1
|
Qi Z, Noetscher GM, Miles A, Weise K, Knösche TR, Cadman CR, Potashinsky AR, Liu K, Wartman WA, Nunez Ponasso G, Bikson M, Lu H, Deng ZD, Nummenmaa AR, Makaroff SN. Enabling Electric Field Model of Microscopically Realistic Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588004. [PMID: 38645100 PMCID: PMC11030228 DOI: 10.1101/2024.04.04.588004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities. We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm 3 . The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume. Our result shows that the microscopic field perturbations - an 'electric field spatial noise' with a mean value of zero - only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10% on average. Under the stated limitations and assumptions of our method, this result justifies the conventional theory of "invisible" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single- pulse stimulation time course. Significance statement This study is arguably the first attempt to model brain stimulation at the microscopic scale, enabled by automated analysis of modern scanning electron microscopy images of the brain. It concentrates on modeling microscopic perturbations of the extracellular electric field caused by the physical cell structure and is applicable to any type of brain stimulation. Data availability statement Post-processed cell CAD models (383, stl format), microcapillary CAD models (34, stl format), post-processed neuron morphologies (267, swc format), extracellular electric field and potential distributions at different polarizations (267x3, MATLAB format), *.ses projects files for biophysical modeling with Neuron software (267x2, Neuron format), and computed neuron activating thresholds at different conditions (267x8, Excel tables, without the sample polarization correction from Section 2.8) are made available online through BossDB , a volumetric open-source database for 3D and 4D neuroscience data.
Collapse
|
2
|
Ygael N, Zangen A. Modulation of Alcohol Use Disorder by Brain Stimulation. Curr Top Behav Neurosci 2024. [PMID: 39039357 DOI: 10.1007/7854_2024_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Currently available therapeutic modalities for alcohol use disorder (AUD) produce limited effect sizes or long-term compliance. Recent methods that were developed to modulate brain activity represent potential novel treatment options. Various methods of brain stimulation, when applied repeatedly, can induce long-term neurobiological, behavioral, and cognitive modifications. Recent studies in alcoholic subjects indicate the potential of brain stimulation methods to reduce alcohol craving, consumption, and relapse. Specifically, deep brain stimulation (DBS) of the nucleus accumbens or non-surgical stimulation of the dorsolateral prefrontal cortex (PFC) or medial PFC and anterior cingulate cortex using transcranial magnetic stimulation (TMS) has shown clinical benefit. However, further preclinical and clinical research is needed to establish understanding of mechanisms and the treatment protocols of brain stimulation for AUD. While efforts to design comparable apparatus in rodents continue, preclinical studies can be used to examine targets for DBS protocols, or to administer temporal patterns of pulsus similar to those used for TMS, to more superficial targets through implanted electrodes. The clinical field will benefit from studies with larger sample sizes, higher numbers of stimulation sessions, maintenance sessions, and long follow-up periods. The effect of symptoms provocation before and during stimulation should be further studied. Larger studies may have the power to explore predictive factors for the clinical outcome and thereby to optimize patient selection and eventually even develop personalization of the stimulation parameters.
Collapse
Affiliation(s)
- Noam Ygael
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel
| | - Abraham Zangen
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel.
| |
Collapse
|
3
|
Nguyen H, Makaroff SN, Li CQ, Hoffman S, Yang Y, Lu H. High inductance magnetic-core coils have enhanced efficiency in inducing suprathreshold motor response in rats. Phys Med Biol 2023; 68:10.1088/1361-6560/ad0bde. [PMID: 37949063 PMCID: PMC10990567 DOI: 10.1088/1361-6560/ad0bde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Objective. Transcranial magnetic stimulation (TMS) coil design involves a tradeoff among multiple parameters, including magnetic flux density (B), inductance (L), induced electric (E) field, focality, penetration depth, coil heating, etc. Magnetic materials with high permeability have been suggested to enhance coil efficiency. However, the introduction of magnetic core invariably increases coil inductance compared to its air-core counterpart, which in turn weakens theEfield. Our lab previously reported a rodent-specific TMS coil with silicon steel magnetic core, achieving 2 mm focality. This study aims to better understand the tradeoffs amongB,L,andEin the presence of magnetic core.Approach. The magnetic core initially operates within the linear range, transitioning to the nonlinear range when it begins to saturate at high current levels and reverts to the linear range as coil current approaches zero; both linear and nonlinear analyses were performed. Linear analysis assumes a weak current condition when magnetic core is not saturated; a monophasic TMS circuit was employed for this purpose. Nonlinear analysis assumes a strong current condition with varying degrees of core saturation.Main results. Results reveal that, the secondaryEfield generated by the silicon steel core substantially changed the dynamics during TMS pulse. Linear and nonlinear analyses revealed that higher inductance coils produced stronger peakEfields and longerEfield waveforms. On a macroscopic scale, the effects of these two factors on neuronal activation could be conceptually explained through a one-time-constant linear membrane model. Four coils with differentB,L,andEcharacteristics were designed and constructed. BothEfield mapping and experiments on awake rats confirmed that inductance could be much higher than previously anticipated, provided that magnetic material possesses a high saturation threshold.Significance. Our results highlight the novel potentials of magnetic core in TMS coil designs, especially for small animals.
Collapse
Affiliation(s)
- Hieu Nguyen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Sergey N Makaroff
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Charlotte Qiong Li
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Samantha Hoffman
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
5
|
Smith LA, Bem JD, Lv X, Lauto A, Sliow A, Ma Z, Mahns DA, Berryman C, Hutchinson MR, Fumeaux C, Tettamanzi GC. Investigation of the mechanisms for wireless nerve stimulation without active electrodes. Bioelectromagnetics 2023; 44:181-191. [PMID: 37908196 PMCID: PMC10947236 DOI: 10.1002/bem.22486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023]
Abstract
Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.
Collapse
Affiliation(s)
- Luke A. Smith
- School of Electrical and Electronic EngineeringUniversity of AdelaideAdelaideAustralia
| | - Jaedon D. Bem
- School of Electrical and Electronic EngineeringUniversity of AdelaideAdelaideAustralia
| | - Xiaojing Lv
- School of Electrical and Electronic EngineeringUniversity of AdelaideAdelaideAustralia
| | - Antonio Lauto
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Ashour Sliow
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Zhiyuan Ma
- School of MedicineWestern Sydney UniversityPenrithNew South WalesAustralia
| | - David A. Mahns
- School of MedicineWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Carolyn Berryman
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Mark R. Hutchinson
- Adelaide Medical School, Institute of Photonics and Advanced SensingUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Christophe Fumeaux
- School of Electrical and Electronic EngineeringUniversity of AdelaideAdelaideAustralia
| | - Giuseppe C. Tettamanzi
- Discipline of Materials Engineering, School of Chemical EngineeringUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
6
|
Jiang W, Isenhart R, Liu CY, Song D. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents. J Neural Eng 2023; 20:026022. [PMID: 36863013 PMCID: PMC10037933 DOI: 10.1088/1741-2552/acc097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States of America
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
7
|
Nieminen JO, Pospelov AS, Koponen LM, Yrjölä P, Shulga A, Khirug S, Rivera C. Transcranial magnetic stimulation set-up for small animals. Front Neurosci 2022; 16:935268. [PMID: 36440290 PMCID: PMC9685557 DOI: 10.3389/fnins.2022.935268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.
Collapse
Affiliation(s)
- Jaakko O. Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Biomedical Imaging Unit, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lari M. Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pauliina Yrjölä
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Stanislav Khirug
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Zhang TR, Guilherme E, Kesici A, Ash AM, Vila-Rodriguez F, Snyder JS. Electroconvulsive Shock, but Not Transcranial Magnetic Stimulation, Transiently Elevates Cell Proliferation in the Adult Mouse Hippocampus. Cells 2021; 10:2090. [PMID: 34440859 PMCID: PMC8391684 DOI: 10.3390/cells10082090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hippocampal plasticity is hypothesized to play a role in the etiopathogenesis of depression and the antidepressant effect of medications. One form of plasticity that is unique to the hippocampus and is involved in depression-related behaviors in animal models is adult neurogenesis. While chronic electroconvulsive shock (ECS) strongly promotes neurogenesis, less is known about its acute effects and little is known about the neurogenic effects of other forms of stimulation therapy, such as repetitive transcranial magnetic stimulation (rTMS). Here, we investigated the time course of acute ECS and rTMS effects on markers of cell proliferation and neurogenesis in the adult hippocampus. Mice were subjected to a single session of ECS, 10 Hz rTMS (10-rTMS), or intermittent theta burst stimulation (iTBS). Mice in both TMS groups were injected with BrdU 2 days before stimulation to label immature cells. One, 3, or 7 days later, hippocampi were collected and immunostained for BrdU + cells, actively proliferating PCNA + cells, and immature DCX + neurons. Following ECS, mice displayed a transient increase in cell proliferation at 3 days post-stimulation. At 7 days post-stimulation there was an elevation in the number of proliferating neuronal precursor cells (PCNA + DCX +), specifically in the ventral hippocampus. iTBS and rTMS did not alter the number of BrdU + cells, proliferating cells, or immature neurons at any of the post-stimulation time points. Our results suggest that neurostimulation treatments exert different effects on hippocampal neurogenesis, where ECS may have greater neurogenic potential than iTBS and 10-rTMS.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo 13565-905, SP, Brazil;
| | - Aydan Kesici
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alyssa M. Ash
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jason S. Snyder
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|