1
|
Gia Huy T, Thi NPA, Do HDK, Khang DT. The complete chloroplast genome of Durio zibethinus L. cultivar Ri6 (Helicteroideae, Malvaceae). Mitochondrial DNA B Resour 2024; 9:625-630. [PMID: 38737395 PMCID: PMC11086024 DOI: 10.1080/23802359.2024.2350619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Durian, a member of the Malvaceae family, is famous for its delicious fruits, which have strong scents and are rich in nutrients. In this study, we sequenced and characterized the complete chloroplast genome of Durio zibethinus L. 1774 cultivar Ri6, a popular durian cultivar in Vietnam, using the Illumina Hiseq platform. The results showed a circular chloroplast genome composed of a large single copy of 96,115 bp, a small single copy of 20,819 bp, and two inverted repeat regions of 24,185 bp. This genome consisted of 79 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. The overall GC content of this genome was 35.7%. Phylogenetic analysis inferred from 78 protein-coding regions revealed monophyly of Durio species and a close relationship between D. zibethinus cultivar Ri6 and cultivar Mongthong. This study provides essential information for further studies examining genetic population, breedings, and species identification among Durio taxa and cultivars.
Collapse
Affiliation(s)
- Tran Gia Huy
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Viet Nam
| | - Nguyen Pham Anh Thi
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Viet Nam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Do Tan Khang
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Viet Nam
| |
Collapse
|
2
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Krajaejun T, Patumcharoenpol P, Rujirawat T, Kittichotirat W, Tangphatsornruang S, Lohnoo T, Yingyong W. PacBio long read-assembled draft genome of Pythium insidiosum strain Pi-S isolated from a Thai patient with pythiosis. BMC Res Notes 2023; 16:271. [PMID: 37833791 PMCID: PMC10576409 DOI: 10.1186/s13104-023-06532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES Pythium insidiosum is the causative agent of pythiosis, a difficult-to-treat condition, in humans and animals worldwide. Biological information about this filamentous microorganism is sparse. Genomes of several P. insidiosum strains were sequenced using the Illumina short-read NGS platform, producing incomplete genome sequence data. PacBio long-read platform was employed to obtain a better-quality genome of Pythium insidiosum. The obtained genome data could promote basic research on the pathogen's biology and pathogenicity. DATA DESCRIPTION gDNA sample was extracted from the P. insidiosum strain Pi-S for whole-genome sequencing by PacBio long-read NGS platform. Raw reads were assembled using CANU (v2.1), polished using ARROW (SMRT link version 5.0.1), aligned with the original raw PacBio reads using pbmm2 (v1.2.1), consensus sequence checked using ARROW, and gene predicted using Funannotate pipeline (v1.7.4). The genome completion was assessed using BUSCO (v4.0.2). As a result, 840 contigs (maximum length: 1.3 Mb; N50: 229.9 Kb; L50: 70) were obtained. Sequence assembly showed a genome size of 66.7 Mb (178x coverage; 57.2% G-C content) that contained 20,375 ORFs. A BUSCO-based assessment revealed 85.5% genome completion. All assembled contig sequences have been deposited in the NCBI database under the accession numbers BBXB02000001 - BBXB02000840.
Collapse
Affiliation(s)
- Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Preecha Patumcharoenpol
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | | | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Plastomes of Garcinia mangostana L. and Comparative Analysis with Other Garcinia Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:930. [PMID: 36840278 PMCID: PMC9966718 DOI: 10.3390/plants12040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The two varieties of mangosteen (Garcinia mangostana L.) cultivated in Malaysia are known as Manggis and Mesta. The latter is preferred for its flavor, texture, and seedlessness. Here, we report a complete plastome (156,580 bp) of the Mesta variety that was obtained through a hybrid assembly approach using PacBio and Illumina sequencing reads. It encompasses a large single-copy (LSC) region (85,383 bp) and a small single-copy (SSC) region (17,137 bp) that are separated by 27,230 bp of inverted repeat (IR) regions at both ends. The plastome comprises 128 genes, namely, 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The plastome of the Manggis variety (156,582 bp) obtained from reference-guided assembly of Illumina reads was found to be nearly identical to Mesta except for two indels and the presence of a single-nucleotide polymorphism (SNP). Comparative analyses with other publicly available Garcinia plastomes, including G. anomala, G. gummi-gutta, G. mangostana var. Thailand, G. oblongifolia, G. paucinervis, and G. pedunculata, found that the gene content, gene order, and gene orientation were highly conserved among the Garcinia species. Phylogenomic analysis divided the six Garcinia plastomes into three groups, with the Mesta and Manggis varieties clustered closer to G. anomala, G. gummi-gutta, and G. oblongifolia, while the Thailand variety clustered with G. pedunculata in another group. These findings serve as future references for the identification of species or varieties and facilitate phylogenomic analysis of lineages from the Garcinia genus to better understand their evolutionary history.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Husin NA, Rahman S, Karunakaran R, Bhore SJ. Transcriptome analysis during fruit developmental stages in durian (Durio zibethinus Murr.) var. D24. Genet Mol Biol 2023; 45:e20210379. [PMID: 36622241 PMCID: PMC9830936 DOI: 10.1590/1678-4685-gmb-2021-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/18/2022] [Indexed: 01/10/2023] Open
Abstract
Durian (Durio zibethinus Murr.) fruits are famous for their unique aroma. This study analysed the Durian fruit transcriptome to discover the expression patterns of genes and to understand their regulation. Three developmental stages of Durian fruit, namely, early [90 days post-anthesis (DPA)], mature (120 DPA), and ripen (127 DPA), were studied. The Illumina HiSeq platform was used for sequencing. The sequence data were analysed using four different mapping aligners and statistical methods: CLC Genomic Workbench, HISAT2+DESeq2, Tophat+Cufflinks, and HISAT2+edgeR. The analyses showed that over 110 million clean reads were mapped to the Durian genome, yielding 19,976, 11,394, 17,833, and 24,351 differentially expressed genes during 90-127 days post-anthesis. Many identified differentially expressed genes were linked to the fruit ripening processes. The data analysis suggests that most genes with increased expression at the ripening stage were primarily involved in the metabolism of cofactors and vitamins, nucleotide metabolism, and carbohydrate metabolism. Significantly expressed genes from the young to mature stage were mainly associated with carbohydrate metabolism, amino acid metabolism, and cofactor and vitamin metabolism. The transcriptome data will serve as a foundation for understanding Durian fruit development-specific genes and could be helpful in fruit's trait improvement.
Collapse
Affiliation(s)
- Nurul Arneida Husin
- AIMST University, Faculty of Applied Sciences, Department of Biotechnology, Kedah, Malaysia.,Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Malaysia
| | - Sadequr Rahman
- Monash University Malaysia, School of Science and Tropical Medicine and Biology Platform, Malaysia.
| | - Rohini Karunakaran
- AIMST University, Faculty of Medicine, Unit of Biochemistry, Kedah, Malaysia.,Institute of Bioinformatics, Saveetha School of Engineering, Department of Computational Biology, Chennai, India
| | | |
Collapse
|
6
|
Wong XJ, Law D, Wang ZF, Ramaiya SD, Lee SY. The complete chloroplast genome sequence of Durio oxleyanus (Malvaceae) and its phylogenetic position. Mitochondrial DNA B Resour 2022; 7:1709-1712. [PMID: 36188663 PMCID: PMC9518260 DOI: 10.1080/23802359.2022.2123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Durio oxleyanus (Griff) of Malvaceae is considered a natural heritage by the countries that produce it, including Peninsular Malaysia, Sumatra, and Borneo. Even though the species is regarded as a commercially valuable fruit, cultivation of this species is uncommon. The dwindling population of this species in the wild has put its survival in jeopardy. Conservation efforts are required for this species, which are limited. In this study, the complete chloroplast (cp) genome of D. oxleyanus was assembled and characterized as a genomic resource for conservation programs. The complete cp genome size was 164,831 bp in length, with a pair of inverted repeats of 23,782 bp each, separating the 96,446-bp large and the 20,823-bp small single copies. A total of 135 genes were predicted, which consisted of 90 protein-coding, 37 tRNA, and eight rRNA genes. The overall GC content was 35.8%. The phylogenetic analysis based on the maximum-likelihood and Bayesian inference methods revealed that D. oxleyanus is closely related to D. zibethinus. The genomic data obtained will be useful for future studies of Malvaceae’s phylogenetics and evolution.
Collapse
Affiliation(s)
- Xue Jing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shiamala Devi Ramaiya
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| |
Collapse
|
7
|
Yu T, Gao J, Liao PC, Li JQ, Ma WB. Insights Into Comparative Analyses and Phylogenomic Implications of Acer (Sapindaceae) Inferred From Complete Chloroplast Genomes. Front Genet 2022; 12:791628. [PMID: 35047013 PMCID: PMC8762318 DOI: 10.3389/fgene.2021.791628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Acer L. (Sapindaceae) is one of the most diverse and widespread plant genera in the Northern Hemisphere. It comprises 124-156 recognized species, with approximately half being native to Asia. Owing to its numerous morphological features and hybridization, this genus is taxonomically and phylogenetically ranked as one of the most challenging plant taxa. Here, we report the complete chloroplast genome sequences of five Acer species and compare them with those of 43 published Acer species. The chloroplast genomes were 149,103-158,458 bp in length. We conducted a sliding window analysis to find three relatively highly variable regions (psbN-rps14, rpl32-trnL, and ycf1) with a high potential for developing practical genetic markers. A total of 76-103 SSR loci were identified in 48 Acer species. The positive selection analysis of Acer species chloroplast genes showed that two genes (psaI and psbK) were positively selected, implying that light level is a selection pressure for Acer species. Using Bayes empirical Bayes methods, we also identified that 20 cp gene sites have undergone positive selection, which might result from adaptation to specific ecological niches. In phylogenetic analysis, we have reconfirmed that Acer pictum subsp. mono and A. truncatum as sister species. Our results strongly support the sister relationships between sections Platanoidea and Macrantha and between sections Trifoliata and Pentaphylla. Moreover, series Glabra and Arguta are proposed to promote to the section level. The chloroplast genomic resources provided in this study assist taxonomic and phylogenomic resolution within Acer and the Sapindaceae family.
Collapse
Affiliation(s)
- Tao Yu
- CECEP Eco-Product Development Research Center, Beijing, China.,Forestry College, Beijing Forestry University, Beijing, China
| | - Jian Gao
- Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jun-Qing Li
- Forestry College, Beijing Forestry University, Beijing, China
| | - Wen-Bao Ma
- Key Laboratory of National Forestry and Grassland Administration on Sichuan Forest Ecology and Resources and Environment, Sichuan Academy of Forestry, Chengdu, China
| |
Collapse
|
8
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
9
|
Freire R, Weisweiler M, Guerreiro R, Baig N, Hüttel B, Obeng-Hinneh E, Renner J, Hartje S, Muders K, Truberg B, Rosen A, Prigge V, Bruckmüller J, Lübeck J, Stich B. Chromosome-scale reference genome assembly of a diploid potato clone derived from an elite variety. G3-GENES GENOMES GENETICS 2021; 11:6371871. [PMID: 34534288 PMCID: PMC8664475 DOI: 10.1093/g3journal/jkab330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 01/27/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops with a worldwide production of 370 million metric tons. The objectives of this study were (1) to create a high-quality consensus sequence across the two haplotypes of a diploid clone derived from a tetraploid elite variety and assess the sequence divergence from the available potato genome assemblies, as well as among the two haplotypes; (2) to evaluate the new assembly’s usefulness for various genomic methods; and (3) to assess the performance of phasing in diploid and tetraploid clones, using linked-read sequencing technology. We used PacBio long reads coupled with 10x Genomics reads and proximity ligation scaffolding to create the dAg1_v1.0 reference genome sequence. With a final assembly size of 812 Mb, where 750 Mb are anchored to 12 chromosomes, our assembly is larger than other available potato reference sequences and high proportions of properly paired reads were observed for clones unrelated by pedigree to dAg1. Comparisons of the new dAg1_v1.0 sequence to other potato genome sequences point out the high divergence between the different potato varieties and illustrate the potential of using dAg1_v1.0 sequence in breeding applications.
Collapse
Affiliation(s)
- Ruth Freire
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nadia Baig
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Bruno Hüttel
- Max Planck-Genome-centre Cologne, Max Planck Institute for Plant Breeding, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Evelyn Obeng-Hinneh
- Böhm-Nordkartoffel Agrarproduktion GmbH & Co. OHG, Strehlow 19, 17111 Hohenmocker, Germany
| | - Juliane Renner
- Böhm-Nordkartoffel Agrarproduktion GmbH & Co. OHG, Strehlow 19, 17111 Hohenmocker, Germany
| | - Stefanie Hartje
- Böhm-Nordkartoffel Agrarproduktion GmbH & Co. OHG, Strehlow 19, 17111 Hohenmocker, Germany
| | - Katja Muders
- Nordring- Kartoffelzucht- und Vermehrungs- GmbH, Parkweg 4, 18190 Sanitz, Germany
| | - Bernd Truberg
- Nordring- Kartoffelzucht- und Vermehrungs- GmbH, Parkweg 4, 18190 Sanitz, Germany
| | - Arne Rosen
- Nordring- Kartoffelzucht- und Vermehrungs- GmbH, Parkweg 4, 18190 Sanitz, Germany
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co. KG, Zuchtstation Windeby, Eichenallee 9, 24340 Windeby, Germany
| | | | - Jens Lübeck
- Solana Research GmbH, Eichenallee 9, 24340 Windeby, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225 Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|