1
|
Simon TB, Sierra J, Williams A, Wright G, Rhee A, Horn J, Lou J, Sharafeddin F, Ontiveros-Ángel P, Figueroa JD. Shifts in naturalistic behaviors induced by early social isolation stress are associated with adult binge-like eating in female rats. Front Behav Neurosci 2024; 18:1519558. [PMID: 39726771 PMCID: PMC11669510 DOI: 10.3389/fnbeh.2024.1519558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Binge eating (BE) is a highly pervasive maladaptive coping strategy in response to severe early life stress such as emotional and social neglect. BE is described as repeated episodes of uncontrolled eating and is tightly linked with comorbid mental health concerns. Despite social stressors occurring at a young age, the onset of BE typically does not occur until adulthood providing an interval for potential therapeutic intervention. Currently, our knowledge of longitudinal noninvasive digital biomarkers predictive of BE needs further development. Monitoring longitudinal impacts of adolescent social isolation stress on naturalistic behaviors in rats will enable the identification of noninvasive digital markers of disease progression to predict adult eating strategies. Recognizing adolescent naturalistic behaviors shaped by social stress informs our understanding of the underlying neurocircuits most effected. This study aimed to monitor and identify longitudinal behavioral shifts to enhance predictive capabilities in a rat model of social isolation stress-induced BE. We placed Paired (n = 12) and Socially Isolated (SI, n = 12) female rats in observational home cages weekly for seven weeks to evaluate the effect of SI on 10 naturalistic behaviors. All 10 naturalistic behaviors were simultaneously detected and tracked using Noldus Ethovision XT automated recognition software. Composite phenotypic z-scores were calculated by standardizing all 10 behaviors. When transitioning into adulthood, all rats underwent conventional emotionality testing and were exposed to a Western-like high fat diet (WD, 43% kcal from fat) to evaluate BE. Longitudinal assessments revealed SI-induced shifts in adolescent phenotypic z-scores and that sniffing, unsupported rearing, jumping, and twitching were the most susceptible to SI. SI increased emotionality compared to the Paired controls. Finally, we identified adolescent twitching as a digital biomarker of adult WD consumption. Our findings suggest that home cage monitoring can detect disrupted naturalistic behaviors associated with maladaptive coping.
Collapse
Affiliation(s)
- Timothy B. Simon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Julio Sierra
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Arianna Williams
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Giara Wright
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Allison Rhee
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Julius Horn
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - John Lou
- Loma Linda University School of Behavioral Health, Loma Linda, CA, United States
| | - Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
2
|
Radley JJ, Herman JP. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol Psychiatry 2023; 94:194-202. [PMID: 36631383 PMCID: PMC10166771 DOI: 10.1016/j.biopsych.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The experience of prolonged stress changes how individuals interact with their environment and process interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result, chronic stress has been used as a translational model for diseases such as depression. While it is of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is, at its core, adaptive in nature. Transition to pathology occurs only after the adaptive capacity of an organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio.
| |
Collapse
|
3
|
Sanchís-Ollé M, Belda X, Gagliano H, Visa J, Nadal R, Armario A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J Psychiatr Res 2023; 160:195-203. [PMID: 36842332 DOI: 10.1016/j.jpsychires.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.
Collapse
Affiliation(s)
- María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Roser Nadal
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Antonio Armario
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
4
|
Perrine SA, Alsharif WF, Harutyunyan A, Kamal S, Viola NT, Gelovani JG. Low- and high-cocaine intake affects the spatial and temporal dynamics of class IIa HDAC expression-activity in the nucleus accumbens and hippocampus of male rats as measured by [18F]TFAHA PET/CT neuroimaging. ADDICTION NEUROSCIENCE 2022; 4:100046. [PMID: 36540409 PMCID: PMC9762729 DOI: 10.1016/j.addicn.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.
Collapse
Affiliation(s)
- Shane A. Perrine
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
- Research Services, John D. Dingell VAMC, Detroit, MI, USA
| | | | - Arman Harutyunyan
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
| | - Swatabdi Kamal
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Nerissa T. Viola
- Oncology, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Juri G. Gelovani
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
5
|
DiSabato DJ, Yin W, Biltz RG, Gallagher NR, Oliver B, Nemeth DP, Liu X, Sheridan JF, Quan N, Godbout JP. IL-1 Receptor-1 on Vglut2 + neurons in the hippocampus is critical for neuronal and behavioral sensitization after repeated social stress. Brain Behav Immun Health 2022; 26:100547. [PMID: 36388133 PMCID: PMC9646822 DOI: 10.1016/j.bbih.2022.100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Myriad findings connect stress and inflammation to mood disorders. Social defeat in mice promotes the convergence of neuronal, central inflammatory (microglia), and peripheral immune (monocytes) pathways causing anxiety, social avoidance, and "stress-sensitization." Stress-sensitization results in augmented inflammation and the recurrence of anxiety after re-exposure to social stress. Different cell compartments, including neurons, may be uniquely sensitized by social defeat-induced interleukin-1 (IL-1) signaling. Therefore, the aim of this study was to determine if glutamatergic neuronal IL-1 receptor signaling was essential in promoting stress-sensitization after social defeat. Here, wild-type (IL-1R1+/+) mice and mice with IL-1 receptor-1 deleted selectively in glutamatergic neurons (Vglut2-IL-1R1-/-) were stress-sensitized by social defeat (6-cycles) and then exposed to acute defeat (1-cycle) at day 30. Acute defeat-induced neuronal activation (ΔFosB and phospo-CREB) in the hippocampus of stress-sensitized mice was dependent on neuronal IL-1R1. Moreover, acute defeat-induced social withdrawal and working memory impairment in stress-sensitized mice were also dependent on neuronal IL-1R1. To address region and time dependency, an AAV2-IL-1 receptor antagonist construct was administered into the hippocampus after sensitization, but prior to acute defeat at day 30. Although stress-sensitized mice had increased hippocampal pCREB and decreased working memory after stress re-exposure, these events were not influenced by AAV2-IL-1 receptor antagonist. Hippocampal ΔFosB induction and corresponding social withdrawal in stress-sensitized mice after stress re-exposure were prevented by the AAV2-IL-1 receptor antagonist. Collectively, IL-1 signaling in glutamatergic neurons of the hippocampus was essential in neuronal-sensitization after social defeat and the recall of social withdrawal.
Collapse
Affiliation(s)
- Damon J. DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
| | - Wenyuan Yin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Rebecca G. Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Natalie R. Gallagher
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
| | - Xiaoyu Liu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, 33458, USA
| | - John F. Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, 33458, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| |
Collapse
|
6
|
Moore S, Amatya DN, Chu MM, Besterman AD. Catatonia in autism and other neurodevelopmental disabilities: a state-of-the-art review. NPJ MENTAL HEALTH RESEARCH 2022; 1:12. [PMID: 38609506 PMCID: PMC10955936 DOI: 10.1038/s44184-022-00012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 04/14/2024]
Abstract
Individuals with neurodevelopmental disabilities (NDDs) may be at increased risk for catatonia, which can be an especially challenging condition to diagnose and treat. There may be symptom overlap between catatonia and NDD-associated behaviors, such as stereotypies. The diagnosis of catatonia should perhaps be adjusted to address symptom overlap and to include extreme behaviors observed in patients with NDDs, such as severe self-injury. Risk factors for catatonia in individuals with NDDs may include trauma and certain genetic variants, such as those that disrupt SHANK3. Common etiologic features between neurodevelopmental disabilities and catatonia, such as excitatory/inhibitory imbalance and neuroimmune dysfunction, may partially account for comorbidity. New approaches leveraging genetic testing and neuroimmunologic evaluation may allow for more precise diagnoses and effective treatments.
Collapse
Affiliation(s)
- Shavon Moore
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
| | - Debha N Amatya
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- UCLA Semel Institute of Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Michael M Chu
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
- Children's Hospital of Orange County, Division of Child and Adolescent Psychiatry, Orange, CA, USA
- University of California Irvine, Department of Psychiatry, Irvine, CA, USA
| | - Aaron D Besterman
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA.
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
7
|
Jaffe AE, Tao R, Page SC, Maynard KR, Pattie EA, Nguyen CV, Deep-Soboslay A, Bharadwaj R, Young KA, Friedman MJ, Williamson DE, Shin JH, Hyde TM, Martinowich K, Kleinman JE. Decoding Shared Versus Divergent Transcriptomic Signatures Across Cortico-Amygdala Circuitry in PTSD and Depressive Disorders. Am J Psychiatry 2022; 179:673-686. [PMID: 35791611 PMCID: PMC10697016 DOI: 10.1176/appi.ajp.21020162] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disease that is highly comorbid with major depressive disorder (MDD) and bipolar disorder. The overlap in symptoms is hypothesized to stem from partially shared genetics and underlying neurobiological mechanisms. To delineate conservation between transcriptional patterns across PTSD and MDD, the authors examined gene expression in the human cortex and amygdala in these disorders. METHODS RNA sequencing was performed in the postmortem brain of two prefrontal cortex regions and two amygdala regions from donors diagnosed with PTSD (N=107) or MDD (N=109) as well as from neurotypical donors (N=109). RESULTS The authors identified a limited number of differentially expressed genes (DEGs) specific to PTSD, with nearly all mapping to cortical versus amygdala regions. PTSD-specific DEGs were enriched in gene sets associated with downregulated immune-related pathways and microglia as well as with subpopulations of GABAergic inhibitory neurons. While a greater number of DEGs associated with MDD were identified, most overlapped with PTSD, and only a few were MDD specific. The authors used weighted gene coexpression network analysis as an orthogonal approach to confirm the observed cellular and molecular associations. CONCLUSIONS These findings provide supporting evidence for involvement of decreased immune signaling and neuroinflammation in MDD and PTSD pathophysiology, and extend evidence that GABAergic neurons have functional significance in PTSD.
Collapse
Affiliation(s)
- Andrew E. Jaffe
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, MD
| | | | | | | | | | | | | | - Keith A. Young
- Department of Psychiatry and Behavioral Sciences, Texas A&M College of Medicine, Bryan TX
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX
- Central Texas Veterans Health Care System, Temple, TX, 76504, USA
- Baylor Scott & White Psychiatry, Temple, TX
| | - Matthew J. Friedman
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Dartmouth Hanover, NH
- National Center for PTSD, U.S. Department of Veterans Affairs
| | - Douglas E. Williamson
- Duke Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 300 North Duke St, Durham, North Carolina
- Durham VA Healthcare System, 508 Fulton St, Durham, North Carolina
| | | | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Peptide LCGA-17 Attenuates Behavioral and Neurochemical Deficits in Rodent Models of PTSD and Depression. Pharmaceuticals (Basel) 2022; 15:ph15040462. [PMID: 35455459 PMCID: PMC9029485 DOI: 10.3390/ph15040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant.
Collapse
|
9
|
Cotella EM, Nawreen N, Moloney RD, Martelle SE, Oshima KM, Lemen P, NiBlack JN, Julakanti RR, Fitzgerald M, Baccei ML, Herman JP. Adolescent Stress Confers Resilience to Traumatic Stress Later in Life: Role of the Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:274-282. [PMID: 37124346 PMCID: PMC10140393 DOI: 10.1016/j.bpsgos.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Adolescent brains are sensitive to stressors. However, under certain circumstances, developmental stress can promote an adaptive phenotype, allowing individuals to cope better with adverse situations in adulthood, thereby contributing to resilience. Methods Sprague Dawley rats (50 males, 48 females) were subjected to adolescent chronic variable stress (adol CVS) for 2 weeks at postnatal day 45. At postnatal day 85, a group was subjected to single prolonged stress (SPS). After a week, animals were evaluated in an auditory-cued fear conditioning paradigm, and neuronal recruitment during reinstatement was assessed by Fos expression. Patch clamp electrophysiology (17-35 cells/group) was performed in male rats to examine physiological changes associated with resilience. Results Adol CVS blocked fear potentiation evoked by SPS. We observed that SPS impaired extinction (males) and enhanced reinstatement (both sexes) of the conditioned freezing response. Prior adol CVS prevented both effects. SPS effects were associated with a reduction of infralimbic (IL) cortex neuronal recruitment after reinstatement in males and increased engagement of the central amygdala in females, both also prevented by adol CVS, suggesting different neurocircuits involved in generating resilience between sexes. We explored the mechanism behind reduced IL recruitment in males by studying the intrinsic excitability of IL pyramidal neurons. SPS reduced excitability of IL neurons, and prior adol CVS prevented this effect. Conclusions Our data indicate that adolescent stress can impart resilience to the effects of traumatic stress on neuroplasticity and behavior. Our data provide a mechanistic link behind developmental stress-induced behavioral resilience and prefrontal (IL) cortical excitability in males.
Collapse
Affiliation(s)
- Evelin M. Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | - Rachel D. Moloney
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Susan E. Martelle
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Kristen M. Oshima
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Paige Lemen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jordan N. NiBlack
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Reetu R. Julakanti
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Maureen Fitzgerald
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Mark L. Baccei
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - James P. Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
- Veterans Affairs Medical Center, Cincinnati, Ohio
- Address correspondence to James P. Herman, Ph.D.
| |
Collapse
|
10
|
Herman JP. The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology 2022; 137:105641. [PMID: 34954409 DOI: 10.1016/j.psyneuen.2021.105641] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Glucocorticoid signaling plays major roles in energy homeostasis and adaptation to adversity, and dysregulation of this process is linked to systemic and psychological pathology. Over the last several decades, new work has challenged many of the long-standing assumptions regarding regulation of glucocorticoid secretion and glucocorticoid signaling mechanisms, revealing an exquisite complexity that accompanies the important and perhaps global role of these hormones in physiological and psychological regulation. New findings have included discovery of membrane signaling, direct neural control of the adrenal, a role for pulsatile glucocorticoid release in glucocorticoid receptor signaling, marked sex differences in brain glucocorticoid biology, and salutary as well as deleterious roles for glucocorticoids in long- and short-term adaptations to stress. This review covers some of the major lessons learned in the area of mechanisms of glucocorticoid signaling, and discusses how these may inform the field moving forward.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cincinnati Veterans Administration Medical Center, USA
| |
Collapse
|
11
|
Sturman O, von Ziegler L, Privitera M, Waag R, Duss S, Vermeiren Y, Giovagnoli L, de Deyn P, Bohacek J. Chronic adolescent stress increases exploratory behavior but does not appear to change the acute stress response in adult male C57BL/6 mice. Neurobiol Stress 2021; 15:100388. [PMID: 34527792 PMCID: PMC8430388 DOI: 10.1016/j.ynstr.2021.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic stress exposure in adolescence can lead to a lasting change in stress responsiveness later in life and is associated with increased mental health issues in adulthood. Here we investigate whether the Chronic Social Instability (CSI) paradigm influences the behavioral and molecular responses to novel acute stressors in mice, and whether it alters physiological responses influenced by the noradrenergic system. Using large cohorts of mice, we show that CSI mice display a persistent increase in exploratory behaviors in the open field test alongside small but widespread transcriptional changes in the ventral hippocampus. However, both the transcriptomic and behavioral responses to novel acute stressors are indistinguishable between groups. In addition, the pupillometric response to a tail shock, known to be mediated by the noradrenergic system, remains unaltered in CSI mice. Ultra-high performance liquid chromatography analysis of monoaminergic neurotransmitter levels in the ventral hippocampus also shows no differences between control or CSI mice at baseline or in response to acute stress. We conclude that CSI exposure during adolescence leads to persistent changes in exploratory behavior and gene expression in the hippocampus, but it does not alter the response to acute stress in adulthood and is unlikely to alter the function of the noradrenergic system.
Collapse
Affiliation(s)
- Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Sian Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research, Wageningen, Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Letizia Giovagnoli
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Peter de Deyn
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| |
Collapse
|
12
|
Piggott VM, Lloyd SC, Matchynski JI, Perrine SA, Conti AC. Traumatic Stress, Chronic Ethanol Exposure, or the Combination, Alter Cannabinoid System Components in Reward and Limbic Regions of the Mouse Brain. Molecules 2021; 26:2086. [PMID: 33917316 PMCID: PMC8038692 DOI: 10.3390/molecules26072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.
Collapse
Affiliation(s)
- Veronica M. Piggott
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Scott C. Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James I. Matchynski
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shane A. Perrine
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|