1
|
Jayaprakash Saiji S, Tang Y, Wu ST, Stand L, Tratsiak Y, Dong Y. Metal halide perovskite polymer composites for indirect X-ray detection. NANOSCALE 2024; 16:17654-17682. [PMID: 39248411 DOI: 10.1039/d4nr02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal halide perovskites (MHPs) have emerged as a promising class of materials for radiation detection due to their high atomic numbers and thus high radiation absorption, tunable and efficient luminescent properties and simple solution processability. Traditional MHP scintillators, however, suffer from environmental degradation, spurring interest in perovskite-polymer composites. This paper reviews recent developments in these composites tailored for scintillator applications. It discusses various synthesis methods, including solution-based and mechanochemical techniques, that enable the formation of composites with enhanced performance metrics such as light yield, detection limit, and environmental stability. The review also covers the remaining challenges and opportunities in fabrication techniques and performance metric evaluations of this class of materials. By offering a comprehensive overview of current research and future perspectives, this paper underscores the potential of perovskite-polymer composites to revolutionize the field of radiation detection.
Collapse
Affiliation(s)
- Shruti Jayaprakash Saiji
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Yiteng Tang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Luis Stand
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yauhen Tratsiak
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yajie Dong
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
2
|
Zhao Z, Fan Q, Liu Y, Rong H, Ni H, Wei L, Zhao X, Luo J, Sun Z. Lead-Free Bismuth-Based Perovskite X-ray Detector with High Sensitivity and Low Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38283-38289. [PMID: 39011746 DOI: 10.1021/acsami.4c08648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Bismuth-based halide perovskites have shown great potential for direct X-ray detection, attributable to their nontoxicity and advantages in detection sensitivity and spatial resolution. However, the practical application of such materials still faces the critical challenge of combining both high sensitivity and low detection limits. Here, we report a new type of zero-dimensional (0D) perovskite (HIS)BiI5 (1, where HIS2+ = histamine) with high sensitivity and a low detection limit. Structurally, the strong N-H···I hydrogen bonds between HIS2+ cations and inorganic frameworks enhance the rigidity of the structure and diminish the intermolecular distance between adjacent inorganic [Bi2I10]4- dimers. By virtue of such structural merits, single crystal 1 exhibits excellent physical properties perpendicular to both the (001) and (010) faces. Perpendicular to the (010) face, 1 exhibited a high electrical resistivity (2.31 × 1011 Ω cm) and a large carrier mobility-lifetime product (μτ) (2.81 × 10-4 cm2 V-1) under X-ray illumination. Benefiting from these superior physical properties, it demonstrates an excellent X-ray detection capability with a sensitivity of approximately 103 μC Gyair-1 cm-2 and a detection limit of 36 nGyair s-1 in both directions perpendicular to the (001) and (010) crystal faces. These results provide a promising candidate material for the development of new, lead-free, high-performance X-ray detectors.
Collapse
Affiliation(s)
- Zihao Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qingshun Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hao Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Huaimin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xianmei Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Junhua Luo
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhihua Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
3
|
Lepri G, Oddi F, Gulino RA, Giansanti D. Reimagining Radiology: A Comprehensive Overview of Reviews at the Intersection of Mobile and Domiciliary Radiology over the Last Five Years. Bioengineering (Basel) 2024; 11:216. [PMID: 38534491 DOI: 10.3390/bioengineering11030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
(Background) Domiciliary radiology, which originated in pioneering studies in 1958, has transformed healthcare, particularly during the COVID-19 pandemic, through advancements such as miniaturization and digitization. This evolution, driven by the synergy of advanced technologies and robust data networks, reshapes the intersection of domiciliary radiology and mobile technology in healthcare delivery. (Objective) The objective of this study is to overview the reviews in this field with reference to the last five years to face the state of development and integration of this practice in the health domain. (Methods) A review was conducted on PubMed and Scopus, applying a standard checklist and a qualification process. The outcome detected 21 studies. (Key Content and Findings) The exploration of mobile and domiciliary radiology unveils a compelling and optimistic perspective. Notable strides in this dynamic field include the integration of Artificial Intelligence (AI), revolutionary applications in telemedicine, and the educational potential of mobile devices. Post-COVID-19, telemedicine advances and the influential role of AI in pediatric radiology signify significant progress. Mobile mammography units emerge as a solution for underserved women, highlighting the crucial importance of early breast cancer detection. The investigation into domiciliary radiology, especially with mobile X-ray equipment, points toward a promising frontier, prompting in-depth research for comprehensive insights into its potential benefits for diverse populations. The study also identifies limitations and suggests future exploration in various domains of mobile and domiciliary radiology. A key recommendation stresses the strategic prioritization of multi-domain technology assessment initiatives, with scientific societies' endorsement, emphasizing regulatory considerations for responsible and ethical technology integration in healthcare practices. The broader landscape of technology assessment should aim to be innovative, ethical, and aligned with societal needs and regulatory standards. (Conclusions) The dynamic state of the field is evident, with active exploration of new frontiers. This overview also provides a roadmap, urging scholars, industry players, and regulators to collectively contribute to the further integration of this technology in the health domain.
Collapse
Affiliation(s)
- Graziano Lepri
- Azienda Unità Sanitaria Locale Umbria 1, Via Guerriero Guerra 21, 06127 Perugia, Italy
| | - Francesco Oddi
- Facoltà di Ingegneria, Università di Tor Vergata, Via del Politecnico, 1, 00133 Roma, Italy
| | - Rosario Alfio Gulino
- Facoltà di Ingegneria, Università di Tor Vergata, Via del Politecnico, 1, 00133 Roma, Italy
| | - Daniele Giansanti
- Centro Nazionale TISP, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
4
|
Dudipala KR, Le T, Nie W, Hoye RLZ. Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304523. [PMID: 37726105 PMCID: PMC11475525 DOI: 10.1002/adma.202304523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a rapid rise in the performance of optoelectronic devices based on lead-halide perovskites (LHPs). The large mobility-lifetime products and defect tolerance of these materials, essential for optoelectronics, also make them well-suited for radiation detectors, especially given the heavy elements present, which is essential for strong X-ray and γ-ray attenuation. Over the past decade, LHP thick films, wafers, and single crystals have given rise to direct radiation detectors that have outperformed incumbent technologies in terms of sensitivity (reported values up to 3.5 × 106 µC Gyair -1 cm-2 ), limit of detection (directly measured values down to 1.5 nGyair s-1 ), along with competitive energy and imaging resolution at room temperature. At the same time, lead-free perovskite-inspired materials (e.g., methylammonium bismuth iodide), which have underperformed in solar cells, have recently matched and, in some areas (e.g., in polarization stability), surpassed the performance of LHP detectors. These advances open up opportunities to achieve devices for safer medical imaging, as well as more effective non-invasive analysis for security, nuclear safety, or product inspection applications. Herein, the principles behind the rapid rises in performance of LHP and perovskite-inspired material detectors, and how their properties and performance link with critical applications in non-invasive diagnostics are discussed. The key strategies to engineer the performance of these materials, and the important challenges to overcome to commercialize these new technologies are also discussed.
Collapse
Affiliation(s)
| | - Thanh‐Hai Le
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Wanyi Nie
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | | |
Collapse
|
5
|
Clinckemalie L, Pradhan B, Brande RV, Zhang H, Vandenwijngaerden J, Saha RA, Romolini G, Sun L, Vandenbroucke D, Bonn M, Wang HI, Debroye E. Phase-engineering compact and flexible CsPbBr 3 microcrystal films for robust X-ray detection. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:655-663. [PMID: 38188498 PMCID: PMC10766070 DOI: 10.1039/d3tc01903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.
Collapse
Affiliation(s)
- Lotte Clinckemalie
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Bapi Pradhan
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roel Vanden Brande
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Heng Zhang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Rafikul Ali Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Li Sun
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
6
|
Boitsios G, Simoni P. Photographs coupled with radiographs in children: perspectives and ethical challenges. Pediatr Radiol 2023; 53:1967-1968. [PMID: 37097480 DOI: 10.1007/s00247-023-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Affiliation(s)
- Grammatina Boitsios
- Paediatric Imaging Department, Queen Fabiola Children's Hospital (HUDERF) - Brussels, Avenue Jean Joseph Crocq 15, 1020, Brussels, Belgium.
| | - Paolo Simoni
- Paediatric Imaging Department, Queen Fabiola Children's Hospital (HUDERF) - Brussels, Avenue Jean Joseph Crocq 15, 1020, Brussels, Belgium
| |
Collapse
|
7
|
Falsini N, Ubaldini A, Cicconi F, Rizzo A, Vinattieri A, Bruzzi M. Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices. SENSORS (BASEL, SWITZERLAND) 2023; 23:4930. [PMID: 37430844 DOI: 10.3390/s23104930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
Halide perovskites are a novel class of semiconductors that have attracted great interest in recent decades due to their peculiar properties of interest for optoelectronics. In fact, their use ranges from the field of sensors and light emitters to ionizing radiation detectors. Since 2015, ionizing radiation detectors exploiting perovskite films as active media have been developed. Recently, it has also been demonstrated that such devices can be suitable for medical and diagnostic applications. This review collects most of the recent and innovative publications regarding solid-state devices for the detection of X-rays, neutrons, and protons based on perovskite thin and thick films in order to show that this type of material can be used to design a new generation of devices and sensors. Thin and thick films of halide perovskites are indeed excellent candidates for low-cost and large-area device applications, where the film morphology allows the implementation on flexible devices, which is a cutting-edge topic in the sensor sector.
Collapse
Affiliation(s)
- Naomi Falsini
- Nuclear Safety, Security and Sustainability Division, Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Alberto Ubaldini
- Nuclear Safety, Security and Sustainability Division, Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Flavio Cicconi
- Nuclear Safety, Security and Sustainability Division, Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Antonietta Rizzo
- Nuclear Safety, Security and Sustainability Division, Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Anna Vinattieri
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Mara Bruzzi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Wu W, Lu H, Han X, Wang C, Xu Z, Han ST, Pan C. Recent Progress on Wavelength-Selective Perovskite Photodetectors for Image Sensing. SMALL METHODS 2023; 7:e2201499. [PMID: 36811238 DOI: 10.1002/smtd.202201499] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 06/19/2023]
Abstract
Spectral sensing plays a crucial part in imaging technologies, optical communication, and other fields. However, complicated optical elements, such as prisms, interferometric filters, and diffraction grating, are required for commercial multispectral detectors, which hampers their advance toward miniaturization and integration. In recent years, metal halide perovskites have been emerging for optical-component-free wavelength-selective photodetectors (PDs) because of their continuously tunable bandgap, fascinating optoelectronic properties, and simple preparation processes. In this review, recent advances in wavelength-selective perovskite PDs, including narrowband PDs, dual-band PDs, multispectral-recognizable PDs, and X-ray PDs, are highlighted, with an emphasis on device structure designs, working mechanisms, and optoelectronic performances. Meanwhile, the applications of wavelength-selective PDs in image sensing for single-/dual-color imaging, full-color imaging, and X-ray imaging are introduced. Finally, the remaining challenges and perspectives in this emerging field are presented.
Collapse
Affiliation(s)
- Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xun Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunfeng Wang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
10
|
Wang B, Yang X, Chen S, Lu S, Zhao S, Qian Q, Cai W, Wang S, Zang Z. Flexible perovskite scintillators and detectors for X-ray detection. iScience 2022; 25:105593. [PMID: 36465131 PMCID: PMC9713329 DOI: 10.1016/j.isci.2022.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray detection and imaging technology has been rapidly developed for various fields since 1895, offering great opportunities to scientific and industrial communities. Particularly, flexible X-ray detectors have drawn numerous attention in medical-related applications, solving the uniform issues of traditional rigid X-ray detectors. Out of all the potential materials, metal halide perovskites (MHPs) have been emerged as excellent candidates as flexible X-ray scintillators and detectors owing to the advantages including low temperature solution processable, strong X-ray absorption coefficient, large mobility lifetime product and tunable bandgap. In this review, the recent advances of MHP-based flexible X-ray detectors are comprehensively summarized, focusing on the scalable synthesis technologies of materials and diverse device architectures, and covering both direct and indirect X-ray detection. A brief outlook that highlights the current challenges impeding the commercialization of flexible MHP-based X-ray detectors is also included with possible solutions to those problem being provided.
Collapse
Affiliation(s)
- Baiqian Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Xin Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Shi Chen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Shuangyi Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Qingkai Qian
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Shenghao Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Han B, Park M, Kim K, Lee Y. Characterization of Flexible Amorphous Silicon Thin-Film Transistor-Based Detectors with Positive-Intrinsic-Negative Diode in Radiography. Diagnostics (Basel) 2022; 12:diagnostics12092103. [PMID: 36140503 PMCID: PMC9497934 DOI: 10.3390/diagnostics12092103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Low-dose exposure and work convenience are required for mobile X-ray systems during the COVID-19 pandemic. We investigated a novel X-ray detector (FXRD-4343FAW, VIEWORKS, Anyang, Korea) composed of a thin-film transistor based on amorphous silicon with a flexible plastic substrate. This detector is composed of a thallium-doped cesium iodide scintillator with a pixel size of 99 μm, pixel matrix of 4316 × 4316, and weight of 2.95 kg. The proposed detector has the advantages of high-noise characteristics and low weight, which provide patients and workers with an advantage in terms of the dose and work efficiency, respectively. We performed a quantitative evaluation and an experiment to demonstrate its viability. The modulation transfer function, noise power spectrum, and detective quantum efficiency were identified using the proposed and comparative detectors, according to the International Electrotechnical Commission protocol. Additionally, the contrast-to-noise ratio and coefficient of variation were investigated using a human-like phantom. Our results indicate that the proposed detector efficiently increases the image performance in terms of noise characteristics. The detailed performance evaluation demonstrated that the outcomes of the use of the proposed detector confirmed the viability of mobile X-ray devices that require low doses. Consequently, the novel FXRD-4343FAW X-ray detector is expected to improve the image quality and work convenience in extended radiography.
Collapse
Affiliation(s)
- Bongju Han
- Quality Assurance Team, Business Division, Vieworks, 41-3, Burim-ro 170beon-gil, Dongan-gu, Anyang-si 14055, Korea
| | - Minji Park
- Department of Radiological Science, College of Health Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
- Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Kyuseok Kim
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Unju-ro, Gangman-gu, Seoul 06229, Korea
- Correspondence: (K.K.); (Y.L.); Tel.: +82-02-2019-5447 (K.K.); +82-32-820-4362 (Y.L.)
| | - Youngjin Lee
- Department of Radiological Science, College of Health Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: (K.K.); (Y.L.); Tel.: +82-02-2019-5447 (K.K.); +82-32-820-4362 (Y.L.)
| |
Collapse
|
12
|
Liu H, Hussain S, Abbas Z, Lee J, Abbas Jaffery SH, Jung J, Kim HS, Vikraman D, Kang J. Fabrication of High-Performance Solar Cells and X-ray Detectors Using MoX 2@CNT Nanocomposite-Tuned Perovskite Layers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33626-33640. [PMID: 35834414 DOI: 10.1021/acsami.2c08842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interface design of inorganic and organic halide perovskite-based devices plays an important role to attain high performance. The modification of transport layers (ETL and HTL) or the perovskite layer is given the crucial inspiration to realize superior power conversion efficiencies (PCEs). The highly conducting 2D materials of CNT, graphene/GO, and transition-metal dichalcogenides (TMDs) are suitable substitutes to tune the electronic structure/work function of perovskite devices. Herein, the nanocomposites composed of molybdenum dichalcogenides (MoX2 = MoS2, MoSe2, and MoTe2) stretched CNT was embedded with HTL or perovskite layer to improve the resulted characteristics of perovskite devices of solar cells and X-ray detectors. A superior solar cell efficiency of 12.57% was realized for the MoTe2@CNT nanocomposites using a modified active layer-composed device. Additionally, X-ray detectors with MoTe2@CNT-modulated active layers achieved 13.32 μA/cm2, 3.99 mA/Gy·cm2, 4.81 × 10-4 cm2/V·s, and 2.13 × 1015 cm2/V·s of CCD-DCD, sensitivity, mobility, and trap density, respectively. Density functional theory approximation was used to realize the improved electronics properties, optical properties, and energy band structures in the MoX2@CNT-doped perovskites evidently. Thus, the current research paves the way for the improvement of highly efficient semiconductor devices based on perovskite-based structures with the use of 2D nanocomposites.
Collapse
Affiliation(s)
- Hailiang Liu
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea
- Convergence Semiconductor Research Center, Dankook University, Yongin 16890, Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
| | - Zeesham Abbas
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
| | - Jehoon Lee
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea
| | - Syed Hassan Abbas Jaffery
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Jungwon Kang
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea
- Convergence Semiconductor Research Center, Dankook University, Yongin 16890, Korea
| |
Collapse
|
13
|
Chaudhari R, Kant CR, Garg A. Polymer-BiI 3 composites for high-performance, room-temperature, direct X-ray detectors. MRS COMMUNICATIONS 2022; 12:358-364. [PMID: 35492383 PMCID: PMC9030686 DOI: 10.1557/s43579-022-00185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Low-energy X-rays have a predominant role in medical diagnostic applications, grown tremendously during recent Covid-19 pandemic times. Synthesis of stable, PMMA/polystyrene-BiI3 composites has been done through a facile, low-cost, dry-tumble mixing technique for direct X-ray detector applications. Comparative analysis of structural, optical, and photocurrent responses upon irradiation with low-energy X-rays (30 and 60 kV) ensue that PS-BiI3 demonstrates high SNR 3300, sensitivity 189 µC Gy-1 cm-3 and fast response time 30 ms, at dose rate 1.68 mGy s-1, affirming the composite to be prospective candidate for low-energy, room-temperature, direct X-ray detectors under low bias conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43579-022-00185-6.
Collapse
Affiliation(s)
- Ritu Chaudhari
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi, 110006 India
| | - Chhaya Ravi Kant
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi, 110006 India
| | - Alka Garg
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049 India
| |
Collapse
|
14
|
Vikraman D, Liu H, Hussain S, Jaffery SHA, Karuppasamy K, Jo EB, Abbas Z, Jung J, Kang J, Kim HS. Impact of Molybdenum Dichalcogenides on the Active and Hole-Transport Layers for Perovskite Solar Cells, X-Ray Detectors, and Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104216. [PMID: 35146911 DOI: 10.1002/smll.202104216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The interface architectures of inorganic-organic halide perovskite-based devices play key roles in achieving high performances with these devices. Indeed, the perovskite layer is essential for synergistic interactions with the other practical modules of these devices, such as the hole-/electron-transfer layers. In this work, a heterostructure geometry comprising transition-metal dichalcogenides (TMDs) of molybdenum dichalcogenides (MoX2 = MoS2 , MoSe2 , and MoTe2 ) and perovskite- or hole-transfer layers is prepared to achieve improved device characteristics of perovskite solar cells (PSCs), X-ray detectors, and photodetectors. A superior efficiency of 11.36% is realized for the active layer with MoTe2 in the PSC device. Moreover, X-ray detectors using modulated MoTe2 nanostructures in the active layers achieve 296 nA cm-2 , 3.12 mA (Gy cm2 )-1 and 3.32 × 10-4 cm2 V-1 s-1 of collected current density, sensitivity, and mobility, respectively. The fabricated photodetector produces a high photoresponsivity of 956 mA W-1 for a visible light source, with an excellent external quantum efficiency of 160% for the perovskite layer containing MoSe2 nanostructures. Density functional theory calculations are made for pure and MoX2 doped perovskites' geometrical, density of states and optical properties variations evidently. Thus, the present study paves the way for using perovskite-based devices modified by TMDs to develop highly efficient semiconductor devices.
Collapse
Affiliation(s)
- Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hailiang Liu
- Department of Electronics and Electrical Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Syed Hassan Abbas Jaffery
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eun-Bee Jo
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Zeesham Abbas
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
- Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Jungwon Kang
- Department of Electronics and Electrical Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
15
|
Datta A, Fiala J, Motakef S. 2D perovskite-based high spatial resolution X-ray detectors. Sci Rep 2021; 11:22897. [PMID: 34819595 PMCID: PMC8613224 DOI: 10.1038/s41598-021-02378-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
X-ray radiography is the most widely used imaging technique with applications encompassing medical and industrial imaging, homeland security, and materials research. Although a significant amount of research and development has gone into improving the spatial resolution of the current state-of-the-art indirect X-ray detectors, it is still limited by the detector thickness and microcolumnar structure quality. This paper demonstrates high spatial resolution X-ray imaging with solution-processable two-dimensional hybrid perovskite single-crystal scintillators grown inside microcapillary channels as small as 20 µm. These highly scalable non-hygroscopic detectors demonstrate excellent spatial resolution similar to the direct X-ray detectors. X-ray imaging results of a camera constructed using this scintillator show Modulation Transfer Function values significantly better than the current state-of-the-art X-ray detectors. These structured detectors open up a new era of low-cost large-area ultrahigh spatial resolution high frame rate X-ray imaging with numerous applications.
Collapse
Affiliation(s)
- Amlan Datta
- CapeSym, Inc., 6 Huron Drive, Natick, MA, 01760, USA.
| | - John Fiala
- CapeSym, Inc., 6 Huron Drive, Natick, MA, 01760, USA
| | | |
Collapse
|
16
|
Fahrig R, Jaffray DA, Sechopoulos I, Webster Stayman J. Flat-panel conebeam CT in the clinic: history and current state. J Med Imaging (Bellingham) 2021; 8:052115. [PMID: 34722795 DOI: 10.1117/1.jmi.8.5.052115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Research into conebeam CT concepts began as soon as the first clinical single-slice CT scanner was conceived. Early implementations of conebeam CT in the 1980s focused on high-contrast applications where concurrent high resolution ( < 200 μ m ), for visualization of small contrast-filled vessels, bones, or teeth, was an imaging requirement that could not be met by the contemporaneous CT scanners. However, the use of nonlinear imagers, e.g., x-ray image intensifiers, limited the clinical utility of the earliest diagnostic conebeam CT systems. The development of consumer-electronics large-area displays provided a technical foundation that was leveraged in the 1990s to first produce large-area digital x-ray detectors for use in radiography and then compact flat panels suitable for high-resolution and high-frame-rate conebeam CT. In this review, we show the concurrent evolution of digital flat panel (DFP) technology and clinical conebeam CT. We give a brief summary of conebeam CT reconstruction, followed by a brief review of the correction approaches for DFP-specific artifacts. The historical development and current status of flat-panel conebeam CT in four clinical areas-breast, fixed C-arm, image-guided radiation therapy, and extremity/head-is presented. Advances in DFP technology over the past two decades have led to improved visualization of high-contrast, high-resolution clinical tasks, and image quality now approaches the soft-tissue contrast resolution that is the standard in clinical CT. Future technical developments in DFPs will enable an even broader range of clinical applications; research in the arena of flat-panel CT shows no signs of slowing down.
Collapse
Affiliation(s)
- Rebecca Fahrig
- Innovation, Advanced Therapies, Siemens Healthcare GmbH, Forchheim, Germany.,Friedrich-Alexander Universitat, Department of Computer Science 5, Erlangen, Germany
| | - David A Jaffray
- MD Anderson Cancer Center, Departments of Radiation Physics and Imaging Physics, Houston, Texas, United States
| | - Ioannis Sechopoulos
- Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands.,Dutch Expert Center for Screening (LRCB), Nijmegen, The Netherlands.,University of Twente, Technical Medical Center, Enschede, The Netherlands
| | - J Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|