. squarrosum and the previously studied species depicted that drought memory commonalities in higher plants embraced pathways like primary and secondary metabolisms; while drought memory characteristics in A. squarrosum were mainly related to response to heat, high light intensity, hydrogen peroxide, and dehydration, which might be due to local adaptation to desert circumstances. Heat shock proteins (HSPs) occupied the center of the protein-protein interaction (PPI) network in drought memory transcription factors (TF), thus playing a key regulatory role in A. squarrosum drought memory. Co-expression analysis of drought memory TFs and DMGs uncovered a novel regulating module, whereby pairs of TFs might function as molecular switches in regulating DMG transforming between high and low expression levels, thus promoting drought memory reset. CONCLUSION Based on the co-expression analysis, protein-protein interaction prediction, and drought memory metabolic network construction, a novel regulatory module of transcriptional drought memory in A. squarrosum was hypothesized here, whereby recurrent drought signal is activated by primary TF switches, then amplified by secondary amplifiers, and thus regulates downstream complicated metabolic networks. The present research provided valuable molecular resources on plants' stress-resistance basis and shed light on drought memory in A. squarrosum.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Bachir Goudia Daoura
- Department of Biology, Faculty of Sciences and Technology, Dan Dicko Dankoulodo University, POBox 465, Maradi, Niger
| | - Xia Yan
- Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000 China
| | - Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liang Shi
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, 518000 China
| | - Xiao-Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000 China
| |
Collapse
|
5
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
6
|
Calone R, Mircea DM, González-Orenga S, Boscaiu M, Zuzunaga-Rosas J, Barbanti L, Vicente O. Effect of Recurrent Salt and Drought Stress Treatments on the Endangered Halophyte Limonium angustebracteatum Erben. PLANTS (BASEL, SWITZERLAND) 2023; 12:191. [PMID: 36616320 PMCID: PMC9823942 DOI: 10.3390/plants12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Limonium angustebracteatum is an endemic halophyte from the Spanish Mediterranean coastal salt marshes. To investigate this species' ability to cope with recurrent drought and salt stress, one-year-old plants were subjected to two salt stress treatments (watering with 0.5 and 1 M NaCl solutions), one water stress treatment (complete irrigation withholding), or watered with non-saline water for the control, across three phases: first stress (30 days), recovery from both stresses (15 days), and second stress (15 days). Growth and biochemical parameters were determined after each period. The plants showed high salt tolerance but were sensitive to water deficit, as shown by the decrease in leaf fresh weight and water content, root water content, and photosynthetic pigments levels in response to the first water stress; then, they were restored to the respective control values upon recovery. Salt tolerance was partly based on the accumulation of Na+, Cl- and Ca2+ in the roots and predominantly in the leaves; ion levels also decreased to control values during recovery. Organic osmolytes (proline and total soluble sugars), oxidative stress markers (malondialdehyde and H2O2), and antioxidant compounds (total phenolic compounds and flavonoids) increased by various degrees under the first salt and water stress treatments, and declined after recovery. The analysed variables increased again, but generally to a lesser extent, during the second stress phase, suggesting the occurrence of stress acclimation acquired by the activation of defence mechanisms during the first stress period.
Collapse
Affiliation(s)
- Roberta Calone
- CREA—Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, I-00184 Rome, Italy
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Diana-Maria Mircea
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Sara González-Orenga
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Javier Zuzunaga-Rosas
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Oscar Vicente
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
7
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. How do plants remember drought? PLANTA 2022; 256:7. [PMID: 35687165 DOI: 10.1007/s00425-022-03924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, India.
| | - Shiva Sai Prasad
- Department of Agriculture, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Jayeeta Mitra
- Department of Botany, Arunachal University of Studies, Arunachal Pradesh, Namsai, 792103, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
9
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
10
|
Coupling Photosynthetic Measurements with Biometric Data to Estimate Gross Primary Productivity (GPP) in Mediterranean Pine Forests of Different Post-Fire Age. FORESTS 2021. [DOI: 10.3390/f12091256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantification of forest Gross Primary Productivity (GPP) is important for understanding ecosystem function and designing appropriate carbon mitigation strategies. Coupling forest biometric data with canopy photosynthesis models can provide a means to simulate GPP across different stand ages. In this study we developed a simple framework to integrate biometric and leaf gas-exchange measurements, and to estimate GPP across four Mediterranean pine forests of different post-fire age. We used three different methods to estimate the Leaf Area Index (LAI) of the stands, and monthly gas exchange data to calibrate the photosynthetic light response of the leaves. Upscaling of carbon sequestration at the canopy level was made by implementing a Big Leaf and a Sun/Shade model, using both average and variant (monthly) photosynthetic capacity values. The Big Leaf model simulations systematically underestimated GPP compared to the Sun/Shade model simulations. Our simulations suggest an increasing GPP with age up to a stand maturity stage. The shape of the GPP trend with stand age was not affected by the method used to parameterise the model. At the scale of our study, variability in stand and canopy structure among the study sites seems to be the key determinant of GPP.
Collapse
|