1
|
Murphy M, Jiang C, Wang LA, Kozhemiako N, Wang Y, Wang J, Pan JQ, Purcell SM. Electroencephalographic Microstates During Sleep and Wake in Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100371. [PMID: 39296796 PMCID: PMC11408315 DOI: 10.1016/j.bpsgos.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Aberrant functional connectivity is a hallmark of schizophrenia. The precise nature and mechanism of dysconnectivity in schizophrenia remains unclear, but evidence suggests that dysconnectivity is different in wake versus sleep. Microstate analysis uses electroencephalography (EEG) to investigate large-scale patterns of coordinated brain activity by clustering EEG data into a small set of recurring spatial patterns, or microstates. We hypothesized that this technique would allow us to probe connectivity between brain networks at a fine temporal resolution and uncover previously unknown sleep-specific dysconnectivity. Methods We studied microstates during sleep in patients with schizophrenia by analyzing high-density EEG sleep data from 114 patients with schizophrenia and 79 control participants. We used a polarity-insensitive k-means analysis to extract a set of 6 microstate topographies. Results These 6 states included 4 widely reported canonical microstates. In patients and control participants, falling asleep was characterized by a shift from microstates A, B, and C to microstates D, E, and F. Microstate F was decreased in patients during wake, and microstate E was decreased in patients during sleep. The complexity of microstate transitions was greater in patients than control participants during wake, but this reversed during sleep. Conclusions Our findings reveal behavioral state-dependent patterns of cortical dysconnectivity in schizophrenia. Furthermore, these findings are largely unrelated to previous sleep-related EEG markers of schizophrenia such as decreased sleep spindles. Therefore, these findings are driven by previously undescribed sleep-related pathology in schizophrenia.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Chenguang Jiang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lei A. Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jun Wang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Shaun M. Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Baldini S, Sartori A, Rossi L, Favero A, Pasquin F, Dinoto A, Bratina A, Bosco A, Manganotti P. Fatigue in Multiple Sclerosis: A Resting-State EEG Microstate Study. Brain Topogr 2024; 37:1203-1216. [PMID: 38847997 PMCID: PMC11408556 DOI: 10.1007/s10548-024-01053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 09/18/2024]
Abstract
Fatigue affects approximately 80% of people with Multiple Sclerosis (PwMS) and can impact several domains of daily life. However, the neural underpinnings of fatigue in MS are still not completely clear. The aim of our study was to investigate the spontaneous large-scale networks functioning associated with fatigue in PwMS using the EEG microstate approach with a spectral decomposition. Forty-three relapsing-remitting MS patients and twenty-four healthy controls (HCs) were recruited. All participants underwent an administration of Modified Fatigue Impact scale (MFIS) and a 15-min resting-state high-density EEG recording. We compared the microstates of healthy subjects, fatigued (F-MS) and non-fatigued (nF-MS) patients with MS; correlations with clinical and behavioral fatigue scores were also analyzed. Microstates analysis showed six templates across groups and frequencies. We found that in the F-MS emerged a significant decrease of microstate F, associated to the salience network, in the broadband and in the beta band. Moreover, the microstate B, associated to the visual network, showed a significant increase in fatigued patients than healthy subjects in broadband and beta bands. The multiple linear regression showed that the high cognitive fatigue was predicted by both an increase and decrease, respectively, in delta band microstate B and beta band microstate F. On the other hand, higher physical fatigue was predicted with lower occurrence microstate F in beta band. The current findings suggest that in MS the higher level of fatigue might be related to a maladaptive functioning of the salience and visual network.
Collapse
Affiliation(s)
- Sara Baldini
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Arianna Sartori
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Lucrezia Rossi
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Anna Favero
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Fulvio Pasquin
- Neurology Unit, Hospital of Gorizia, ASUGI, Gorizia, Italy
| | - Alessandro Dinoto
- Department of Neuroscience, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Alessio Bratina
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Antonio Bosco
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Zhang X, Landsness EC, Miao H, Chen W, Tang MJ, Brier LM, Culver JP, Lee JM, Anastasio MA. Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data. J Neurosci Methods 2024; 411:110250. [PMID: 39151658 DOI: 10.1016/j.jneumeth.2024.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired. NEW METHOD A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep. RESULTS Sleep states were classified with an accuracy of 84 % and Cohen's κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner. COMPARISON WITH EXISTING METHOD On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric C Landsness
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hanyang Miao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle J Tang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey M Brier
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA; Department of Electrical and Systems Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA; Department of Physics, Washington University School of Arts and Science, St. Louis, Mo 63130, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Denzer S, Diezig S, Achermann P, Mast FW, Koenig T. Electrophysiological (EEG) microstates during dream-like bizarre experiences in a naturalistic scenario using immersive virtual reality. Eur J Neurosci 2024; 60:5815-5830. [PMID: 39258353 DOI: 10.1111/ejn.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Monitoring the reality status of conscious experience is essential for a human being to interact successfully with the external world. Despite its importance for everyday functioning, reality monitoring can systematically become erroneous, for example, while dreaming or during hallucinatory experiences. To investigate brain processes associated with reality monitoring occurring online during an experience, i.e., perceptual reality monitoring, we assessed EEG microstates in healthy, young participants. In a within-subjects design, we compared the experience of reality when being confronted with dream-like bizarre elements versus realistic elements in an otherwise highly naturalistic real-world scenario in immersive virtual reality. Dream-like bizarreness induced changes in the subjective experience of reality and bizarreness, and led to an increase in the contribution of a specific microstate labelled C'. Microstate C' was related to the suspension of disbelief, i.e. the suppression of bizarre mismatches. Together with the functional interpretation of microstate C' as reported by previous studies, the findings of this study point to the importance of prefrontal meta-conscious control processes in perceptual reality monitoring.
Collapse
Affiliation(s)
- Simone Denzer
- Institute of Psychology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Sarah Diezig
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
5
|
Kabir A, Dhami P, Dussault Gomez MA, Blumberger DM, Daskalakis ZJ, Moreno S, Farzan F. Influence of Large-Scale Brain State Dynamics on the Evoked Response to Brain Stimulation. J Neurosci 2024; 44:e0782242024. [PMID: 39164105 PMCID: PMC11426374 DOI: 10.1523/jneurosci.0782-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
Understanding how spontaneous brain activity influences the response to neurostimulation is crucial for the development of neurotherapeutics and brain-computer interfaces. Localized brain activity is suggested to influence the response to neurostimulation, but whether fast-fluctuating (i.e., tens of milliseconds) large-scale brain dynamics also have any such influence is unknown. By stimulating the prefrontal cortex using combined transcranial magnetic stimulation (TMS) and electroencephalography, we examined how dynamic global brain state patterns, as defined by microstates, influence the magnitude of the evoked brain response. TMS applied during what resembled the canonical Microstate C was found to induce a greater evoked response for up to 80 ms compared with other microstates. This effect was found in a repeated experimental session, was absent during sham stimulation, and was replicated in an independent dataset. Ultimately, ongoing and fast-fluctuating global brain states, as probed by microstates, may be associated with intrinsic fluctuations in connectivity and excitation-inhibition balance and influence the neurostimulation outcome. We suggest that the fast-fluctuating global brain states be considered when developing any related paradigms.
Collapse
Affiliation(s)
- Amin Kabir
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Prabhjot Dhami
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Marie-Anne Dussault Gomez
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
- Circle Innovation, Vancouver, British Columbia V6B 4N6, Canada
| | - Faranak Farzan
- Centre for Engineering-Led Brain Research, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T 0A3, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
6
|
Bagdasarov A, Brunet D, Michel CM, Gaffrey MS. Microstate Analysis of Continuous Infant EEG: Tutorial and Reliability. Brain Topogr 2024; 37:496-513. [PMID: 38430283 PMCID: PMC11199263 DOI: 10.1007/s10548-024-01043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Microstate analysis of resting-state EEG is a unique data-driven method for identifying patterns of scalp potential topographies, or microstates, that reflect stable but transient periods of synchronized neural activity evolving dynamically over time. During infancy - a critical period of rapid brain development and plasticity - microstate analysis offers a unique opportunity for characterizing the spatial and temporal dynamics of brain activity. However, whether measurements derived from this approach (e.g., temporal properties, transition probabilities, neural sources) show strong psychometric properties (i.e., reliability) during infancy is unknown and key information for advancing our understanding of how microstates are shaped by early life experiences and whether they relate to individual differences in infant abilities. A lack of methodological resources for performing microstate analysis of infant EEG has further hindered adoption of this cutting-edge approach by infant researchers. As a result, in the current study, we systematically addressed these knowledge gaps and report that most microstate-based measurements of brain organization and functioning except for transition probabilities were stable with four minutes of video-watching resting-state data and highly internally consistent with just one minute. In addition to these results, we provide a step-by-step tutorial, accompanying website, and open-access data for performing microstate analysis using a free, user-friendly software called Cartool. Taken together, the current study supports the reliability and feasibility of using EEG microstate analysis to study infant brain development and increases the accessibility of this approach for the field of developmental neuroscience.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA.
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA
- Children's Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin, Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
7
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Schiller B, Sperl MFJ, Kleinert T, Nash K, Gianotti LRR. EEG Microstates in Social and Affective Neuroscience. Brain Topogr 2024; 37:479-495. [PMID: 37523005 PMCID: PMC11199304 DOI: 10.1007/s10548-023-00987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.
Collapse
Affiliation(s)
- Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Matthias F J Sperl
- Department of Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg and Giessen (Research Campus Central Hessen), Marburg, Germany
| | - Tobias Kleinert
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Bagdasarov A, Roberts K, Brunet D, Michel CM, Gaffrey MS. Exploring the Association Between EEG Microstates During Resting-State and Error-Related Activity in Young Children. Brain Topogr 2024; 37:552-570. [PMID: 38141125 PMCID: PMC11199242 DOI: 10.1007/s10548-023-01030-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA.
| | - Kenneth Roberts
- Duke Institute for Brain Sciences, Duke University, 308 Research Drive, Durham, NC, USA
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA
- Children's Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin, Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
10
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
11
|
Toplutaş E, Aydın F, Hanoğlu L. EEG Microstate Analysis in Patients with Disorders of Consciousness and Its Clinical Significance. Brain Topogr 2024; 37:377-387. [PMID: 36735192 DOI: 10.1007/s10548-023-00939-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.
Collapse
Affiliation(s)
- Eren Toplutaş
- Department of Neurology, Istanbul Eyupsultan Public Hospital, Istanbul, Turkey.
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey.
| | - Fatma Aydın
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
12
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
13
|
Michel CM, Brechet L, Schiller B, Koenig T. Current State of EEG/ERP Microstate Research. Brain Topogr 2024; 37:169-180. [PMID: 38349451 PMCID: PMC10884048 DOI: 10.1007/s10548-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland.
| | - Lucie Brechet
- Department of Readaptation and Geriatrics, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Waters F, Ling I, Azimi S, Blom JD. Sleep-Related Hallucinations. Sleep Med Clin 2024; 19:143-157. [PMID: 38368061 DOI: 10.1016/j.jsmc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The diagnostic category of sleep-related hallucinations (SRH) replaces the previous category of Terrifying Hypnagogic Hallucinations in the 2001 edition of International Classification of Sleep Disorders-R. Hypnagogic and hypnopompic hallucinations (HHH) that occur in the absence of other symptoms or disorder and, within the limits of normal sleep, are most likely non-pathological. By contrast, complex nocturnal visual hallucinations (CNVH) may reflect a dimension of psychopathology reflecting different combinations of etiologic influences. The identification and conceptualization of CNVH is relatively new, and more research is needed to clarify whether CNVH share common mechanisms with HHH.
Collapse
Affiliation(s)
- Flavie Waters
- Clinical Research Centre, Graylands Hospital, North Metropolitan Health Service Mental Health, Brockway Road, John XXIII Avenue, Mount Claremont, Perth, Western Australia 6009, Australia; School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Ivan Ling
- West Australian Sleep Disorders Research Institute, Perth, Australia; Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital, 5th Floor, G-block, Nedlands, Western Australia 6009, Australia
| | - Somayyeh Azimi
- Clinical Research Centre, Graylands Hospital, North Metropolitan Health Service Mental Health, Brockway Road, John XXIII Avenue, Mount Claremont, Perth, Western Australia 6009, Australia; School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jan Dirk Blom
- Parnassia Psychiatric Institute, Kiwistraat 43, The Hague 2552 DH, the Netherlands; Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
16
|
Koenig T, Diezig S, Kalburgi SN, Antonova E, Artoni F, Brechet L, Britz J, Croce P, Custo A, Damborská A, Deolindo C, Heinrichs M, Kleinert T, Liang Z, Murphy MM, Nash K, Nehaniv C, Schiller B, Smailovic U, Tarailis P, Tomescu M, Toplutaş E, Vellante F, Zanesco A, Zappasodi F, Zou Q, Michel CM. EEG-Meta-Microstates: Towards a More Objective Use of Resting-State EEG Microstate Findings Across Studies. Brain Topogr 2024; 37:218-231. [PMID: 37515678 PMCID: PMC10884358 DOI: 10.1007/s10548-023-00993-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.
Collapse
Affiliation(s)
- Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.
- Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, 90027, USA.
| | - Sarah Diezig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | | - Elena Antonova
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences & Centre for Cognitive Neuroscience, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Fiorenzo Artoni
- Human Neuron Lab, Faculty of Medicine, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Lucie Brechet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Pierpaolo Croce
- Department of Neurosciences, Imaging and Clinical Sciences, Behavioral Imaging and Neural Dynamics Center, Institute for Advanced Biomedical Technologies, "Gabriele d'Annunzio" University, Chieti, 66100, Italy
| | - Anna Custo
- Department of Nuclear Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Camila Deolindo
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Tobias Kleinert
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, Dortmund, 44139, Germany
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Michael M Murphy
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Chrystopher Nehaniv
- Departments of Systems Design Engineering and Electrical & Computer Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON, N2L 3G1, Canada
| | - Bastian Schiller
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Una Smailovic
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Miralena Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania
| | - Eren Toplutaş
- Department of Neurology, Istanbul Eyupsultan Public Hospital, Istanbul, Turkey
- Program of Neuroscience Ph.D, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Federica Vellante
- Department of Neurosciences, Imaging and Clinical Sciences, Behavioral Imaging and Neural Dynamics Center, Institute for Advanced Biomedical Technologies, "Gabriele d'Annunzio" University, Chieti, 66100, Italy
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Filippo Zappasodi
- Department of Neurosciences, Imaging and Clinical Sciences, Behavioral Imaging and Neural Dynamics Center, Institute for Advanced Biomedical Technologies, "Gabriele d'Annunzio" University, Chieti, 66100, Italy
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
| |
Collapse
|
17
|
Kleinert T, Koenig T, Nash K, Wascher E. On the Reliability of the EEG Microstate Approach. Brain Topogr 2024; 37:271-286. [PMID: 37410275 PMCID: PMC10884204 DOI: 10.1007/s10548-023-00982-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40-120ms before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, researchers currently use different methodological approaches that need to be compared regarding their consistency and suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, these findings provide robust evidence for the reliability of the microstate approach.
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Biological Psychology, Clinical Psychology, and Psychotherapy, University of Freiburg, Stefan-Meier Str. 8, 79104, Freiburg, Germany.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, 3000, Bern, Switzerland
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
18
|
Wiemers MC, Laufs H, von Wegner F. Frequency Analysis of EEG Microstate Sequences in Wakefulness and NREM Sleep. Brain Topogr 2024; 37:312-328. [PMID: 37253955 PMCID: PMC11374823 DOI: 10.1007/s10548-023-00971-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023]
Abstract
The majority of EEG microstate analyses concern wakefulness, and the existing sleep studies have focused on changes in spatial microstate properties and on microstate transitions between adjacent time points, the shortest available time scale. We present a more extensive time series analysis of unsmoothed EEG microstate sequences in wakefulness and non-REM sleep stages across many time scales. Very short time scales are assessed with Markov tests, intermediate time scales by the entropy rate and long time scales by a spectral analysis which identifies characteristic microstate frequencies. During the descent from wakefulness to sleep stage N3, we find that the increasing mean microstate duration is a gradual phenomenon explained by a continuous slowing of microstate dynamics as described by the relaxation time of the transition probability matrix. The finite entropy rate, which considers longer microstate histories, shows that microstate sequences become more predictable (less random) with decreasing vigilance level. Accordingly, the Markov property is absent in wakefulness but in sleep stage N3, 10/19 subjects have microstate sequences compatible with a second-order Markov process. A spectral microstate analysis is performed by comparing the time-lagged mutual information coefficients of microstate sequences with the autocorrelation function of the underlying EEG. We find periodic microstate behavior in all vigilance states, linked to alpha frequencies in wakefulness, theta activity in N1, sleep spindle frequencies in N2, and in the delta frequency band in N3. In summary, we show that EEG microstates are a dynamic phenomenon with oscillatory properties that slow down in sleep and are coupled to specific EEG frequencies across several sleep stages.
Collapse
Affiliation(s)
- Milena C Wiemers
- Department of Neurology and Clinical Neurophysiology, Lüneburg Hospital, Bögelstrasse 1, 21339, Lüneburg, Germany
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts University Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Frederic von Wegner
- School of Biomedical Sciences, University of New South Wales, Wallace Wurth Building, Kensington, NSW, 2052, Australia.
| |
Collapse
|
19
|
Diezig S, Denzer S, Achermann P, Mast FW, Koenig T. EEG Microstate Dynamics Associated with Dream-Like Experiences During the Transition to Sleep. Brain Topogr 2024; 37:343-355. [PMID: 36402917 PMCID: PMC10884123 DOI: 10.1007/s10548-022-00923-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Consciousness always requires some representational content; that is, one can only be conscious about something. However, the presence of conscious experience (awareness) alone does not determine whether its content is in line with the external and physical world. Dreams, apart from certain forms of hallucinations, typically consist of non-veridical percepts, which are not recognized as false, but rather considered real. This type of experiences have been described as a state of dissociation between phenomenal and reflective awareness. Interestingly, during the transition to sleep, reflective awareness seems to break down before phenomenal awareness as conscious experience does not immediately fade with reduced wakefulness but is rather characterized by the occurrence of uncontrolled thinking and perceptual images, together with a reduced ability to recognize the internal origin of the experience. Relative deactivation of the frontoparietal and preserved activity in parieto-occipital networks has been suggested to account for dream-like experiences during the transition to sleep. We tested this hypothesis by investigating subjective reports of conscious experience and large-scale brain networks using EEG microstates in 45 healthy young subjects during the transition to sleep. We observed an inverse relationship between cognitive effects and physiological activation; dream-like experiences were associated with an increased presence of a microstate with sources in the superior and middle frontal gyrus and precuneus. Additionally, the presence of a microstate associated with higher-order visual areas was decreased. The observed inverse relationship might therefore indicate a disengagement of cognitive control systems that is mediated by specific, inhibitory EEG microstates.
Collapse
Affiliation(s)
- Sarah Diezig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Simone Denzer
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Černý F, Piorecká V, Kliková M, Kopřivová J, Bušková J, Piorecký M. All-night spectral and microstate EEG analysis in patients with recurrent isolated sleep paralysis. Front Neurosci 2024; 18:1321001. [PMID: 38389790 PMCID: PMC10882627 DOI: 10.3389/fnins.2024.1321001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The pathophysiology of recurrent isolated sleep paralysis (RISP) has yet to be fully clarified. Very little research has been performed on electroencephalographic (EEG) signatures outside RISP episodes. This study aimed to investigate whether sleep is disturbed even without the occurrence of a RISP episode and in a stage different than conventional REM sleep. 17 RISP patients and 17 control subjects underwent two consecutive full-night video-polysomnography recordings. Spectral analysis was performed on all sleep stages in the delta, theta, and alpha band. EEG microstate (MS) analysis was performed on the NREM 3 phase due to the overall high correlation of subject template maps with canonical templates. Spectral analysis showed a significantly higher power of theta band activity in REM and NREM 2 sleep stages in RISP patients. The observed rise was also apparent in other sleep stages. Conversely, alpha power showed a downward trend in RISP patients' deep sleep. MS maps similar to canonical topographies were obtained indicating the preservation of prototypical EEG generators in RISP patients. RISP patients showed significant differences in the temporal dynamics of MS, expressed by different transitions between MS C and D and between MS A and B. Both spectral analysis and MS characteristics showed abnormalities in the sleep of non-episodic RISP subjects. Our findings suggest that in order to understand the neurobiological background of RISP, there is a need to extend the analyzes beyond REM-related processes and highlight the value of EEG microstate dynamics as promising functional biomarkers of RISP.
Collapse
Affiliation(s)
- Filip Černý
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Václava Piorecká
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Monika Kliková
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Jana Kopřivová
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Bušková
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Marek Piorecký
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
21
|
Osumi M, Sumitani M, Iwatsuki K, Hoshiyama M, Imai R, Morioka S, Hirata H. Resting-state Electroencephalography Microstates Correlate with Pain Intensity in Patients with Complex Regional Pain Syndrome. Clin EEG Neurosci 2024; 55:121-129. [PMID: 37844609 DOI: 10.1177/15500594231204174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Objective: Severe pain and other symptoms in complex regional pain syndrome (CRPS), such as allodynia and hyperalgesia, are associated with abnormal resting-state brain network activity. No studies to date have examined resting-state brain networks in CRPS patients using electroencephalography (EEG), which can clarify the temporal dynamics of brain networks. Methods: We conducted microstate analysis using resting-state EEG signals to prospectively reveal direct correlations with pain intensity in CRPS patients (n = 17). Five microstate topographies were fitted back to individual CRPS patients' EEG data, and temporal microstate measures were subsequently calculated. Results: Our results revealed five distinct microstates, termed microstates A to E, from resting EEG data in patients with CRPS. Microstates C, D and E were significantly correlated with pain intensity before pain treatment. Particularly, microstates D and E were significantly improved together with pain alleviation after pain treatment. As microstates D and E in the present study have previously been related to attentional networks and the default mode network, improvement in these networks might be related to pain relief in CRPS patients. Conclusions: The functional alterations of these brain networks affected the pain intensity of CRPS patients. Therefore, EEG microstate analyses may be used to identify surrogate markers for pain intensity.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Health Sciences, Faculty of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Ryota Imai
- School of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
22
|
Metzger M, Dukic S, McMackin R, Giglia E, Mitchell M, Bista S, Costello E, Peelo C, Tadjine Y, Sirenko V, Plaitano S, Coffey A, McManus L, Farnell Sharp A, Mehra P, Heverin M, Bede P, Muthuraman M, Pender N, Hardiman O, Nasseroleslami B. Functional network dynamics revealed by EEG microstates reflect cognitive decline in amyotrophic lateral sclerosis. Hum Brain Mapp 2024; 45:e26536. [PMID: 38087950 PMCID: PMC10789208 DOI: 10.1002/hbm.26536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Recent electroencephalography (EEG) studies have shown that patterns of brain activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control groups. These differences can be interrogated by examining EEG microstates, which are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying the temporal properties of the four canonical microstates can elucidate how the dynamics of functional brain networks are altered in neurological conditions. Here we have analysed the properties of microstates to detect and quantify signal-based abnormality in ALS. High-density resting-state EEG data from 129 people with ALS and 78 HC were recorded longitudinally over a 24-month period. EEG topographies were extracted at instances of peak global field power to identify four microstate classes (labelled A-D) using K-means clustering. Each EEG topography was retrospectively associated with a microstate class based on global map dissimilarity. Changes in microstate properties over the course of the disease were assessed in people with ALS and compared with changes in clinical scores. The topographies of microstate classes remained consistent across participants and conditions. Differences were observed in coverage, occurrence, duration, and transition probabilities between ALS and control groups. The duration of microstate class B and coverage of microstate class C correlated with lower limb functional decline. The transition probabilities A to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those with cognitive and behavioural impairments. Microstate characteristics also significantly changed over the course of the disease. Examining the temporal dependencies in the sequences of microstates revealed that the symmetry and stationarity of transition matrices were increased in people with late-stage ALS. These alterations in the properties of EEG microstates in ALS may reflect abnormalities within the sensory network and higher-order networks. Microstate properties could also prospectively predict symptom progression in those with cognitive impairments.
Collapse
Affiliation(s)
- Marjorie Metzger
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Stefan Dukic
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of Neurology, University Medical Centre Utrecht Brain CentreUtrecht UniversityUtrechtThe Netherlands
| | - Roisin McMackin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Eileen Giglia
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Matthew Mitchell
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Saroj Bista
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Emmet Costello
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Colm Peelo
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Yasmine Tadjine
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Vladyslav Sirenko
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Serena Plaitano
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Amina Coffey
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Lara McManus
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Adelais Farnell Sharp
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Prabhav Mehra
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Mark Heverin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Peter Bede
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Muthuraman Muthuraman
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of NeurologyUniversity of WürzburgWürzburgGermany
| | - Niall Pender
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of PsychologyBeaumont HospitalDublinIreland
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of NeurologyBeaumont HospitalDublinIreland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- FutureNeuro ‐ SFI Research Centre for Chronic and Rare Neurological DiseasesRoyal College of SurgeonsDublinIreland
| |
Collapse
|
23
|
Hong Y, Moore IL, Smith DE, Long NM. Spatiotemporal Dynamics of Memory Encoding and Memory Retrieval States. J Cogn Neurosci 2023; 35:1463-1477. [PMID: 37348133 PMCID: PMC10513765 DOI: 10.1162/jocn_a_02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Memory encoding and memory retrieval are neurally distinct brain states that can be differentiated on the basis of cortical network activity. However, it is unclear whether sustained engagement of one network or fluctuations between multiple networks give rise to these memory states. The spatiotemporal dynamics of memory states may have important implications for memory behavior and cognition; however, measuring temporally resolved signals of cortical networks poses a challenge. Here, we recorded scalp electroencephalography from participants performing a mnemonic state task in which they were biased toward memory encoding or retrieval. We performed a microstate analysis to measure the temporal dynamics of cortical networks throughout this mnemonic state task. We find that Microstate E, a putative analog of the default mode network, shows temporally sustained dissociations between memory encoding and retrieval, with greater engagement during retrieve compared with encode trials. We further show that decreased engagement of Microstate E is a general property of encoding, rather than a reflection of retrieval suppression. Thus, memory success, as well as cognition more broadly, may be influenced by the ability to engage or disengage Microstate E in a goal-dependent manner.
Collapse
Affiliation(s)
- Yuju Hong
- University of Virginia, Charlottesville
| | | | | | | |
Collapse
|
24
|
Di Muccio F, Simonet M, Brandner C, Ruggeri P, Barral J. Cardiorespiratory fitness modulates prestimulus EEG microstates during a sustained attention task. Front Neurosci 2023; 17:1188695. [PMID: 37397452 PMCID: PMC10308046 DOI: 10.3389/fnins.2023.1188695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Higher cardiorespiratory fitness is associated with an increased ability to perform sustained attention tasks and detect rare and unpredictable signals over prolonged periods. The electrocortical dynamics underlying this relationship were mainly investigated after visual stimulus onset in sustained attention tasks. Prestimulus electrocortical activity supporting differences in sustained attention performance according to the level of cardiorespiratory fitness have yet to be examined. Consequently, this study aimed to investigate EEG microstates 2 seconds before the stimulus onset in 65 healthy individuals aged 18-37, differing in cardiorespiratory fitness, while performing a psychomotor vigilance task. The analyses showed that a lower duration of the microstate A and a higher occurrence of the microstate D correlated with higher cardiorespiratory fitness in the prestimulus periods. In addition, increased global field power and occurrence of microstate A were associated with slower response times in the psychomotor vigilance task, while greater global explained variance, coverage, and occurrence of microstate D were linked to faster response times. Our collective findings showed that individuals with higher cardiorespiratory fitness exhibit typical electrocortical dynamics that allow them to allocate their attentional resources more efficiently when engaged in sustained attention tasks.
Collapse
Affiliation(s)
- Francesco Di Muccio
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Marie Simonet
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Catherine Brandner
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Barral
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Artoni F, Maillard J, Britz J, Brunet D, Lysakowski C, Tramèr MR, Michel CM. Microsynt: exploring the syntax of EEG microstates. Neuroimage 2023:120196. [PMID: 37286153 DOI: 10.1016/j.neuroimage.2023.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Microstates represent electroencephalographic (EEG) activity as a sequence of switching, transient, metastable states. Growing evidence suggests the useful information on brain states is to be found in the higher-order temporal structure of these sequences. Instead of focusing on transition probabilities, here we propose "Microsynt", a method designed to highlight higher-order interactions that form a preliminary step towards understanding the syntax of microstate sequences of any length and complexity. Microsynt extracts an optimal vocabulary of "words" based on the length and complexity of the full sequence of microstates. Words are then sorted into classes of entropy and their representativeness within each class is statistically compared with surrogate and theoretical vocabularies. We applied the method on EEG data previously collected from healthy subjects undergoing propofol anaesthesia, and compared their "fully awake" (BASE) and "fully unconscious" (DEEP) conditions. Results show that microstate sequences, even at rest, are not random but tend to behave in a more predictable way, favoring simpler sub-sequences, or "words". Contrary to high-entropy words, lowest-entropy binary microstate loops are prominent and favored on average 10 times more than what is theoretically expected. Progressing from BASE to DEEP, the representation of low-entropy words increases while that of high-entropy words decreases. During the awake state, sequences of microstates tend to be attracted towards "A - B - C" microstate hubs, and most prominently A - B binary loops. Conversely, with full unconsciousness, sequences of microstates are attracted towards "C - D - E" hubs, and most prominently C - E binary loops, confirming the putative relation of microstates A and B to externally-oriented cognitive processes and microstate C and E to internally-generated mental activity. Microsynt can form a syntactic signature of microstate sequences that can be used to reliably differentiate two or more conditions.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Switzerland.
| | - Julien Maillard
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; CIBM Center for Biomedical Imaging, Switzerland
| | - Denis Brunet
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Switzerland
| | - Christopher Lysakowski
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Switzerland
| |
Collapse
|
26
|
Bagdasarov A, Roberts K, Brunet D, Michel CM, Gaffrey MS. Exploring the association between EEG microstates during resting-state and error-related activity in young children. RESEARCH SQUARE 2023:rs.3.rs-2865543. [PMID: 37205415 PMCID: PMC10187414 DOI: 10.21203/rs.3.rs-2865543/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the - 64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same - 64 to 108 ms period (i.e., error-related microstate 3), and to greater parent-report-measured anxiety risk. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.
Collapse
|
27
|
Lamoš M, Bočková M, Goldemundová S, Baláž M, Chrastina J, Rektor I. The effect of deep brain stimulation in Parkinson's disease reflected in EEG microstates. NPJ Parkinsons Dis 2023; 9:63. [PMID: 37069159 PMCID: PMC10110608 DOI: 10.1038/s41531-023-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.
Collapse
Grants
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Sabina Goldemundová
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Jan Chrastina
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
28
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Li W, Cheng S, Wang H, Chang Y. EEG microstate changes according to mental fatigue induced by aircraft piloting simulation: An exploratory study. Behav Brain Res 2023; 438:114203. [PMID: 36356722 DOI: 10.1016/j.bbr.2022.114203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND A continuous flight task load can induce fatigue and lead to changes in electroencephalography (EEG). EEG microstates can reflect the activities of large-scale neural networks during mental fatigue. This exploratory experiment explored the effects of mental fatigue induced by continuous simulated flight multitasking on EEG microstate indices. METHODS Twenty-four participants performed continuous 2-hour aircraft piloting simulation while EEG were recorded. The Stanford sleepiness scale (SSS) and critical flicker fusion frequency (CFF) were measured before and after the task. Microstate analysis was applied to EEG. Four microstate classes (A-D) were identified during the pre-task, post-task, beginning, and end phases. The effects of mental fatigue were analyzed. RESULTS Compared with the pre-task, the post-task had a higher global explained variance (GEV) and time parameters of class C but lower occurrence and coverage of class D. The end had a higher GEV but lower duration and coverage of class D than at the beginning. After 2 h of multitasking, the transition probability between A and D, and between B and D decreased but between A and C increased. Subjective fatigue scores were negatively correlated with occurrence and coverage of class D. Task performance was negatively correlated with duration and coverage of class C but positively correlated with duration and occurrence of class B. CONCLUSION Time parameters and transition probability of EEG microstates can detect mental fatigue induced by continuous aircraft piloting simulation. The global brain network activation of mental fatigue can be detected by EEG microstates that can evaluate flight fatigue.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Aerospace Hygiene, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Shan Cheng
- Department of Aerospace Medical Equipment, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Hang Wang
- Department of Aerospace Ergonomics, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Yaoming Chang
- Department of Aerospace Hygiene, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
30
|
Kleinert T, Nash K, Leota J, Koenig T, Heinrichs M, Schiller B. A Self-Controlled Mind Is Reflected by Stable Mental Processing. Psychol Sci 2022; 33:2123-2137. [PMID: 36279561 DOI: 10.1177/09567976221110136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Self-control-the ability to inhibit inappropriate impulses-predicts economic, physical, and psychological well-being. However, recent findings demonstrate low correlations among self-control measures, raising the question of what self-control actually is. Here, we examined the idea that people high in self-control show more stable mental processing, characterized by processing steps that are fewer in number but longer lasting because of fewer interruptions by distracting impulses. To test this hypothesis, we relied on resting electroencephalography microstate analysis, a method that provides access to the stream of mental processing by assessing the sequential activation of neural networks. Across two samples (Study 1: N = 58 male adults from Germany; Study 2: N = 101 adults from Canada, 58 females), the temporal stability of resting networks (i.e., longer durations and fewer occurrences) was positively associated with self-reported self-control and a neural index of inhibitory control, and it was negatively associated with risk-taking behavior. These findings suggest that stable mental processing represents a core feature of a self-controlled mind.
Collapse
Affiliation(s)
- Tobias Kleinert
- Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert Ludwig University of Freiburg.,Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.,Department of Psychology, University of Alberta
| | - Kyle Nash
- Department of Psychology, University of Alberta
| | - Josh Leota
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern
| | - Markus Heinrichs
- Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert Ludwig University of Freiburg.,Freiburg Brain Imaging Center, University Medical Center, Albert Ludwig University of Freiburg
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, Albert Ludwig University of Freiburg.,Freiburg Brain Imaging Center, University Medical Center, Albert Ludwig University of Freiburg
| |
Collapse
|
31
|
Bagdasarov A, Roberts K, Bréchet L, Brunet D, Michel CM, Gaffrey MS. Spatiotemporal dynamics of EEG microstates in four- to eight-year-old children: Age- and sex-related effects. Dev Cogn Neurosci 2022; 57:101134. [PMID: 35863172 PMCID: PMC9301511 DOI: 10.1016/j.dcn.2022.101134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
The ultrafast spatiotemporal dynamics of large-scale neural networks can be examined using resting-state electroencephalography (EEG) microstates, representing transient periods of synchronized neural activity that evolve dynamically over time. In adults, four canonical microstates have been shown to explain most topographic variance in resting-state EEG. Their temporal structures are age-, sex- and state-dependent, and are susceptible to pathological brain states. However, no studies have assessed the spatial and temporal properties of EEG microstates exclusively during early childhood, a critical period of rapid brain development. Here we sought to investigate EEG microstates recorded with high-density EEG in a large sample of 103, 4-8-year-old children. Using data-driven k-means cluster analysis, we show that the four canonical microstates reported in adult populations already exist in early childhood. Using multiple linear regressions, we demonstrate that the temporal dynamics of two microstates are associated with age and sex. Source localization suggests that attention- and cognitive control-related networks govern the topographies of the age- and sex-dependent microstates. These novel findings provide unique insights into functional brain development in children captured with EEG microstates.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC 27708, USA.
| | - Kenneth Roberts
- Duke Institute for Brain Sciences, Duke University, 308 Research Drive, Durham, NC, USA
| | - Lucie Bréchet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, 1015 Lausanne Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland; Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, 1015 Lausanne Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC 27708, USA
| |
Collapse
|
32
|
Fioranelli M, Aru OE, Roccia MG, Beesham A, Flavin D. A model for analyzing evolutions of neurons by using EEG waves. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12936-12949. [PMID: 36654029 DOI: 10.3934/mbe.2022604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is known that differences between potentials of soma, dendrites and different parts of neural structures may be the origin of electroencephalogram (EEG) waves. These potentials may be produced by some excitatory synapses and currents of charges between neurons and then thereafter may themselves cause the emergence of new synapses and electrical currents. These currents within and between neurons emit some electromagnetic waves which could be absorbed by electrodes on the scalp, and form topographic images. In this research, a model is proposed which formulates EEG topographic parameters in terms of the charge and mass of exchanged particles within neurons, those which move between neurons, the number of neurons and the length of neurons and synapses. In this model, by knowing the densities of the frequencies in different regions of the brain, one can predict the type, charge and velocity of particles which are moving along neurons or are exchanged between neurons.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - O Eze Aru
- Department of Computer Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture, Umudike Umuahia, Abia State, Nigeria
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Aroonkumar Beesham
- Faculty of Natural Sciences, Mangosuthu University of Technology, PO Box 12363, Jacobs 4026, South Africa
- Department of Mathematical Sciences, University of Zululand, Private Bag X1001, Kwa-Dlangezwa 3886, South Africa
| | - Dana Flavin
- President, Foundation for Collaborative Medicine and Research, Greenwich CT, USA
| |
Collapse
|
33
|
Nam S, Jang KM, Kwon M, Lim HK, Jeong J. Electroencephalogram microstates and functional connectivity of cybersickness. Front Hum Neurosci 2022; 16:857768. [PMID: 36072889 PMCID: PMC9441598 DOI: 10.3389/fnhum.2022.857768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Virtual reality (VR) is a rapidly developing technology that simulates the real world. However, for some cybersickness-susceptible people, VR still has an unanswered problem-cybersickness-which becomes the main obstacle for users and content makers. Sensory conflict theory is a widely accepted theory for cybersickness. It proposes that conflict between afferent signals and internal models can cause cybersickness. This study analyzes the brain states that determine cybersickness occurrence and related uncomfortable feelings. Furthermore, we use the electroencephalogram (EEG) microstates and functional connectivity approach based on the sensory conflict theory. The microstate approach is a time-space analysis method that allows signals to be divided into several temporarily stable states, simultaneously allowing for the exploration of short- and long-range signals. These temporal dynamics can show the disturbances in mental processes associated with neurological and psychiatric conditions of cybersickness. Furthermore, the functional connectivity approach gives us in-depth insight and relationships between the sources related to cybersickness. We recruited 40 males (24.1 ± 2.3 years), and they watched a VR video on a curved computer monitor for 10 min to experience cybersickness. We recorded the 5-min resting state EEG (baseline condition) and 10-min EEG while watching the VR video (task condition). Then, we performed a microstate analysis, focusing on two temporal parameters: mean duration and global explained variance (GEV). Finally, we obtained the functional connectivity data using eLoreta and lagged phase synchronization (LPS). We discovered five sets of microstates (A-E), including four widely reported canonical microstates (A-D), during baseline and task conditions. The average duration increased in microstates A and B, which is related to the visual and auditory networks. The GEV and duration decreased in microstate C, whereas those in microstate D increased. Microstate C is related to the default mode network (DMN) and D to the attention network. The temporal dynamics of the microstate parameters are from cybersickness disturbing the sensory, DMN, and attention networks. In the functional connectivity part, the LPS between the left and right parietal operculum (OP) significantly decreased (p < 0.05) compared with the baseline condition. Furthermore, the connectivity between the right OP and V5 significantly decreased (p < 0.05). These results also support the disturbance of the sensory network because a conflict between the visual (V5) and vestibular system (OP) causes cybersickness. Changes in the microstates and functional connectivity support the sensory conflict theory. These results may provide additional information in understanding brain dynamics during cybersickness.
Collapse
Affiliation(s)
- Sungu Nam
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyoung-Mi Jang
- Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Moonyoung Kwon
- Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Hyun Kyoon Lim
- Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Jaeseung Jeong
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
34
|
Nash K, Leota J, Kleinert T, Hayward DA. Anxiety disrupts performance monitoring: integrating behavioral, event-related potential, EEG microstate, and sLORETA evidence. Cereb Cortex 2022; 33:3787-3802. [PMID: 35989310 PMCID: PMC10068301 DOI: 10.1093/cercor/bhac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
Anxiety impacts performance monitoring, though theory and past research are split on how and for whom. However, past research has often examined either trait anxiety in isolation or task-dependent state anxiety and has indexed event-related potential components, such as the error-related negativity or post-error positivity (Pe), calculated at a single node during a limited window of time. We introduced 2 key novelties to this electroencephalography research to examine the link between anxiety and performance monitoring: (i) we manipulated antecedent, task-independent, state anxiety to better establish the causal effect; (ii) we conducted moderation analyses to determine how state and trait anxiety interact to impact performance monitoring processes. Additionally, we extended upon previous work by using a microstate analysis approach to isolate and sequence the neural networks and rapid mental processes in response to error commission. Results showed that state anxiety disrupts response accuracy in the Stroop task and error-related neural processes, primarily during a Pe-related microstate. Source localization shows that this disruption involves reduced activation in the dorsal anterior cingulate cortex and compensatory activation in the right lateral prefrontal cortex, particularly among people high in trait anxiety. We conclude that antecedent anxiety is largely disruptive to performance monitoring.
Collapse
Affiliation(s)
- Kyle Nash
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2R3, Canada
| | - Josh Leota
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3168, Australia
| | - Tobias Kleinert
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2R3, Canada.,Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| | - Dana A Hayward
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
35
|
Research on Top Archer’s EEG Microstates and Source Analysis in Different States. Brain Sci 2022; 12:brainsci12081017. [PMID: 36009079 PMCID: PMC9405655 DOI: 10.3390/brainsci12081017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The electroencephalograph (EEG) microstate is a method used to describe the characteristics of the EEG signal through the brain scalp electrode potential’s spatial distribution; as such, it reflects the changes in the brain’s functional state. The EEGs of 13 elite archers from China’s national archery team and 13 expert archers from China’s provincial archery team were recorded under the alpha rhythm during the resting state (with closed eyes) and during archery aiming. By analyzing the differences between the EEG microstate parameters and the correlation between these parameters with archery performance, as well as by combining our findings through standardized low-resolution brain electromagnetic tomography source analysis (sLORETA), we explored the changes in the neural activity of professional archers of different levels, under different states. The results of the resting state study demonstrated that the duration, occurrence, and coverage in microstate D of elite archers were significantly higher than those of expert archers and that their other microstates had the greatest probability of transferring to microstate D. During the archery aiming state, the average transition probability of the other microstates transferring to microstate in the left temporal region was the highest observed in the two groups of archers. Moreover, there was a significant negative correlation between the duration and coverage of microstates in the frontal region of elite archers and their archery performance. Our findings indicate that elite archers are more active in the dorsal attention system and demonstrate a higher neural efficiency during the resting state. When aiming, professional archers experience an activation of brain regions associated with archery by suppressing brain regions unrelated to archery tasks. These findings provide a novel theoretical basis for the study of EEG microstate dynamics in archery and related cognitive motor tasks, particularly from the perspective of the subject’s mental state.
Collapse
|
36
|
Tait L, Zhang J. +microstate: A MATLAB toolbox for brain microstate analysis in sensor and cortical EEG/MEG. Neuroimage 2022; 258:119346. [PMID: 35660463 DOI: 10.1016/j.neuroimage.2022.119346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/13/2022] [Accepted: 05/29/2022] [Indexed: 01/14/2023] Open
Abstract
+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon previous EEG microstate literature and toolboxes by including algorithms for source-space microstate analysis. +microstate includes codes for performing individual- and group-level brain microstate analysis in resting-state and task-based data including event-related potentials/fields. Functions are included to visualise and perform statistical analysis of microstate sequences, including novel advanced statistical approaches such as statistical testing for associated functional connectivity patterns, cluster-permutation topographic ANOVAs, and χ2 analysis of microstate probabilities in response to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG data are included in the toolbox, which can be used to generate artificial data with ground truth microstates and to validate the methodology. +microstate integrates with widely used toolboxes for M/EEG processing including Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to aid with accessibility, and includes wrappers for pre-existing toolboxes for brain-state estimation such as Hidden Markov modelling (HMM-MAR) and independent component analysis (FastICA) to aid with direct comparison with these techniques. In this paper, we first introduce +microstate before subsequently performing example analyses using open access datasets to demonstrate and validate the methodology. MATLAB live scripts for each of these analyses are included in +microstate, to act as a tutorial and to aid with reproduction of the results presented in this manuscript.
Collapse
Affiliation(s)
- Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom; Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
38
|
Vitali H, Campus C, De Giorgis V, Signorini S, Gori M. The vision of dreams: from ontogeny to dream engineering in blindness. J Clin Sleep Med 2022; 18:2051-2062. [PMID: 35499135 PMCID: PMC9340600 DOI: 10.5664/jcsm.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms involved in the origin of dreams remain one of the great unknowns in science. In the 21st century, studies in the field have focused on 3 main topics: functional networks that underlie dreaming, neural correlates of dream contents, and signal propagation. We review neuroscientific studies about dreaming processes, focusing on their cortical correlations. The involvement of frontoparietal regions in the dream-retrieval process allows us to discuss it in light of the Global Workspace theory of consciousness. However, dreaming in distinct sleep stages maintains relevant differences, suggesting that multiple generators are implicated. Then, given the strong influence of light perception on sleep regulation and the mostly visual content of dreams, we investigate the effect of blindness on the organization of dreams. Blind individuals represent a worthwhile population to clarify the role of perceptual systems in dream generation, and to make inferences about their top-down and/or bottom-up origin. Indeed, congenitally blind people maintain the ability to produce visual dreams, suggesting that bottom-up mechanisms could be associated with innate body schemes or multisensory integration processes. Finally, we propose the new dream-engineering technique as a tool to clarify the mechanisms of multisensory integration during sleep and related mental activity, presenting possible implications for rehabilitation in sensory-impaired individuals. The Theory of Proto-consciousness suggests that the interaction of brain states underlying waking and dreaming ensures the optimal functioning of both. Therefore, understanding the origin of dreams and capabilities of our brain during a dreamlike state, we could introduce it as a rehabilitative tool. CITATION Vitali H, Campus C, De Giorgis V, Signorini S, Gori M. The vision of dreams: from ontogeny to dream engineering in blindness. J Clin Sleep Med. 2022;18(8):2051-2062.
Collapse
Affiliation(s)
- Helene Vitali
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Campus
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Monica Gori
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
39
|
Artoni F, Maillard J, Britz J, Seeber M, Lysakowski C, Bréchet L, Tramèr MR, Michel CM. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. Neuroimage 2022; 256:119156. [PMID: 35364276 DOI: 10.1016/j.neuroimage.2022.119156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland.
| | - Julien Maillard
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Christopher Lysakowski
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Lucie Bréchet
- CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland.
| |
Collapse
|
40
|
Férat V, Seeber M, Michel CM, Ros T. Beyond broadband: Towards a spectral decomposition of electroencephalography microstates. Hum Brain Mapp 2022; 43:3047-3061. [PMID: 35324021 PMCID: PMC9188972 DOI: 10.1002/hbm.25834] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
Originally applied to alpha oscillations in the 1970s, microstate (MS) analysis has since been used to decompose mainly broadband electroencephalogram (EEG) signals (e.g., 1-40 Hz). We hypothesised that MS decomposition within separate, narrow frequency bands could provide more fine-grained information for capturing the spatio-temporal complexity of multichannel EEG. In this study, using a large open-access dataset (n = 203), we first filtered EEG recordings into four classical frequency bands (delta, theta, alpha and beta) and thereafter compared their individual MS segmentations using mutual information as well as traditional MS measures (e.g., mean duration and time coverage). Firstly, we confirmed that MS topographies were spatially equivalent across all frequencies, matching the canonical broadband maps (A, B, C, D and C'). Interestingly, however, we observed strong informational independence of MS temporal sequences between spectral bands, together with significant divergence in traditional MS measures. For example, relative to broadband, alpha/beta band dynamics displayed greater time coverage of maps A and B, while map D was more prevalent in delta/theta bands. Moreover, using a frequency-specific MS taxonomy (e.g., ϴA and αC), we were able to predict the eyes-open versus eyes-closed behavioural state significantly better using alpha-band MS features compared with broadband ones (80 vs. 73% accuracy). Overall, our findings demonstrate the value and validity of spectrally specific MS analyses, which may prove useful for identifying new neural mechanisms in fundamental research and/or for biomarker discovery in clinical populations.
Collapse
Affiliation(s)
- Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland.,Centre for Biomedical Imaging (CIBM), Lausanne-Geneva, Geneva, Switzerland
| | - Tomas Ros
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland.,Centre for Biomedical Imaging (CIBM), Lausanne-Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Lin Q, Li D, Hu C, Shen Z, Wang Y. Altered EEG Microstates Dynamics During Cue-Induced Methamphetamine Craving in Virtual Reality Environments. Front Psychiatry 2022; 13:891719. [PMID: 35599773 PMCID: PMC9114476 DOI: 10.3389/fpsyt.2022.891719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cue-induced craving is widely considered to be the most important risk factor for relapse during abstinence from methamphetamine (Meth). There is limited research regarding electroencephalography (EEG) microstates of Meth-dependent patients under exposure to drug-related cues. Our objective was to investigate whether EEG microstate temporal characteristics could capture neural correlates of cue-induced Meth craving in virtual reality (VR) environments. METHODS EEG recordings of 35 Meth-dependent patients and 30 healthy controls (HCs) were collected during eyes-open state and cue-induced state, respectively. Group differences and condition differences in temporal parameters of four microstate classes were compared. RESULTS The results demonstrated the greater presence of microstate B in both Meth-dependent patients and HCs during the cue-induced condition, compared to resting state. In addition, for Meth-dependent patients, microstate C occurred significantly less frequently, along with a tendency of increased occurrence for class D during the cue-induced condition, compared to resting state. However, the change direction of class C and class D in HCs was completely opposite to that of Meth-dependent patients. The cue-induced condition also elicited different changes in transition probability between Meth-dependent patients and HCs. CONCLUSION This study explored the features of EEG microstates in Meth-dependent patients during the cue-induced condition, which can improve our understanding of Meth addiction and contribute to the development of effective assessments and intervention tools.
Collapse
Affiliation(s)
- Qianqian Lin
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongxu Li
- Anhui Psychiatric Medical Center, Anhui Medical University, Hefei, China
| | - Cheng Hu
- Shiliping Compulsory Rehabilitation Center, Zhejiang, China
| | - Zhihua Shen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongguang Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Anhui Psychiatric Medical Center, Anhui Medical University, Hefei, China.,Zhejiang Provincial Institute of Drug Abuse Research, Hangzhou, China
| |
Collapse
|
42
|
Iannotti GR, Orepic P, Brunet D, Koenig T, Alcoba-Banqueri S, Garin DFA, Schaller K, Blanke O, Michel CM. EEG Spatiotemporal Patterns Underlying Self-other Voice Discrimination. Cereb Cortex 2021; 32:1978-1992. [PMID: 34649280 PMCID: PMC9070353 DOI: 10.1093/cercor/bhab329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
There is growing evidence showing that the representation of the human “self” recruits special systems across different functions and modalities. Compared to self-face and self-body representations, few studies have investigated neural underpinnings specific to self-voice. Moreover, self-voice stimuli in those studies were consistently presented through air and lacking bone conduction, rendering the sound of self-voice stimuli different to the self-voice heard during natural speech. Here, we combined psychophysics, voice-morphing technology, and high-density EEG in order to identify the spatiotemporal patterns underlying self-other voice discrimination (SOVD) in a population of 26 healthy participants, both with air- and bone-conducted stimuli. We identified a self-voice-specific EEG topographic map occurring around 345 ms post-stimulus and activating a network involving insula, cingulate cortex, and medial temporal lobe structures. Occurrence of this map was modulated both with SOVD task performance and bone conduction. Specifically, the better participants performed at SOVD task, the less frequently they activated this network. In addition, the same network was recruited less frequently with bone conduction, which, accordingly, increased the SOVD task performance. This work could have an important clinical impact. Indeed, it reveals neural correlates of SOVD impairments, believed to account for auditory-verbal hallucinations, a common and highly distressing psychiatric symptom.
Collapse
Affiliation(s)
- Giannina Rita Iannotti
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, 1202, Switzerland.,Department of Neurosurgery, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205, Switzerland
| | - Pavo Orepic
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1202, Switzerland
| | - Denis Brunet
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, 1202, Switzerland.,CIBM Center for Biomedical Imaging, Lausanne and Geneva, 1015, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| | - Sixto Alcoba-Banqueri
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1202, Switzerland
| | - Dorian F A Garin
- Department of Neurosurgery, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1202, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, 1202, Switzerland.,CIBM Center for Biomedical Imaging, Lausanne and Geneva, 1015, Switzerland
| |
Collapse
|
43
|
Lamoš M, Morávková I, Ondráček D, Bočková M, Rektorová I. Altered Spatiotemporal Dynamics of the Resting Brain in Mild Cognitive Impairment with Lewy Bodies. Mov Disord 2021; 36:2435-2440. [PMID: 34346104 DOI: 10.1002/mds.28741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Electrophysiological markers of prodromal dementia with Lewy bodies were described in the spectral domain. The sub-second temporal resolution may provide additional information. OBJECTIVE To evaluate electroencephalography (EEG) microstates in patients with mild cognitive impairment with Lewy bodies and to assess the association between their temporal dynamics and the spectral marker. METHODS Temporal parameters of microstates were compared between 21 patients with mild cognitive impairment with Lewy bodies and 21 healthy controls. The dominant alpha frequency was correlated with microstate parameters. RESULTS Microstates A-D showed higher occurrence in the patient group. Microstate B additionally revealed shorter mean duration and increased time coverage; its occurrence correlated with the dominant alpha frequency in the patient group. CONCLUSIONS Temporal dynamics of all EEG microstates were altered in medication-naïve subjects with prodromal dementia with Lewy bodies. Longitudinal follow-up may reveal how EEG microstates reflect progression of brain function deficits and effects of treatment manipulations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Lamoš
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Ivona Morávková
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - David Ondráček
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Bočková
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Irena Rektorová
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
44
|
Characterization of the Functional Dynamics in the Neonatal Brain during REM and NREM Sleep States by means of Microstate Analysis. Brain Topogr 2021; 34:555-567. [PMID: 34258668 PMCID: PMC8384814 DOI: 10.1007/s10548-021-00861-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies—the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states—AS and QS—in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.
Collapse
|
45
|
Deolindo CS, Ribeiro MW, de Aratanha MAA, Scarpari JRS, Forster CHQ, da Silva RGA, Machado BS, Amaro Junior E, König T, Kozasa EH. Microstates in complex and dynamical environments: Unraveling situational awareness in critical helicopter landing maneuvers. Hum Brain Mapp 2021; 42:3168-3181. [PMID: 33942444 PMCID: PMC8193508 DOI: 10.1002/hbm.25426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
Understanding decision-making in complex and dynamic environments is relevant for designing strategies targeting safety improvements and error rate reductions. However, studies evaluating brain dynamics in realistic situations are scarce in the literature. Given the evidence that specific microstates may be associated with perception and attention, in this work we explored for the first time the application of the microstate model in an ecological, dynamic and complex scenario. More specifically, we evaluated elite helicopter pilots during engine-failure missions in the vicinity of the so called "dead man's curve," which establishes the operational limits for a safe landing after the execution of a recovery maneuver (autorotation). Pilots from the Brazilian Air Force flew a AS-350 helicopter in a certified aerodrome and physiological sensor data were synchronized with the aircraft's flight test instrumentation. We assessed these neural correlates during maneuver execution, by comparing their modulations and source reconstructed activity with baseline epochs before and after flights. We show that the topographies of our microstate templates with 4, 5, and 6 classes resemble the literature, and that a distinct modulation characterizes decision-making intervals. Moreover, the source reconstruction result points to a differential activity in the medial prefrontal cortex, which is associated to emotional regulation circuits in the brain. Our results suggest that microstates are promising neural correlates to evaluate realistic situations, even in a challenging and intrinsically noisy environment. Furthermore, it strengthens their usage and expands their application for studying cognition under more realistic conditions.
Collapse
Affiliation(s)
| | | | | | - José R S Scarpari
- Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil.,Instituto de Pesquisas e Ensaio em Voos (IPEV), São José dos Campos, Brazil
| | | | | | | | - Edson Amaro Junior
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Thomas König
- University Hospital of Psychiatry, Bern, Switzerland
| | | |
Collapse
|
46
|
Bréchet L, Ziegler DA, Simon AJ, Brunet D, Gazzaley A, Michel CM. Reconfiguration of Electroencephalography Microstate Networks after Breath-Focused, Digital Meditation Training. Brain Connect 2021; 11:146-155. [PMID: 33403921 PMCID: PMC7984939 DOI: 10.1089/brain.2020.0848] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Sustained attention and working memory were improved in young adults after they engaged in a recently developed, closed-loop, digital meditation practice. Whether this type of meditation also has a sustained effect on dominant resting-state networks is currently unknown. In this study, we examined the resting brain states before and after a period of breath-focused, digital meditation training versus placebo using an electroencephalography (EEG) microstate approach. We found topographical changes in postmeditation rest, compared with baseline rest, selectively for participants who were actively involved in the meditation training and not in participants who engaged with an active, expectancy-match, placebo control paradigm. Our results suggest a reorganization of brain network connectivity after 6 weeks of intensive meditation training in brain areas, mainly including the right insula, the superior temporal gyrus, the superior parietal lobule, and the superior frontal gyrus bilaterally. These findings provide an opening for the development of a novel noninvasive treatment of neuropathological states by low-cost, breath-focused, digital meditation practice, which can be monitored by the EEG microstate approach.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - David A. Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Alexander J. Simon
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Denis Brunet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Christoph M. Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
47
|
D'Croz-Baron DF, Bréchet L, Baker M, Karp T. Auditory and Visual Tasks Influence the Temporal Dynamics of EEG Microstates During Post-encoding Rest. Brain Topogr 2020; 34:19-28. [PMID: 33095401 DOI: 10.1007/s10548-020-00802-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Re-activations of task-dependent patterns of neural activity take place during post-encoding periods of wakeful rest and sleep. However, it is still unclear how the temporal dynamics of brain states change during these periods, which are shaped by prior conscious experiences. Here, we examined the very brief periods of wakeful rest immediately after encoding and recognition of auditory and visual stimuli, by applying the EEG microstate analysis, in which the global variance of the EEG is explained by only a few prototypical topographies. We identified the dominant brain states of sub-second duration during the tasks-dependent periods of rest, finding that the temporal dynamics-represented here by two temporal parameters: the frequency of occurrence and the fraction of time coverage-of three task-related microstate classes changed compared to wakeful rest. This study provides evidence of experience-dependent temporal changes in post-encoding periods of resting brain activity, which can be captured using the EEG microstates approach.
Collapse
Affiliation(s)
- David F D'Croz-Baron
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA.
| | - Lucie Bréchet
- Arthur and Hinda Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, and Department of Neurology, Harvard Medical School, Boston, MA, USA.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Mary Baker
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| | - Tanja Karp
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| |
Collapse
|