1
|
Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2024; 10:CD015618. [PMID: 39400904 PMCID: PMC11472845 DOI: 10.1002/14651858.cd015618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources. OBJECTIVES To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria. DATA COLLECTION AND ANALYSIS Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests. MAIN RESULTS We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case. AUTHORS' CONCLUSIONS Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.
Collapse
Affiliation(s)
- Ingrid Arevalo-Rodriguez
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | - Miriam Mateos-Haro
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- Doctoral programme in Clinical Medicine and Public Health, Universidad de Granada, Granada, Spain
| | - Jacqueline Dinnes
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| | - Clare Davenport
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Diana Buitrago-Garcia
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Hospital Universitario Mayor - Méderi. Universidad del Rosario, Bogotá, Colombia
| | - Tayeb Bennouna-Dalero
- Preventive Medicine and Public Health Department, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Institut de Recerca Sant Pau (IR SANT PAU), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Karin J von Eije
- Department of Viroscience, ErasmusMC, University Medical Center, Rotterdam, Netherlands
| | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Yemisi Takwoingi
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Priya K, Saranya E, Kapoor A, Ramya M. Multiplex Loop-Mediated Isothermal Amplification Coupled Lateral Flow Assay for Point-of-Care Detection of Syphilis. Indian J Microbiol 2024; 64:1246-1256. [PMID: 39282190 PMCID: PMC11399539 DOI: 10.1007/s12088-024-01308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 09/18/2024] Open
Abstract
Syphilis is a re-emerging sexually transmitted disease caused by the pathogenic spirochete T. pallidum. Every year more than 5 million cases are reported globally. The current diagnostic methods are primarily based on serological assays, which are less sensitive at an early stage of infection. To improve the disease diagnosis, there is a need to develop a rapid, simple, sensitive, and cost-effective point-of-care application, which plays an effective role in the detection of syphilis infection. In this study, we developed a multiplex loop-mediated isothermal amplification coupled lateral flow assay (multiplex LAMP-LFA) for the detection of syphilis. Two different genes, the target amplicon (polA) and the internal control amplicon (human RNase P) were amplified using multiplex LAMP assay. The amplified products were detected using LFA strips coated with Anti-FITC and Anti-DIG antibodies within 5 minutes of flowthrough. Multiplex LAMP LFA detection limit was found to be 3.8 × 103 copies/mL with high specificity. The developed strip was tested with 130 clinically suspected cases and 50 healthy individuals. With the clinical samples, the method shows a sensitivity of 93.84% and a specificity of 100%. The Multiplex LAMP LFA has the potential to overcome the limitations of both Non Treponemal tests and Treponemal tests which are prone to prozone effects and expensive reagents respectively. The proposed method holds promise for sensitive, rapid, and visual detection of T. pallidum, thereby offering a facile and affordable alternative to existing diagnostic methods. This approach is poised to advance the development of point-of-care diagnostics, addressing a critical need in public healthcare, particularly in resource-limited settings. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01308-4.
Collapse
Affiliation(s)
- Krishnamoorthy Priya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Elangovan Saranya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh 208002 India
| | - Mohandass Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
3
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
4
|
Yadav PK, Singh S, Paul M, Kumar S, Ponmariappan S, Thavaselvam D. Development of a novel sequence based real-time PCR assay for specific and sensitive detection of Burkholderia pseudomallei in clinical and environmental matrices. Ann Clin Microbiol Antimicrob 2024; 23:30. [PMID: 38600514 PMCID: PMC11007888 DOI: 10.1186/s12941-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Melioidosis, caused by the category B biothreat agent Burkholderia pseudomallei, is a disease with a high mortality rate and requires an immediate culture-independent diagnosis for effective disease management. In this study, we developed a highly sensitive qPCR assay for specific detection of Burkholderia pseudomallei and melioidosis disease diagnosis based on a novel target sequence. METHODS An extensive in-silico analysis was done to identify a novel and highly conserved sequence for developing a qPCR assay. The specificity of the developed assay was analyzed with 65 different bacterial cultures, and the analytical sensitivity of the assay was determined with the purified genomic DNA of B. pseudomallei. The applicability of the assay for B. pseudomallei detection in clinical and environmental matrices was evaluated by spiking B. pseudomallei cells in the blood, urine, soil, and water along with suitable internal controls. RESULTS A novel 85-nucleotide-long sequence was identified using in-silico tools and employed for the development of the highly sensitive and specific quantitative real-time PCR assay S664. The assay S664 was found to be highly specific when evaluated with 65 different bacterial cultures related and non-related to B. pseudomallei. The assay was found to be highly sensitive, with a detection limit of 3 B. pseudomallei genome equivalent copies per qPCR reaction. The detection limit in clinical matrices was found to be 5 × 102 CFU/mL for both human blood and urine. In environmental matrices, the detection limit was found to be 5 × 101 CFU/mL of river water and 2 × 103 CFU/gm of paddy field soil. CONCLUSIONS The findings of the present study suggest that the developed assay S664 along with suitable internal controls has a huge diagnostic potential and can be successfully employed for specific, sensitive, and rapid molecular detection of B. pseudomallei in various clinical and environmental matrices.
Collapse
Affiliation(s)
- Pranjal Kumar Yadav
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Suchetna Singh
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Moumita Paul
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Sanjay Kumar
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India.
| | - S Ponmariappan
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Duraipandian Thavaselvam
- O/o DGLS, Defence Research and Development Organization, Ministry of Defence, SSPL Campus, Timarpur, New Delhi, 110 054, India.
| |
Collapse
|
5
|
Abugattas-Núñez del Prado J, Quintana Reyes A, Leon J, Blume La Torre J, Gutiérrez Loli R, Pinzón Olejua A, Chamorro Chirinos ER, Loza Mauricio FA, Maguiña JL, Rodriguez-Aliaga P, Málaga-Trillo E. Clinical validation of RCSMS: A rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva. PLoS One 2024; 19:e0290466. [PMID: 38527001 PMCID: PMC10962837 DOI: 10.1371/journal.pone.0290466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 03/27/2024] Open
Abstract
Peru's holds the highest COVID death rate per capita worldwide. Key to this outcome is the lack of robust, rapid, and accurate molecular tests to circumvent the elevated costs and logistics of SARS-CoV-2 detection via RT-qPCR. To facilitate massive and timely COVID-19 testing in rural and socioeconomically deprived contexts, we implemented and validated RCSMS, a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva. RCSMS uses the power of CRISPR-Cas technology and lateral flow strips to easily visualize the presence of SARS-CoV-2 even in laboratories with limited equipment. We show that a low-cost thermochemical treatment with TCEP/EDTA is sufficient to inactivate viral particles and cellular nucleases in saliva, eliminating the need to extract viral RNA with commercial kits, as well as the cumbersome nasopharyngeal swab procedure and the requirement of biosafety level 2 laboratories for molecular analyses. Notably, RCSMS performed outstandingly in a clinical validation done with 352 patients from two hospitals in Lima, detecting as low as 50 viral copies per 10 μl reaction in 40 min, with sensitivity and specificity of 96.5% and 99.0%, respectively, relative to RT-qPCR. The negative and positive predicted values obtained from this field validation indicate that RCSMS can be confidently deployed in both high and low prevalence settings. Like other CRISPR-Cas-based biosensors, RCSMS can be easily reprogrammed for the detection of new SARS-CoV-2 variants. We conclude that RCSMS is a fast, efficient and inexpensive alternative to RT-qPCR for expanding COVID-19 testing capacity in Peru and other low- and middle-income countries with precarious healthcare systems.
Collapse
Affiliation(s)
| | | | - Julio Leon
- IMS RIKEN Center for Integrative Medical Sciences, Japan
- University of California San Francisco, San Francisco, California, United States of America
| | - Juan Blume La Torre
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Renzo Gutiérrez Loli
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | | | | | - Jorge L. Maguiña
- Instituto de Evaluación de Tecnologías en Salud e Investigación (IETSI), EsSalud, Lima, Perú
| | - Piere Rodriguez-Aliaga
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Edward Málaga-Trillo
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
6
|
LaBute B, Fong J, Ziaee F, Gombar R, Stover M, Beaudin T, Badalova M, Geng Q, Corchis-Scott R, Podadera A, Lago K, Xu Z, Lim F, Chiu F, Fu M, Nie X, Wu Y, Quan C, Hamm C, McKay RM, Ng K, Porter LA, Tong Y. Evaluating and optimizing Acid-pH and Direct Lysis RNA extraction for SARS-CoV-2 RNA detection in whole saliva. Sci Rep 2024; 14:7017. [PMID: 38527999 DOI: 10.1038/s41598-024-54183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
COVID-19 has been a global public health and economic challenge. Screening for the SARS-CoV-2 virus has been a key part of disease mitigation while the world continues to move forward, and lessons learned will benefit disease detection beyond COVID-19. Saliva specimen collection offers a less invasive, time- and cost-effective alternative to standard nasopharyngeal swabs. We optimized two different methods of saliva sample processing for RT-qPCR testing. Two methods were optimized to provide two cost-efficient ways to do testing for a minimum of four samples by pooling in a 2.0 mL tube and decrease the need for more highly trained personnel. Acid-pH-based RNA extraction method can be done without the need for expensive kits. Direct Lysis is a quick one-step reaction that can be applied quickly. Our optimized Acid-pH and Direct Lysis protocols are reliable and reproducible, detecting the beta-2 microglobulin (B2M) mRNA in saliva as an internal control from 97 to 96.7% of samples, respectively. The cycle threshold (Ct) values for B2M were significantly higher in the Direct Lysis protocol than in the Acid-pH protocol. The limit of detection for N1 gene was higher in Direct Lysis at ≤ 5 copies/μL than Acid-pH. Saliva samples collected over the course of several days from two COVID-positive individuals demonstrated Ct values for N1 that were consistently higher from Direct Lysis compared to Acid-pH. Collectively, this work supports that each of these techniques can be used to screen for SARS-CoV-2 in saliva for a cost-effective screening platform.
Collapse
Affiliation(s)
- Brayden LaBute
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Jackie Fong
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - Farinaz Ziaee
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Robert Gombar
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Mathew Stover
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Terry Beaudin
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Maria Badalova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kyle Lago
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - ZhenHuan Xu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Fievel Lim
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Felix Chiu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Minghua Fu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Xiaofeng Nie
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Yuanmin Wu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | | | - Caroline Hamm
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
- Windsor Regional Hospital, Windsor, ON, Canada
| | - R Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Kenneth Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada.
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada.
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
7
|
Shahi F, Rasti M, Moradi M. Overview of the different methods for RNA preparation in COVID-19 diagnosis process during the pandemic. Anal Biochem 2024; 686:115410. [PMID: 38006951 DOI: 10.1016/j.ab.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The COVID-19 pandemic brought to light the impact of a widespread disease on various aspects of human relationships, communities, and economies. One notable consequence was the increased demand for diagnostic kits, laboratory reagents, and personal health equipment. This surge in testing capacity worldwide led to shortages in the supply of essential items, including RNA extraction kits, which are crucial for detecting COVID-19 infections. To address this scarcity, researchers have proposed alternative and cost-effective strategies for RNA extraction, utilizing both chemical and physical solutions and extraction-free methods. These approaches aim to alleviate the challenges associated with the overwhelming number of tests being conducted in laboratories. The purpose of this review is intends to provide a comprehensive summary of the various kit-free RNA extraction methods available for COVID-19 diagnosis during the pandemic.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
8
|
Song HH, Choi JC, Lee R, Yoon SK, Park HJ, Shin YH, Shin JW, Kim J. Quality and composition of archived nucleic acids after use in SARS-CoV-2 molecular testing. Clin Chim Acta 2024; 554:117755. [PMID: 38182077 DOI: 10.1016/j.cca.2023.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Reverse transcription real-time PCR (rRT-PCR) has been a gold-standard method to detect SARS-CoV-2, for which quality assessment of nucleic acids (NAs) is not needed. In order to prepare for future use, we evaluated NA quality from archived SARS-CoV-2 rRT-PCR samples. METHODS NA samples were collected in February 2021 and extracted using the QIAamp DSP Virus Spin Kit, (53 SARS-CoV-2-positive and 100 SARS-CoV-2-negative). Quality, quantity, and purity of NA were measured spectrophotometrically or fluorescently. Droplet digital PCR was used to characterize the double strand DNA (dsDNA) origin and composition by quantifying 16S rDNA and RPP30. RESULTS The RIN and purity were not significantly different between groups (p = 0.3828). RNA quantity was significantly higher than dsDNA in both groups (p < 0.0001); both dsDNA and RNA quantity were significantly higher in positive samples (dsDNA, RNA p = 0.021). For dsDNA, 16S rDNA copies were significantly greater than RPP30 in both groups (p < 0.0001), and RPP30 were significantly higher in positive samples (p < 0.0001). CONCLUSIONS Archived NA quality after SARS-CoV-2 rRT-PCR was guaranteed for subsequent molecular research using human or bacterial DNA, especially for short targets.
Collapse
Affiliation(s)
- Ho Hyun Song
- Department of Interdisciplinary Program in Biomedical Science, Graduate School, Soonchunhyang University, Asan, Chungcheongnam-do, Republic of Korea
| | - Jong Cheul Choi
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Ran Lee
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Sook Kyung Yoon
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hye Jeong Park
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Shin
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Jeong Won Shin
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea.
| | - Jieun Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Cerda A, Rivera M, Armijo G, Ibarra-Henriquez C, Reyes J, Blázquez-Sánchez P, Avilés J, Arce A, Seguel A, Brown AJ, Vásquez Y, Cortez-San Martín M, Cubillos FA, García P, Ferres M, Ramírez-Sarmiento CA, Federici F, Gutiérrez RA. An Open One-Step RT-qPCR for SARS-CoV-2 detection. PLoS One 2024; 19:e0297081. [PMID: 38271448 PMCID: PMC10810446 DOI: 10.1371/journal.pone.0297081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Collapse
Affiliation(s)
- Ariel Cerda
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maira Rivera
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grace Armijo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Ibarra-Henriquez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Reyes
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Avilés
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal Arce
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aldo Seguel
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alexander J. Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Yesseny Vásquez
- Escuela de Ciencias Médicas, Facultad de Medicina, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Francisco A. Cubillos
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Ramírez-Sarmiento
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Gutiérrez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Pauly MD, Ganova-Raeva L. Point-of-Care Testing for Hepatitis Viruses: A Growing Need. Life (Basel) 2023; 13:2271. [PMID: 38137872 PMCID: PMC10744957 DOI: 10.3390/life13122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Viral hepatitis, caused by hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV), is a major global public health problem. These viruses cause millions of infections each year, and chronic infections with HBV, HCV, or HDV can lead to severe liver complications; however, they are underdiagnosed. Achieving the World Health Organization's viral hepatitis elimination goals by 2030 will require access to simpler, faster, and less expensive diagnostics. The development and implementation of point-of-care (POC) testing methods that can be performed outside of a laboratory for the diagnosis of viral hepatitis infections is a promising approach to facilitate and expedite WHO's elimination targets. While a few markers of viral hepatitis are already available in POC formats, tests for additional markers or using novel technologies need to be developed and validated for clinical use. Potential methods and uses for the POC testing of antibodies, antigens, and nucleic acids that relate to the diagnosis, monitoring, or surveillance of viral hepatitis infections are discussed here. Unmet needs and areas where additional research is needed are also described.
Collapse
Affiliation(s)
| | - Lilia Ganova-Raeva
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., NE, Atlanta, GA 30329, USA;
| |
Collapse
|
11
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Sarkar MMH, Naser SR, Chowdhury SF, Khan MS, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Nayem MR, Hassan MA, Khan MI, Rabbi MFA, Ahsan CR, Miah MI, Nessa A, Islam SMRU, Rahman MA, Shaikh MAA, Ahmed MS. M gene targeted qRT-PCR approach for SARS-CoV-2 virus detection. Sci Rep 2023; 13:16659. [PMID: 37789078 PMCID: PMC10547753 DOI: 10.1038/s41598-023-43204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is the gold standard method for SARS-CoV-2 detection, and several qRT-PCR kits have been established targeting different genes of the virus. Due to the high mutation rate of these genes, false negative results arise thus complicating the interpretation of the diagnosis and increasing the need of alternative targets. In this study, an alternative approach for the detection of SARS-CoV-2 viral RNA targeting the membrane (M) gene of the virus using qRT-PCR was described. Performance evaluation of this newly developed in-house assay against commercial qRT-PCR kits was done using clinical oropharyngeal specimens of COVID-19 positive patients. The limit of detection was determined using successive dilutions of known copies of SARS-CoV-2 pseudovirus. The M gene based assay was able to detect a minimum of 100 copies of virus/mL indicating its capacity to detect low viral load. The assay showed comparable accuracy, sensitivity and specificity with commercially available kits while detecting all the variants efficiently. The study concluded that the in-house M gene based assay might be an effective alternative for the currently available commercial qRT-PCR kits.
Collapse
Affiliation(s)
| | - Showti Raheel Naser
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Salim Khan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | | | | | | | | | | | - Afzalun Nessa
- Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | | | | | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
- University of Dhaka, Dhaka, Bangladesh.
| | | |
Collapse
|
13
|
Evans DT, Nelson DJ, Pask ME, Haselton FR. A safer framework to evaluate characterization technologies of exhaled biologic materials using electrospun nanofibers. NANOSCALE 2023; 15:14822-14830. [PMID: 37655643 PMCID: PMC10530601 DOI: 10.1039/d3nr01859h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Exhaled biologic material is the source for the spread of many respiratory tract infections. To avoid the high-level of biosafety required to manage dangerous pathogens, we developed a safer framework using the endogenous surrogate targets RNase P and Streptococcus mitis as a means to sample exhaled biologics. Our exhalation collection scheme uses nanoscale fibrous poly(vinyl alcohol) substrates as facemask inserts. After a period of breathing or speaking, the inserts are removed and dissolved. RNase P RNA and S. mitis DNA are extracted for quantification by multiplexed RT-qPCR. Both surrogate biomarkers were detected in all samples obtained during breathing for at least five minutes or speaking for one minute. Phrases repeated 30 times had the most copies with 375 ± 247 of S. mitis and 54 ± 33 of RNase P. When the phrases were repeated just 5 times, the S. mitis copies collected were still detectable but at a significantly lower level of 11 ± 5 for S. mitis and 12 ± 9 for RNase P. These results demonstrate a collection and quantification framework that can be readily adapted to further characterize the exhalation of nanoscale biologic materials from healthy individuals, explore new collection designs safely, and serve as a method to incorporate sample controls for future pathogen exhalation studies.
Collapse
Affiliation(s)
- David T Evans
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Dalton J Nelson
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Megan E Pask
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Frederick R Haselton
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Yadav SK, Verma D, Yadav U, Kalkal A, Priyadarshini N, Kumar A, Mahato K. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. MICROMACHINES 2023; 14:1744. [PMID: 37763907 PMCID: PMC10535693 DOI: 10.3390/mi14091744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The pandemic of COVID-19 and its widespread transmission have made us realize the importance of early, quick diagnostic tests for facilitating effective cure and management. The primary obstacles encountered were accurately distinguishing COVID-19 from other illnesses including the flu, common cold, etc. While the polymerase chain reaction technique is a robust technique for the determination of SARS-CoV-2 in patients of COVID-19, there arises a high demand for affordable, quick, user-friendly, and precise point-of-care (POC) diagnostic in therapeutic settings. The necessity for available tests with rapid outcomes spurred the advancement of POC tests that are characterized by speed, automation, and high precision and accuracy. Paper-based POC devices have gained increasing interest in recent years because of rapid, low-cost detection without requiring external instruments. At present, microfluidic paper-based analysis devices have garnered public attention and accelerated the development of such POCT for efficient multistep assays. In the current review, our focus will be on the fabrication of detection modules for SARS-CoV-2. Here, we have included a discussion on various strategies for the detection of viral moieties. The compilation of these strategies would offer comprehensive insight into the detection of the causative agent preparedness for future pandemics. We also provide a descriptive outline for paper-based diagnostic platforms, involving the determination mechanisms, as well as a commercial kit for COVID-19 as well as their outlook.
Collapse
Affiliation(s)
- Sumit K. Yadav
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Damini Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ujala Yadav
- Department of Life Sciences, Central University of Jharkhand, Ranchi 835205, Jharkhand, India
| | - Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nivedita Priyadarshini
- Department of Zoology, DAV PG College Siwan, Jai Prakash University, Chhapra 841226, Bihar, India
| | - Ashutosh Kumar
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46637, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
16
|
Hadynski JC, Diggins J, Goad Z, Joy M, Dunckel S, Kraus P, Lufkin T, Wriedt M. Metal-Organic Framework as a Fluorescent and Colorimetric Dual-Signal Readout Biosensor Platform for the Detection of a Genetic Sequence from the SARS-CoV-2 Genome. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38163-38170. [PMID: 37535905 DOI: 10.1021/acsami.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The quest for the development of high-accuracy, point-of-care, and cost-effective testing platforms for SARS-CoV-2 infections is ongoing as current diagnostics rely on either assays based on costly yet accurate nucleic acid amplification tests (NAAT) or less selective and less sensitive but rapid and cost-effective antigen tests. As a potential solution, this work presents a fluorescence-based detection platform using a metal-organic framework (MOF) in an effective assay, demonstrating the potential of MOFs to recognize specific targets of the SARS-CoV-2 genome with high accuracy and rapid process turnaround time. As a highlight of this work, positive detection of SARS-CoV-2 is indicated by a visible color change of the MOF probe with ultrahigh detection selectivities down to single-base mismatch nucleotide sequences, thereby providing an alternative avenue for the development of innovative detection methods for diverse viral genomes.
Collapse
Affiliation(s)
- John C Hadynski
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Jaren Diggins
- Department of Chemistry, Texas Southern University, Houston, Texas 77004, United States
| | - Zachary Goad
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Monu Joy
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Steven Dunckel
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York 13699, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York 13699, United States
| | - Mario Wriedt
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
17
|
Lekhanya T, Musvuugwa T, Mashifana T, Modley LAS. Measurement of SARS-CoV-2 RNA in wastewater: A case study of the Northern Cape, South Africa. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:355-366. [PMID: 37522438 PMCID: wst_2023_197 DOI: 10.2166/wst.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in the infection and death of many South Africans. This is in part due to a lack of testing facilities, equipment, and staff in many areas, particularly those with low population densities. The study focused on the infection dynamics of the virus in the Northern Cape province in all five municipalities investigating wastewater-based surveillance for the province. Reverse transcription was used to identify the virus, and SARS-CoV-2 RNA was detected in a batch of wastewater from four of the five areas sampled and was collected in the months that fall within the third wave of COVID as well as the winter season (May-July). The detection of the SARS-CoV-2 RNA correlated with infection statistics as well as the seasonality of the virus. This research showed a positive result in using wastewater epidemiology to track the spread of the virus but also highlighted the need for improved methodology when it comes to this surveillance. This includes sampling smaller areas and frequent sampling in multiple areas to show clear patterns within smaller, sparsely populated communities.
Collapse
Affiliation(s)
- Thapelo Lekhanya
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa E-mail:
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatjie University, Kimberley, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Lee-Ann Sade Modley
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
18
|
Morales-Jadan D, Castro-Rodriguez B, Viteri-Dávila C, Orlando SA, Bruno A, Perez F, Garcia-Bereguiain MA. The quality of commercial SARS-CoV-2 nucleic acid tests in Ecuador: lessons from COVID-19 pandemic for advancing social equity through microbiology. Front Cell Infect Microbiol 2023; 13:1179786. [PMID: 37351183 PMCID: PMC10283003 DOI: 10.3389/fcimb.2023.1179786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023] Open
|
19
|
Pasqualotto AC, Seus AL. COVID-19 PCR: frequency of internal control inhibition in clinical practice. Access Microbiol 2023; 5:acmi000478.v3. [PMID: 37323943 PMCID: PMC10267656 DOI: 10.1099/acmi.0.000478.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Diagnosis of COVID-19 (coronavirus disease 2019) is best performed with real-time (quantitative) PCR (qPCR), the most sensitive method for detection and quantification of viral RNA. Using the Centers for Disease Control and Prevention (CDC) protocol, for each sample tested for the virus, three qPCR tests are performed, targeting the viral genes N1 and N2, in addition to the internal control gene RNase P. Samples in which internal control fails to amplify should be labelled 'invalid'. Methods This study aims to determine the frequency of inhibition of the RNase P gene used as an internal control in qPCR tests for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in a reference hospital in Southern Brazil during the COVID-19 pandemic (1 February 2021 to 31 March 2021). Results A total 10, 311 samples were available for analysis. The mean cycle threshold (Ct) value for the RNAse P gene was 26.65 and the standard deviation was 3.18. A total of 252 samples were inhibited (2.4%) during the study period: amongst these, 77 (30.5%) showed late amplifications (beyond 2 standard deviations from the mean Ct value), and 175 (69.4%) revealed no fluorescence at all for the RNase P gene. Conclusions This study showed a low percentage of inhibition using RNase P as an internal control in COVID-19 PCRs using the CDC protocol, thus proving the effectiveness of this protocol for identification of SARS-CoV-2 in clinical samples. Re-extraction was efficacious for samples that showed little or no fluorescence for the RNase P gene.
Collapse
Affiliation(s)
- Alessandro C. Pasqualotto
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Molecular Biology Laboratory, Irmandade Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
| | - Amanda L. Seus
- Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
| |
Collapse
|
20
|
Del-Puerto F, Rojas LE, Díaz Acosta CC, Franco LX, Cardozo F, Galeano ME, Valenzuela A, Rojas A, Martínez M, Ayala-Lugo A, Mendoza L, Ovando FS, Martínez MF, Chung HJ, Webby R, Nara E, Caniza MA. The Experience of Testing for Coronavirus Disease (COVID-19) at a Single Diagnostic Center in Paraguay before the Introduction of Vaccination. Viruses 2023; 15:v15051136. [PMID: 37243222 DOI: 10.3390/v15051136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Soon after the declaration of the COVID-19 pandemic, the Institute for Health Sciences Research (IICS) of the National University of Asunción, Paraguay became a testing laboratory (COVID-Lab) for SARS-CoV-2. The COVID-Lab testing performance was assessed from 1 April 2020 to 12 May 2021. The effect of the pandemic on the IICS and how the COVID-Lab contributed to the academic and research activities of the institute were also assessed. IICS researchers and staff adjusted their work schedules to support the COVID-Lab. Of the 13,082 nasopharyngeal/oropharyngeal swabs processed, 2704 (20.7%) tested positive for SARS-CoV-2 by RT-PCR. Of the individuals testing positive, 55.4% were female and 48.3% were aged 21-40 years. Challenges faced by the COVID-Lab were unstable reagent access and insufficient staff; shifting obligations regarding research, academic instruction, and grantsmanship; and the continuous demands from the public for information on COVID-19. The IICS provided essential testing and reported on the progress of the pandemic. IICS researchers gained better laboratory equipment and expertise in molecular SARS-CoV-2 testing but struggled to manage their conflicting educational and additional research obligations during the pandemic, which affected their productivity. Therefore, policies protecting the time and resources of the faculty and staff engaged in pandemic-related work or research are necessary components of healthcare emergency preparedness.
Collapse
Affiliation(s)
- Florencia Del-Puerto
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Leticia E Rojas
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Chyntia C Díaz Acosta
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Laura X Franco
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Fátima Cardozo
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - María E Galeano
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Adriana Valenzuela
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Alejandra Rojas
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Magaly Martínez
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Ana Ayala-Lugo
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Laura Mendoza
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Fátima S Ovando
- Departamento de Control de Infecciones, Facultad de Ciencias Médicas, Hospital de Clínicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Mario F Martínez
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Dirección General, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Hyun J Chung
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eva Nara
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, TN 38103, USA
| |
Collapse
|
21
|
Sritong N, Sala de Medeiros M, Basing LA, Linnes JC. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. LAB ON A CHIP 2023; 23:888-912. [PMID: 36688463 PMCID: PMC10028599 DOI: 10.1039/d2lc00554a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
From HIV and influenza to emerging pathogens like COVID-19, each new infectious disease outbreak has highlighted the need for massively-scalable testing that can be performed outside centralized laboratory settings at the point-of-care (POC) in order to prevent, track, and monitor endemic and pandemic threats. Nucleic acid amplification tests (NAATs) are highly sensitive and can be developed and scaled within weeks while protein-based rapid tests require months for production. Combining NAATs with paper-based detection platforms are promising due to the manufacturability, scalability, and simplicity of each of these components. Typically, paper-based NAATs consist of three sequential steps: sample collection and preparation, amplification of DNA or RNA from pathogens of interest, and detection. However, these exist within a larger ecosystem of sample collection and interpretation workflow, usability, and manufacturability which can be vastly perturbed during a pandemic emergence. This review aims to explore the challenges of paper-based NAATs covering sample-to-answer procedures along with three main types of clinical samples; blood, urine, and saliva, as well as broader operational, scale up, and regulatory aspects of device development and implementation. To fill the technological gaps in paper-based NAATs, a sample-in-result-out system that incorporates the integrated sample collection, sample preparation, and integrated internal amplification control while also balancing needs of users and manufacturability upfront in the early design process is required.
Collapse
Affiliation(s)
- Navaporn Sritong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Extraction Bottleneck in the Diagnosis of SARS-CoV-2: Evaluation of an Alternative Protocol Derived from Veterinary Use. Microorganisms 2023; 11:microorganisms11020535. [PMID: 36838500 PMCID: PMC9960603 DOI: 10.3390/microorganisms11020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The COVID-19 pandemic represented a challenge for health-care systems, and a major bottleneck in SARS-CoV-2 diagnosis was the unavailability of extraction reagents. To overcome this limitation, we performed a comparative analysis to evaluate the performance of an alternative extraction protocol derived from veterinary use adapted to an open robotic platform (Testing method). A total of 73 nasopharyngeal swabs collected for diagnosis of SARS-CoV-2 infection were simultaneously extracted with the Testing protocol and the laboratory Standard of Care in order to assess the performance of the first one. The Cohen's coefficient between both procedures was excellent (K Value = 0.955). Analysis of cycle threshold and linear regression showed a significant correlation between the two methods for each tested genetic target. Although validated for veterinary applications, the Testing method showed excellent performances in RNA extraction, with several advantages: lower sample input volume, the possibility to overcome the lack of deep-well plates and adaptability to robotic liquid handlers.
Collapse
|
23
|
Cao H, Xie J, Cheng J, Xu Y, Lu X, Tang J, Zhang X, Wang H. CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification. Anal Chem 2023; 95:2303-2311. [PMID: 36655772 DOI: 10.1021/acs.analchem.2c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sensitive and reliable clustered regularly interspaced short palindromic repeats (CRISPR) quantification without preamplification of the sample remains a challenge. Herein, we report a CRISPR Cas12a-powered silicon surface-enhanced Raman spectroscopy (SERS) ratiometric chip for sensitive and reliable quantification. As a proof-of-concept application, we select the platelet-derived growth factor-BB (PDGF-BB) as the target. We first develop a microfluidic synthetic strategy to prepare homogeneous silicon SERS substrates, in which uniform silver nanoparticles (AgNPs) are in situ grown on a silicon wafer (AgNPs@Si) by microfluidic galvanic deposition reactions. Next, one 5'-SH-3'-ROX-labeled single-stranded DNA (ssDNA) is modified on AgNPs via Ag-S bonds. In our design, such ssDNA has two fragments: one fragment hybridizes to its complementary DNA (5'-Cy3-labeled ssDNA) to form double-stranded DNA (dsDNA) and the other fragment labeled with 6'-carboxy-X-rhodmine (ROX) extends out as a substrate for Cas12a. The cleavage of the ROX-tagged fragment by Cas12a is controlled by the presence or not of PDGF-BB. Meanwhile, Cy3 molecules serving as internal standard molecules still stay at the end of the rigid dsDNA, and their signals remain constant. Thereby, the ratio of ROX signal intensity to Cy3 intensity can be employed for the reliable quantification of PDGF-BB concentration. The developed chip features an ultrahigh sensitivity (e.g., the limit of detection is as low as 3.2 pM, approximately 50 times more sensitive than the fluorescence counterpart) and good reproducibility (e.g., the relative standard deviation is less than 5%) in the detection of PDGF-BB.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingxuan Xie
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayi Cheng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
AbuObead DA, Alhomsi TK, Zhra M, Alosaimi B, Hamza M, Awadalla M, Abdelhadi OE, Alsharif JA, Okdah L, AlKattan K, Turki SA, Fakhoury HMA, Aljada A. Development and Validation of ScriptTaq COVID PCR: An In-House Multiplex rRT-PCR for Low-Cost Detection. Curr Issues Mol Biol 2022; 44:6117-6131. [PMID: 36547078 PMCID: PMC9777119 DOI: 10.3390/cimb44120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings.
Collapse
Affiliation(s)
| | | | - Mahmoud Zhra
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Muaawia Hamza
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
- Faculty of Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | | | - Liliane Okdah
- Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Saeed Al Turki
- Anwa Medical Labs, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hana M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| |
Collapse
|
25
|
Duma Z, Ramsuran V, Chuturgoon AA, Edward VA, Naidoo P, Mkhize-Kwitshana ZL. Evaluation of Various Alternative Economical and High Throughput SARS-CoV-2 Testing Methods within Resource-Limited Settings. Int J Mol Sci 2022; 23:14350. [PMID: 36430827 PMCID: PMC9694816 DOI: 10.3390/ijms232214350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak posed a challenge for diagnostic laboratories worldwide, with low-middle income countries (LMICs) being the most affected. The polymerase chain reaction (PCR) is the gold standard method for detecting SARS-CoV-2 infection. However, the challenge with this method is that it is expensive, which has resulted in under-testing for SARS-CoV-2 infection in many LMICs. Hence, this study aimed to compare and evaluate alternative methods for the mass testing of SARS-CoV-2 infection in laboratories with limited resources to identify cost-effective, faster, and accurate alternatives to the internationally approved kits. A total of 50 residual nasopharyngeal swab samples were used for evaluation and comparison between internationally approved kits (Thermo Fisher PureLink™ RNA Isolation Kit and Thermo Fisher TaqPath™ COVID-19 Assay Kit) and alternative methods (three RNA extraction and four commercial SARS-CoV-2 RT-PCR assay kits) in terms of the cost analysis, diagnostic accuracy, and turnaround time. In terms of performance, all of the alternative RNA extraction methods evaluated were comparable to the internationally approved kits but were more cost-effective (Lucigen QuickExtract™ RNA Extraction Kit, Bosphore EX-Tract Dry Swab RNA Solution and Sonicator method) and four commercial SARS-CoV-2 RT-PCR assay kits (Nucleic Acid COVID-19 Test Kit (SARS-CoV-2), abTESTM COVID-19 qPCR I Kit, PCL COVID19 Speedy RT-PCR Kit, and PCLMD nCoV One-Step RT-PCR Kit) with a sensitivity range of 76-100% and specificity of 96-100%. The cost per sample was reduced by more than 50% when compared to internationally approved kits. When compared to the Thermo Fisher PureLink™ Kit and Thermo Fisher TaqPath™ COVID-19 Assay Kit, the alternative methods had a faster turnaround time, indicating that laboratories with limited resources may be able to process more samples in a day. The above-mentioned cost-effective, fast, and accurate evaluated alternative methods can be used in routine diagnostic laboratories with limited resources for mass testing for SARS-CoV-2 because these were comparable to the internationally approved kits, Thermo Fisher PureLink™ Kit and Thermo Fisher TaqPath™ COVID-19 Assay Kit. The implementation of alternative methods will be the most cost-effective option for testing SARS-CoV-2 infection in LMICs.
Collapse
Affiliation(s)
- Zamathombeni Duma
- Disciplines of Medical Microbiology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Umbilo, Durban 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Veron Ramsuran
- Disciplines of Medical Microbiology, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Disciplines of Medical Biochemistry, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Vinodh A. Edward
- The Aurum Institute, 29 Queens Road, Parktown, Johannesburg 2193, South Africa
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 3629, South Africa
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06511, USA
| | - Pragalathan Naidoo
- Disciplines of Medical Microbiology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Umbilo, Durban 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Disciplines of Medical Microbiology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Umbilo, Durban 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
26
|
Zai Y, Min C, Wang Z, Ding Y, Zhao H, Su E, He N. A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. LAB ON A CHIP 2022; 22:3436-3452. [PMID: 35972195 DOI: 10.1039/d2lc00434h] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), due to the novel coronavirus (SARS-CoV-2), has created an unprecedented threat to the global health system, especially in resource-limited areas. This challenge shines a spotlight on the urgent need for a point-of-care (POC) quantitative real-time PCR (qPCR) test for sensitive and rapid diagnosis of viral infections. In a POC system, a closed, single-use, microfluidic cartridge is commonly utilized for integration of nucleic acid preparation, PCR amplification and florescence detection. But, most current cartridge systems often involve complicated nucleic acid extraction via active pumping that relies on cumbersome external hardware, causing increases in system complexity and cost. In this work, we demonstrate a gravity-driven cartridge design for an integrated viral RNA/DNA diagnostic test that does not require auxiliary hardware for fluid pumping due to adopted extraction-free amplification. This microfluidic cartridge only contains two reaction chambers for nucleic acid lysis and amplification respectively, enabling a fast qPCR test in less than 30 min. This gravity-driven pumping strategy can help simplify and minimize the microfluidic cartridge, thus enabling high-throughput (up to 12 test cartridges per test) molecular detection via a small cartridge readout system. Thus, this work addresses the scalability limitation of POC molecular testing and can be run in any settings. We verified the analytical sensitivity and specificity of the cartridge testing for respiratory pathogens and sexually transmitted diseases using SARS-CoV-2, influenza A/B RNA samples, and human papillomavirus 16/18 DNA samples. Our cartridge system exhibited a comparable detection performance to the current gold standard qPCR instrument ABI 7500. Moreover, our system showed very high diagnostic accuracy for viral RNA/DNA detection that was well validated by ROC curve analysis. The sample-to-answer molecular testing system reported in this work has the advantages of simplicity, rapidity, and low cost, making it highly promising for prevention and control of infectious diseases in poor-resource areas.
Collapse
Affiliation(s)
- Yunfeng Zai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Chao Min
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Zunliang Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
| | - Yongjun Ding
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Huan Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Enben Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
| |
Collapse
|
27
|
Moitra P, Chaichi A, Abid Hasan SM, Dighe K, Alafeef M, Prasad A, Gartia MR, Pan D. Probing the mutation independent interaction of DNA probes with SARS-CoV-2 variants through a combination of surface-enhanced Raman scattering and machine learning. Biosens Bioelectron 2022; 208:114200. [PMID: 35367703 PMCID: PMC8938299 DOI: 10.1016/j.bios.2022.114200] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has been characterized by the emergence of sets of mutations impacting the virus characteristics, such as transmissibility and antigenicity, presumably in response to the changing immune profile of the human population. The presence of mutations in the SARS-CoV-2 virus can potentially impact therapeutic and diagnostic test performances. We design and develop here a unique set of DNA probes i.e., antisense oligonucleotides (ASOs) which can interact with genetic sequences of the virus irrespective of its ongoing mutations. The probes, developed herein, target a specific segment of the nucleocapsid phosphoprotein (N) gene of SARS-CoV-2 with high binding efficiency which do not mutate among the known variants. Further probing into the interaction profile of the ASOs reveals that the ASO-RNA hybridization remains unaltered even for a hypothetical single point mutation at the target RNA site and diminished only in case of the hypothetical double or triple point mutations. The mechanism of interaction among the ASOs and SARS-CoV-2 RNA is then explored with a combination of surface-enhanced Raman scattering (SERS) and machine learning techniques. It has been observed that the technique, described herein, could efficiently discriminate between clinically positive and negative samples with ∼100% sensitivity and ∼90% specificity up to 63 copies/mL of SARS-CoV-2 RNA concentration. Thus, this study establishes N gene targeted ASOs as the fundamental machinery to efficiently detect all the current SARS-CoV-2 variants regardless of their mutations.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Ketan Dighe
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States
| | - Maha Alafeef
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States.
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States; Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, United States.
| |
Collapse
|
28
|
de Vries EM, Cogan NOI, Gubala AJ, Mee PT, O'Riley KJ, Rodoni BC, Lynch SE. Rapid, in-field deployable, avian influenza virus haemagglutinin characterisation tool using MinION technology. Sci Rep 2022; 12:11886. [PMID: 35831457 PMCID: PMC9279447 DOI: 10.1038/s41598-022-16048-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.
Collapse
Affiliation(s)
- Ellen M de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Peter T Mee
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Kim J O'Riley
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Stacey E Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
29
|
Gulati GK, Panpradist N, Stewart SWA, Beck IA, Boyce C, Oreskovic AK, García-Morales C, Avila-Ríos S, Han PD, Reyes-Terán G, Starita LM, Frenkel LM, Lutz BR, Lai JJ. Simultaneous monitoring of HIV viral load and screening of SARS-CoV-2 employing a low-cost RT-qPCR test workflow. Analyst 2022; 147:3315-3327. [PMID: 35762367 PMCID: PMC10143869 DOI: 10.1039/d2an00405d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.
Collapse
Affiliation(s)
- Gaurav K Gulati
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, USA
| | - Samuel W A Stewart
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ingrid A Beck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ceejay Boyce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Amy K Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Claudia García-Morales
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Santiago Avila-Ríos
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Peter D Han
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Gustavo Reyes-Terán
- Coordination of the Mexican National Institutes of Health and High Specialty Hospitals, Mexico City, Mexico
| | - Lea M Starita
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Departments of Medicine, Pediatrics, Laboratory Medicine and Pathology, Global Health and Medicine, University of Washington, Seattle, Washington, USA
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
30
|
Beattie RE, Blackwood AD, Clerkin T, Dinga C, Noble RT. Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater. PLoS One 2022; 17:e0270659. [PMID: 35749532 PMCID: PMC9232146 DOI: 10.1371/journal.pone.0270659] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Wastewater based epidemiology (WBE) is useful for tracking and monitoring the level of disease prevalence in a community and has been used extensively to complement clinical testing during the current COVID-19 pandemic. Despite the numerous benefits, sources of variability in sample storage, handling, and processing methods can make WBE data difficult to generalize. We performed an experiment to determine sources of variability in WBE data including the impact of storage time, handling, and processing techniques on the concentration of SARS-CoV-2 in wastewater influent from three wastewater treatment plants (WWTP) in North Carolina over 19 days. The SARS-CoV-2 concentration in influent samples held at 4°C did not degrade significantly over the 19-day experiment. Heat pasteurization did not significantly impact the concentration of SARS-CoV-2 at two of the three WWTP but did reduce viral recovery at the WWTP with the smallest population size served. On each processing date, one filter from each sample was processed immediately while a replicate filter was frozen at -80°C. Once processed, filters previously frozen were found to contain slightly higher concentrations (<0.2 log copies/L) than their immediately processed counterparts, indicating freezing filters is a viable method for delayed quantification and may even improve recovery at WWTP with low viral concentrations. Investigation of factors contributing to variability during sample processing indicated that analyst experience level contributed significantly (p<0.001) to accepted droplet generation while extraction efficiency and reverse transcription efficiency contributed significantly (p<0.05) to day-to-day SARS-CoV-2 variability. This study provides valuable practical information for minimizing decay and/or loss of SARS CoV-2 in wastewater influent while adhering to safety procedures, promoting efficient laboratory workflows, and accounting for sources of variability.
Collapse
Affiliation(s)
- Rachelle E. Beattie
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - A. Denene Blackwood
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Thomas Clerkin
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Carly Dinga
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Rachel T. Noble
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| |
Collapse
|
31
|
Castellanos M, Somoza Á. Emerging clinically tested detection methods for COVID‐19. FEBS J 2022. [PMID: 35490403 PMCID: PMC9348311 DOI: 10.1111/febs.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
|
32
|
Asghar R, Rasheed M, ul Hassan J, Rafique M, Khan M, Deng Y. Advancements in Testing Strategies for COVID-19. BIOSENSORS 2022; 12:410. [PMID: 35735558 PMCID: PMC9220779 DOI: 10.3390/bios12060410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.
Collapse
Affiliation(s)
- Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Jalees ul Hassan
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences-UVAS, Lahore 54000, Pakistan;
| | - Mohsin Rafique
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
| | - Mashooq Khan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
33
|
Simple and Economical Extraction of Viral RNA and Storage at Ambient Temperature. Microbiol Spectr 2022; 10:e0085922. [PMID: 35647876 PMCID: PMC9241768 DOI: 10.1128/spectrum.00859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA extraction is essential for the molecular detection of common viral pathogens. However, available extraction methods and the need for ultra-cold storage limit molecular testing in resource-constrained settings. Herein, we describe the development of an economical RNAExtraction and Storage (RNAES) protocol that eliminates requirements for instrumentation, expensive materials, and preserved cold chain. Through an iterative process, we optimized viral lysis and RNA binding to and elution from glass fiber membranes included in simple RNAES packets. Efficient viral lysis was achieved with a nontoxic buffer containing sucrose, KCl, proteinase K, and carrier RNA. Viral RNA binding to glass fiber membranes was concentration dependent across seven orders of magnitude (4.0–10.0 log10 copies/μL) and significantly increased with an acidic arginine binding buffer. For the clinical evaluation, 36 dengue virus (DENV)-positive serum samples were extracted in duplicate with the optimized RNAES protocol and once in an EMAG instrument (bioMérieux). DENV RNA was successfully extracted from 71/72 replicates (98.6%) in the RNAES protocol, and real-time RT-PCR cycle threshold (CT) values correlated between extraction methods. DENV RNA, extracted from clinical samples, was stable when stored on dried RNAES membranes at ambient temperature for up to 35 days, with median eluate RNA concentration decreasing by 0.18 and 0.29 log10 copies/μL between day 0 and days 7 and 35, respectively. At a cost of $0.08/sample, RNAES packets address key limitations to available protocols and may increase capacity for molecular detection of RNA viruses. IMPORTANCE RNA extraction methods and ultra-cold storage requirements limit molecular testing for common viruses. We developed a simple, flexible, and economical method that simultaneously addresses these limitations. At $0.08/sample, the new RNAExtraction and Storage (RNAES) protocol successfully extracted viral RNA from acute-phase sera and provided stable, ambient-temperature RNA storage for 35 days. Using this approach, we expect to improve RNA virus detection and outbreak response in resource-constrained settings.
Collapse
|
34
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
35
|
SARS-CoV-2 Infection in Iranian People Living with Human Immunodeficiency Virus-1 Infection. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A novel Coronavirus first emerging in Wuhan, China, was named severe acute respiratory syndrome Coronavirus 2 (SARS‐CoV‐2). The disease caused by SARS‐CoV‐2 is known as Coronavirus disease 2019 (COVID‐19). HIV-1 infected individuals may be at risk of COVID-19. Objectives: This cross-sectional study evaluated the SARS-CoV-2 infection rate and COVID-19 prevalence among Iranian HIV-1-infected people. Methods: The study was conducted on 155 HIV-1-infected patients from June 2020 to October 2020. COVID-19 Ab (IgG) was detected using an enzyme immunoassay in serum specimens. Furthermore, nasopharyngeal and oropharyngeal specimens were collected. Then, the genomic RNA of SARS‐CoV‐2 was detected using a real-time polymerase chain reaction (RT-PCR). Clinical symptoms of the studied participants with and without COVID-19 were examined. Results: Of 155 HIV-1-infected individuals, 12 (7.7%) had positive real-time PCR results for SARS-CoV-2. Out of 12 (7.7%) patients with COVID‐19, four (33.3%) were males. Anti-COVID Ab (IgG) was detected in 10 (6.5%) participants, of whom eight (80.0%) were males. The most common COVID-19 clinical symptoms, including dry cough, fever, runny nose, anosmia, and hypogeusia, were observed in seven (58.3%), five (41.7%), five (41.7%), five (41.7%), and five (41.7%) patients with COVID-19, respectively. Conclusions: A recent study has shown that the risk of SARS‐CoV‐2 infection in HIV-infected individuals is similar to that in the general population.
Collapse
|
36
|
Aralis Z, Rauch JN, Audouard M, Valois E, Lach RS, Solley S, Baxter NJ, Kosik KS, Wilson MZ, Acosta-Alvear D, Arias C. CREST, a Cas13-Based, Rugged, Equitable, Scalable Testing (CREST) for SARS-CoV-2 Detection in Patient Samples. Curr Protoc 2022; 2:e385. [PMID: 35195954 DOI: 10.1002/cpz1.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic has taken a devastating human toll worldwide. The development of impactful guidelines and measures for controlling the COVID-19 pandemic requires continuous and widespread testing of suspected cases and their contacts through accurate, accessible, and reliable methods for SARS-CoV-2 detection. Here we describe a CRISPR-Cas13-based method for the detection of SARS-CoV-2. The assay is called CREST (Cas13-based, rugged, equitable, scalable testing), and is specific, sensitive, and highly accessible. As such, CREST may provide a low-cost and dependable alternative for SARS-CoV-2 surveillance. © 2022 Wiley Periodicals LLC. Basic Protocol: Cas13-ased detection of SARS-CoV-2 genetic material using a real-time PCR detection system Alternate Protocol: Cas13-based detection of SARS-CoV-2 genetic material using a fluorescence viewer Support Protocol 1: LwaCas13a purification Support Protocol 2: In vitro transcription of synthetic targets.
Collapse
|
37
|
The Detection of SARS-CoV-2 in the Environment: Lessons from Wastewater. WATER 2022. [DOI: 10.3390/w14040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Wastewater has historically been an important source of enteric pathogens, as well as a source of unconventational or unexpected pathogens, including those present in the respiratory tract, saliva, urine, and blood. This is the case with SARS-CoV-2, the causative agent of the most recent pandemic. SARS-CoV-2 has been identified in wastewater across various geographical regions prior to, and during, the report of cases. The detection of SARS-CoV-2 in wastewater is usually performed using molecular techniques targeting specific genomic regions. High-throughput sequencing techniques, both untargeted and targeted or amplicon-based, are also being applied in combination with molecular techniques for the detection of SARS-CoV-2 variants to determine the genetic diversity and phylogenetic relatedness. The identification of SARS-CoV-2 in wastewater has a number of epidemiological, biological, and ecological applications, which can be incorporated into future outbreaks, epidemics, or pandemics.
Collapse
|
38
|
Benevides Lima L, Mesquita FP, Brasil de Oliveira LL, Andréa da Silva Oliveira F, Elisabete Amaral de Moraes M, Souza PFN, Montenegro RC. True or False: What are the factors that influence COVID-19 diagnosis by RT-qPCR? Expert Rev Mol Diagn 2022; 22:157-167. [PMID: 35130461 PMCID: PMC8862161 DOI: 10.1080/14737159.2022.2037425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease has had a catastrophic impact on the world resulting in several deaths. Since World Health Organization declared the pandemic status of the disease, several molecular diagnostic kits have been developed to help the tracking of viruses spread. Areas Covered This review aims to describe and evaluate the currently reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) diagnosis kit. Several processes used in COVID-19 diagnostic procedures are detailed in further depth to demonstrate optimal practices. Therefore, we debate the main factors that influence the viral detection of SARS-COV-2 and how they can affect the diagnosis of patients. Expert Opinion Here is highlighted and discussed several factors that can interfere in the RT-PCR analysis, such as the viral load of the sample, collection site, collection methodology, sample storage, transport, primer, and probe mismatch/dimerization in different brand kits. This is a pioneer study to discuss the factor that could lead to the wrong interpretation of RT-qPCR diagnosis of SARS-CoV-2. This study aimed to help the readers to understand what very likely is behind a bad result of SARS-CoV-2 detection by RT-PCR and what could be done to reach a reliable diagnosis.
Collapse
Affiliation(s)
- Luina Benevides Lima
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Lais Lacerda Brasil de Oliveira
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Francisca Andréa da Silva Oliveira
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology (DBBM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| |
Collapse
|
39
|
Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BIOCHIP JOURNAL 2022; 16:376-396. [PMID: 35968255 PMCID: PMC9363872 DOI: 10.1007/s13206-022-00078-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has had significant economic and social impacts on billions of people worldwide since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in November 2019. Although polymerase chain reaction (PCR)-based technology serves as a robust test to detect SARS-CoV-2 in patients with COVID-19, there is a high demand for cost-effective, rapid, comfortable, and accurate point-of-care diagnostic tests in medical facilities. This review introduces the SARS-CoV-2 viral structure and diagnostic biomarkers derived from viral components. A comprehensive introduction of a paper-based diagnostic platform, including detection mechanisms for various target biomarkers and a COVID-19 commercial kit is presented. Intrinsic limitations related to the poor performance of currently developed paper-based devices and unresolved issues are discussed. Furthermore, we provide insight into novel paper-based diagnostic platforms integrated with advanced technologies such as nanotechnology, aptamers, surface-enhanced Raman spectroscopy (SERS), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Finally, we discuss the prospects for the development of highly sensitive, accurate, cost-effective, and easy-to-use point-of-care COVID-19 diagnostic methods.
Collapse
|
40
|
Au WY, Cheung PPH. Diagnostic performances of common nucleic acid tests for SARS-CoV-2 in hospitals and clinics: a systematic review and meta-analysis. THE LANCET. MICROBE 2021; 2:e704-e714. [PMID: 34661181 PMCID: PMC8510644 DOI: 10.1016/s2666-5247(21)00214-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An optimised standard experimental setup across different hospitals is urgently needed to ensure consistency in nucleic acid test results for SARS-CoV-2 detection. A standard comparison across different nucleic acid tests and their optimal experimental setups is not present. We assessed the performance of three common nucleic acid tests, namely digital PCR (dPCR), quantitative PCR (qPCR), and loop-mediated isothermal amplification (LAMP), to detect SARS-CoV-2 in clinical settings. METHODS In this systematic review and meta-analysis we compared sensitivity and specificity of qPCR, dPCR, and LAMP and their performances when different experimental setups (namely specimen type used, use of RNA extraction, primer-probe sets, and RNA extraction methods) are applied. We searched PubMed, BioRxiv, MedRxiv, SciFinder, and ScienceDirect for studies and preprints published between Feb 29 and Dec 15, 2020. Included dPCR, qPCR, and LAMP studies using any type of human specimens should report the number of true-positive, true-negative, false-positive, and false-negative cases with Emergency Use Authorization (EUA)-approved PCR assays as the comparator. Studies with a sample size of less than ten, descriptive studies, case studies, reviews, and duplicated studies were excluded. Pooled sensitivity and specificity were computed from the true and false positive and negative cases using Reitsma's bivariate random-effects and bivariate latent class models. Test performance reported in area under the curve (AUC) of the three nucleic acid tests was further compared by pooling studies with similar experimental setups (eg, tests that used RNA extracted pharyngeal swabs but with either the open reading frame 1ab or the N primer). Heterogeneity was assessed and reported in I 2 and τ2. FINDINGS Our search identified 1277 studies of which we included 66 studies (11 dPCR, 32 qPCR, and 23 LAMP) with 15 017 clinical samples in total in our systematic review and 52 studies in our meta-analysis. dPCR had the highest pooled diagnostic sensitivity (94·1%, 95% CI 88·9-96·6, by Reitsma's model and 95·8%, 54·9-100·0, by latent class model), followed by qPCR (92·7%, 88·3-95·6, and 93·4%, 60·9-99·9) and LAMP (83·3%, 76·9-88·2, and 86·2%, 20·7-99·9), using EUA-approved PCR kits as the reference standard. LAMP was the most specific with a pooled estimate of 96·3% (93·8-97·8) by Reitsma's model and 94·3% (49·1-100·0) by latent class model, followed by qPCR (92·9%, 87·2-96·2, and 93·1%, 47·1-100·0) and dPCR (78·5%, 57·4-90·8, and 73·8%, 0·9-100·0). The overall heterogeneity was I 2 0·5% (τ2 2·79) for dPCR studies, 0% (4·60) for qPCR studies, and 0% (3·96) for LAMP studies. AUCs of the three nucleic acid tests were the highest and differed the least between tests (ie, AUC>0·98 for all tests) when performed with RNA extracted pharyngeal swabs using SARS-CoV-2 open reading frame 1ab primer. INTERPRETATION All three nucleic acid tests consistently perform better with pharyngeal swabs using SARS-CoV-2 open reading frame 1ab primer with RNA extraction. dPCR was shown to be the most sensitive, followed by qPCR and LAMP. However, their accuracy does not differ significantly. Instead, accuracy depends on specific experimental conditions, implying that more efforts should be directed to optimising the experimental setups for the nucleic acid tests. Hence, our results could be a reference for optimising and establishing a standard nucleic acid test protocol that is applicable in laboratories worldwide. FUNDING University Grants Committee and The Chinese University of Hong Kong.
Collapse
Affiliation(s)
- Wing Ying Au
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Peter Pak Hang Cheung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
41
|
Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, Hassan AH, Peariasamy KM, Lee YL, Suppiah J, Thayan R, Lau YL. Two extraction-free reverse transcription loop-mediated isothermal amplification assays for detection of SARS-CoV-2. BMC Infect Dis 2021; 21:1162. [PMID: 34789179 PMCID: PMC8595270 DOI: 10.1186/s12879-021-06876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Current assays for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on time consuming, costly and laboratory based methods for virus isolation, purification and removing inhibitors. To address this limitation, we propose a simple method for testing RNA from nasopharyngeal swab samples that bypasses the RNA purification step. METHODS In the current project, we have described two extraction-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of SARS-CoV-2 by using E gene and RdRp gene as the targets. RESULTS Here, results showed that reverse transcription loop-mediated isothermal amplification assays with 88.4% sensitive (95% CI: 74.9-96.1%) and 67.4% sensitive (95% CI: 51.5-80.9%) for E gene and RdRp gene, respectively. CONCLUSION Without the need of RNA purification, our developed RT-LAMP assays for direct detection of SARS-CoV-2 from nasopharyngeal swab samples could be turned into alternatives to qRT-PCR for rapid screening.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fatma Diyana Mohd Bukhari
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Zulaikha Zulkefli
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ilyiana Ismail
- Department of Pathology, Hospital Sungai Buloh, Ministry of Health, Kuala Lumpur, Malaysia
| | - Nur Izati Mustapa
- Department of Pathology, Hospital Sungai Buloh, Ministry of Health, Kuala Lumpur, Malaysia
| | - Tuan Suhaila Tuan Soh
- Department of Pathology, Hospital Sungai Buloh, Ministry of Health, Kuala Lumpur, Malaysia
| | - Afifah Haji Hassan
- Department of Pathology, Hospital Sungai Buloh, Ministry of Health, Kuala Lumpur, Malaysia
| | - Kalaiarasu M Peariasamy
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Kuala Lumpur, Malaysia
| | - Yee Leng Lee
- Clinical Research Centre, Hospital Sungai Buloh, Ministry of Health, Kuala Lumpur, Malaysia
| | - Jeyanthi Suppiah
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Tripathy S, Supraja P, Mohanty S, Sai VM, Agrawal T, Chowdary CG, Taranikanti M, Bandaru R, Mudunuru AK, Tadi LJ, Suravaram S, Siddiqui IA, Maddur S, Guntuka RK, Singh R, Singh V, Singh SG. Artificial Intelligence-Based Portable Bioelectronics Platform for SARS-CoV-2 Diagnosis with Multi-nucleotide Probe Assay for Clinical Decisions. Anal Chem 2021; 93:14955-14965. [PMID: 34694783 DOI: 10.1021/acs.analchem.1c01650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the context of the recent pandemic, the necessity of inexpensive and easily accessible rapid-test kits is well understood and need not be stressed further. In light of this, we report a multi-nucleotide probe-based diagnosis of SARS-CoV-2 using a bioelectronics platform, comprising low-cost chemiresistive biochips, a portable electronic readout, and an Android application for data acquisition with machine-learning-based decision making. The platform performs the desired diagnosis from standard nasopharyngeal and/or oral swabs (both on extracted and non-extracted RNA samples) without amplifying the viral load. Being a reverse transcription polymerase chain reaction-free hybridization assay, the proposed approach offers inexpensive, fast (time-to-result: ≤ 30 min), and early diagnosis, as opposed to most of the existing SARS-CoV-2 diagnosis protocols recommended by the WHO. For the extracted RNA samples, the assay accounts for 87 and 95.2% test accuracies, using a heuristic approach and a machine-learning-based classification method, respectively. In case of the non-extracted RNA samples, 95.6% decision accuracy is achieved using the heuristic approach, with the machine-learning-based best-fit model producing 100% accuracy. Furthermore, the availability of the handheld readout and the Android application-based simple user interface facilitates easy accessibility and portable applications. Besides, by eliminating viral RNA extraction from samples as a pre-requisite for specific detection, the proposed approach presents itself as an ideal candidate for point-of-care SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Suryasnata Tripathy
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Patta Supraja
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Swati Mohanty
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vallepu Mohan Sai
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Tushant Agrawal
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | | | - Madhuri Taranikanti
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| | - Rajiv Bandaru
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Lakshmi Jyothi Tadi
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India.,ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | - Swathi Suravaram
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Srinivas Maddur
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Ranjana Singh
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vikrant Singh
- School of Medicine, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Shiv Govind Singh
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
43
|
Guaman-Bautista LP, Moreta-Urbano E, Oña-Arias CG, Torres-Arias M, Kyriakidis NC, Malcı K, Jonguitud-Borrego N, Rios-Solis L, Ramos-Martinez E, López-Cortés A, Barba-Ostria C. Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics (Basel) 2021; 11:1981. [PMID: 34829328 PMCID: PMC8621220 DOI: 10.3390/diagnostics11111981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID-19 pandemic has had an enormous impact on economies and health systems globally, therefore a top priority is the development of increasingly better diagnostic and surveillance alternatives to slow down the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In order to establish massive testing and contact tracing policies, it is crucial to have a clear view of the diagnostic options available and their principal advantages and drawbacks. Although classical molecular methods such as RT-qPCR are broadly used, diagnostic alternatives based on technologies such as LAMP, antigen, serological testing, or the application of novel technologies such as CRISPR-Cas for diagnostics, are also discussed. The present review also discusses the most important automation strategies employed to increase testing capability. Several serological-based diagnostic kits are presented, as well as novel nanotechnology-based diagnostic methods. In summary, this review provides a clear diagnostic landscape of the most relevant tools to track COVID-19.
Collapse
Affiliation(s)
- Linda P. Guaman-Bautista
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Erick Moreta-Urbano
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Claudia G. Oña-Arias
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Marbel Torres-Arias
- Immunology and Virology Laboratory, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas, Quito 171103, Ecuador;
| | - Nikolaos C. Kyriakidis
- Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas, Quito 170125, Ecuador;
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Espiridion Ramos-Martinez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico;
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
44
|
Makela M, Lin Z, Lin PT. Surface Functionalized Anodic Aluminum Oxide Membrane for Opto-Nanofluidic SARS-CoV-2 Genomic Target Detection. IEEE SENSORS JOURNAL 2021; 21:22645-22650. [PMID: 35789083 PMCID: PMC8769019 DOI: 10.1109/jsen.2021.3109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 05/24/2023]
Abstract
An ultra-thin and highly sensitive SARS-CoV-2 detection platform was demonstrated using a nano-porous anodic aluminum oxide (AAO) membrane. The membrane surface was functionalized to enable efficient trapping and identification of SARS-CoV-2 genomic targets through DNA-DNA and DNA-RNA hybridization. To immobilize the probe oligonucleotides on the AAO membrane, the pore surface was first coated with the linking reagents, 3-aminopropyltrimethoxysilane (APTMS) and glutaraldehyde (GA), by a compact vacuum infiltration module. After that, complementary target oligos with fluorescent modifier was pulled and infiltrated into the nano-fluidic channels formed by the AAO pores. The fluorescent signal applying the AAO membrane sensors was two orders stronger than a flat glass template. In addition, the dependence between the nano-pore size and the fluorescent intensity was evaluated. The optimized pore diameter d is 200 nm, which can accommodate the assembled oligonucleotide and aminosilane layers without blocking the AAO nano-fluidic channels. Our DNA functionalized membrane sensor is an accurate and high throughput platform supporting rapid virus tests, which is critical for population-wide diagnostic applications result in a page being rejected by search engines.
Collapse
Affiliation(s)
- Megan Makela
- Center for Remote Health Technologies and SystemsDepartment of Materials Science and EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Zhihai Lin
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Pao Tai Lin
- Center for Remote Health Technologies and SystemsDepartment of Materials Science and EngineeringTexas A&M UniversityCollege StationTX77843USA
- Departments of Electrical and Computer Engineering and Materials Science and EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
45
|
Feitosa NM, da Costa Rodrigues B, Petry AC, Nocchi KJCV, de Moraes Brindeiro R, Zilberberg C, Monteiro-de-Barros C, Mury FB, de Souza-Menezes J, Nepomuceno-Silva JL, da Silva ML, de Medeiros MJ, de Souza Gestinari R, da Silva de Alvarenga A, Pozzobon APB, Silva CAO, das Graças Dos Santos D, Silvestre DH, de Sousa GF, de Almeida JF, da Silva JN, Brandão LM, de Oliveira Drummond L, Neto LRG, de Mello Carpes R, Dos Santos RC, Portal TM, Tanuri A, Nunes-da-Fonseca R. Molecular testing and analysis of disease spreading during the emergence of COVID-19 in Macaé, the Brazilian National Capital of Oil. Sci Rep 2021; 11:20121. [PMID: 34635707 PMCID: PMC8505656 DOI: 10.1038/s41598-021-99475-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
The Brazilian strategy to overcome the spread of COVID-19 has been particularly criticized due to the lack of a national coordinating effort and an appropriate testing program. Here, a successful approach to control the spread of COVID-19 transmission is described by the engagement of public (university and governance) and private sectors (hospitals and oil companies) in Macaé, state of Rio de Janeiro, Brazil, a city known as the National Oil Capital. In 2020 between the 17th and 38th epidemiological week, over two percent of the 206,728 citizens were subjected to symptom analysis and RT-qPCR testing by the Federal University of Rio de Janeiro, with positive individuals being notified up to 48 h after swab collection. Geocodification and spatial cluster analysis were used to limit COVID-19 spreading in Macaé. Within the first semester after the outbreak of COVID-19 in Brazil, Macaé recorded 1.8% of fatalities associated with COVID-19 up to the 38th epidemiological week, which was at least five times lower than the state capital (10.6%). Overall, considering the successful experience of this joint effort of private and public engagement in Macaé, our data suggest that the development of a similar strategy countrywise could have contributed to a better control of the COVID-19 spread in Brazil. Quarantine decree by the local administration, comprehensive molecular testing coupled to scientific analysis of COVID-19 spreading, prevented the catastrophic consequences of the pandemic as seen in other populous cities within the state of Rio de Janeiro and elsewhere in Brazil.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Bruno da Costa Rodrigues
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Ana Cristina Petry
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Keity Jaqueline Chagas Vilela Nocchi
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Rodrigo de Moraes Brindeiro
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Carla Zilberberg
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Cintia Monteiro-de-Barros
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Flavia Borges Mury
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Jackson de Souza-Menezes
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - José Luciano Nepomuceno-Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Manuela Leal da Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Marcio José de Medeiros
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Raquel de Souza Gestinari
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Alessandra da Silva de Alvarenga
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Allan Pierre Bonetti Pozzobon
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Carina Azevedo Oliveira Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Daniele das Graças Dos Santos
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Diego Henrique Silvestre
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Graziele Fonseca de Sousa
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Janimayri Forastieri de Almeida
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Jhenifer Nascimento da Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Layza Mendes Brandão
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Leandro de Oliveira Drummond
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Lupis Ribeiro Gomes Neto
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Raphael de Mello Carpes
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Renata Coutinho Dos Santos
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Taynan Motta Portal
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
| | - Rodrigo Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé, 27965-550, Brazil.
| |
Collapse
|
46
|
Jang YO, Lee HJ, Koo B, Cha HH, Kwon JS, Kim JY, Kim MG, Kim HS, Kim SH, Shin Y. Rapid COVID-19 Molecular Diagnostic System Using Virus Enrichment Platform. BIOSENSORS-BASEL 2021; 11:bios11100373. [PMID: 34677329 PMCID: PMC8534047 DOI: 10.3390/bios11100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, is rapidly spreading and severely straining the capacities of public health communities and systems around the world. Therefore, accurate, rapid, and robust diagnostic tests for COVID-19 are crucial to prevent further spread of the infection, alleviate the burden on healthcare and diagnostic facilities, and ensure timely therapeutic intervention. To date, several detection methods based on nucleic acid amplification have been developed for the rapid and accurate detection of SARS-CoV-2. Despite the myriad of advancements in the detection methods for SARS-CoV-2, rapid sample preparation methods for RNA extraction from viruses have rarely been explored. Here, we report a rapid COVID-19 molecular diagnostic system that combines a self-powered sample preparation assay and loop-mediated isothermal amplification (LAMP) based naked-eye detection method for the rapid and sensitive detection of SARS-CoV-2. The self-powered sample preparation assay with a hydrophilic polyvinylidene fluoride filter and dimethyl pimelimidate can be operated by hand, without the use of any sophisticated instrumentation, similar to the reverse transcription (RT)-LAMP-based lateral flow assay for the naked-eye detection of SARS-CoV-2. The COVID-19 molecular diagnostic system enriches the virus population, extracts and amplifies the target RNA, and detects SARS-CoV-2 within 60 min. We validated the accuracy of the system by using 23 clinical nasopharyngeal specimens. We envision that this proposed system will enable simple, facile, efficient, and inexpensive diagnosis of COVID-19 at home and the clinic as a pre-screening platform to reduce the burden on the medical staff in this pandemic era.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
| | - Hye-Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea
| | - Hyun Soo Kim
- INFUSIONTECH, 38, Heungan-daero 427 beon-gil, Dongan-gu, Anyang-si 14059, Korea;
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea; (H.-H.C.); (J.-S.K.); (J.Y.K.)
- Correspondence: (S.-H.K.); (Y.S.)
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.O.J.); (H.J.L.); (B.K.); (M.G.K.)
- Correspondence: (S.-H.K.); (Y.S.)
| |
Collapse
|
47
|
Biswal JK, Ranjan R, Dahiya SS, Mallick S, Mohapatra JK. Regenerated silica-based RNA purification columns to address the short supply of RNA purification kits for COVID-19 diagnosis. Mol Biol Rep 2021; 48:6871-6877. [PMID: 34510319 PMCID: PMC8435167 DOI: 10.1007/s11033-021-06688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/24/2021] [Indexed: 11/05/2022]
Abstract
Background RT-qPCR technique is the current world-wide method used for the early detection of SARS-CoV2 RNA in the suspected clinical samples. Viral RNA extraction is the key pre-analytical step for SARS-CoV2 detection which often achieved using commercial RNA-extraction kits. However, due to the COVID-19 pandemic, bulk production and the supply chains for the commercial RNA-extraction kit have been seriously compromised. The shortage of commercial RNA-extraction kit is even more acute in developing country. Furthermore, use of one-off design RNA-columns can generate plastic wastes that have an environmental pollution effect. Methods and results To address these issues, in this study, we used warm alkaline solution containing Triton X-100 for the complete removal of the residual SARS-CoV2 RNA from the used RNA-binding silica column. Columns regenerated using the alkaline solution have the viral RNA purification capability that is comparable to the fresh silica columns. We also demonstrated that RNA-binding silica columns can be regenerated and reused for a minimum of five-times. Conclusions Therefore, the use of the RNA-column regeneration method may benefits several SARS-CoV2 diagnostic laboratories throughout the world by cutting down the requirement of commercial RNA-purification column.
Collapse
Affiliation(s)
- Jitendra K Biswal
- ICAR-International Centre for Foot-and-Mouth Disease, DFMD, Jatni, Khordha, Odisha, India.
| | - Rajeev Ranjan
- ICAR-International Centre for Foot-and-Mouth Disease, DFMD, Jatni, Khordha, Odisha, India
| | - Shyam Singh Dahiya
- ICAR-International Centre for Foot-and-Mouth Disease, DFMD, Jatni, Khordha, Odisha, India
| | - Smrutirekha Mallick
- ICAR-International Centre for Foot-and-Mouth Disease, DFMD, Jatni, Khordha, Odisha, India
| | - Jajati K Mohapatra
- ICAR-International Centre for Foot-and-Mouth Disease, DFMD, Jatni, Khordha, Odisha, India
| |
Collapse
|
48
|
Sapula SA, Whittall JJ, Pandopulos AJ, Gerber C, Venter H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147270. [PMID: 33940413 PMCID: PMC8086323 DOI: 10.1016/j.scitotenv.2021.147270] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 04/15/2023]
Abstract
Wastewater-based epidemiology is currently being utilized to monitor the dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on a population scale. The detection of SARS-CoV-2 in wastewater is highly influenced by methodologies used for its isolation, concentration and RNA extraction. Although various viral concentration methods are currently employed, including polyethylene glycol (PEG) precipitation, adsorption-extraction, ultracentrifugation and ultrafiltration, to our knowledge, none of these methods have been standardized for use with a variety of wastewater matrices and/or different kits for RNA extraction and quantification. To address this, wastewater with different physical characteristics was seeded with gamma-irradiated SARS-CoV-2 and used to test the efficiency of PEG precipitation and adsorption-extraction to concentrate the virus from three physiochemically different wastewater samples, sourced from three distinct wastewater plants. Efficiency of viral concentration and RNA extraction was assessed by reverse-transcriptase polymerase chain reaction and the recovery yields calculated. As co-purification of inhibitors can be problematic for subsequent detection, two commonly used commercial master mixes were assessed for their sensitivity and efficiency to detect two SARS-CoV-2 target nucleocapsid (N) gene sequences. Recovery rates varied greatly between wastewater matrices and concentration methods, with the highest and most reproducible recovery rates (46.6-56.7%) observed when SARS-CoV-2 was precipitated with PEG and detected by the Luna® Universal master mix. The adsorption-extraction method was less effective (0-21.7%). This study demonstrates that PEG precipitation is the more robust method, which translates well to varying wastewater matrices, producing consistent and reproducible recovery rates. Furthermore, it is compatible with different kits for RNA extraction and quantitation.
Collapse
Affiliation(s)
- Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Jonathan J Whittall
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Aaron J Pandopulos
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Cobus Gerber
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
49
|
Talwar CS, Park KH, Ahn WC, Kim YS, Kwon OS, Yong D, Kang T, Woo E. Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay. BIOSENSORS 2021; 11:301. [PMID: 34562891 PMCID: PMC8468381 DOI: 10.3390/bios11090301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.
Collapse
Affiliation(s)
- Chandana S. Talwar
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (C.S.T.); (K.-H.P.); (W.-C.A.)
- Department of Biomolecular Science, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (Y.-S.K.); (O.S.K.)
| | - Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (C.S.T.); (K.-H.P.); (W.-C.A.)
| | - Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (C.S.T.); (K.-H.P.); (W.-C.A.)
| | - Yong-Sam Kim
- Department of Biomolecular Science, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (Y.-S.K.); (O.S.K.)
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Oh Seok Kwon
- Department of Biomolecular Science, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (Y.-S.K.); (O.S.K.)
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Euijeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (C.S.T.); (K.-H.P.); (W.-C.A.)
- Department of Biomolecular Science, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (Y.-S.K.); (O.S.K.)
| |
Collapse
|
50
|
Zhang K, Hodge J, Chatterjee A, Moon TS, Parker KM. Duplex Structure of Double-Stranded RNA Provides Stability against Hydrolysis Relative to Single-Stranded RNA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8045-8053. [PMID: 34033461 DOI: 10.1021/acs.est.1c01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphodiester bonds in the backbones of double-stranded (ds)RNA and single-stranded (ss)RNA are known to undergo alkaline hydrolysis. Consequently, dsRNA agents used in emerging RNA interference (RNAi) products have been assumed to exhibit low chemical persistence in solutions. However, the impact of the duplex structure of dsRNA on alkaline hydrolysis has not yet been evaluated. In this study, we demonstrated that dsRNA undergoes orders-of-magnitude slower alkaline hydrolysis than ssRNA. Furthermore, we observed that dsRNA remains intact for multiple months at neutral pH, challenging the assumption that dsRNA is chemically unstable. In systems enabling both enzymatic degradation and alkaline hydrolysis of dsRNA, we found that increasing pH effectively attenuated enzymatic degradation without inducing alkaline hydrolysis that was observed for ssRNA. Overall, our findings demonstrated, for the first time, that key degradation pathways of dsRNA significantly differ from those of ssRNA. Consideration of the unique properties of dsRNA will enable greater control of dsRNA stability during the application of emerging RNAi technology and more accurate assessment of its fate in environmental and biological systems, as well as provide insights into broader application areas including dsRNA isolation, detection and inactivation of dsRNA viruses, and prebiotic molecular evolution.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph Hodge
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|