1
|
Shurubor YI, Keskinov AA, Yudin VS, Krasnikov BF. The Balance of Ketoacids α-Ketoglutarate and α-Ketoglutaramate Reflects the Degree of the Development of Hepatoencephalopathy in Rats. Int J Mol Sci 2024; 25:13568. [PMID: 39769330 PMCID: PMC11677448 DOI: 10.3390/ijms252413568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Hepatoencephalopathy (HE) is a liver disease that can lead to brain pathology and the impairment of human cognitive abilities. The objective assessment of HE disease severity is difficult due to the lack of reliable diagnostic markers. This paper examines the background to the emergence of HE markers and provides a brief overview of research results indicating the diagnostic value of potential markers isolated from a wide range of metabolites analyzed. It has been suggested that metabolites of the glutamate-glutamine (Glu-Gln) cycle, α-ketoglutarate (αKG), and α-ketoglutaramate (αKGM) can act as such markers of HE. The informative value of these markers was revealed during a comparative analysis of the distribution of αKG and αKGM in samples of the blood plasma and tissues (liver, kidneys, and brain) of rats exposed to the strong hepatotoxin thioacetamide (TAA). A comparative analysis of the balance of αKG and αKGM, as well as their ratio (αKG/αKGM) in the examined samples of blood plasma and animal tissues in these models, revealed their diagnostic value for assessing the severity of HE and/or monitoring the recovery process.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (A.A.K.); (V.S.Y.)
| | - Anton A. Keskinov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (A.A.K.); (V.S.Y.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (A.A.K.); (V.S.Y.)
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (A.A.K.); (V.S.Y.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University, 1 Ostrovitianova Str., 117997 Moscow, Russia
| |
Collapse
|
2
|
Lella C, Nestor L, De Bundel D, Vander Heyden Y, Van Eeckhaut A. Targeted Chiral Metabolomics of D-Amino Acids: Their Emerging Role as Potential Biomarkers in Neurological Diseases with a Focus on Their Liquid Chromatography-Mass Spectrometry Analysis upon Chiral Derivatization. Int J Mol Sci 2024; 25:12410. [PMID: 39596475 PMCID: PMC11595108 DOI: 10.3390/ijms252212410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
In neuroscience research, chiral metabolomics is an emerging field, in which D-amino acids play an important role as potential biomarkers for neurological diseases. The targeted chiral analysis of the brain metabolome, employing liquid chromatography (LC) coupled to mass spectrometry (MS), is a pivotal approach for the identification of biomarkers for neurological diseases. This review provides an overview of D-amino acids in neurological diseases and of the state-of-the-art strategies for the enantioselective analysis of chiral amino acids (AAs) in biological samples to investigate their putative role as biomarkers for neurological diseases. Fluctuations in D-amino acids (D-AAs) levels can be related to the pathology of neurological diseases, for example, through their role in the modulation of N-methyl-D-aspartate receptors and neurotransmission. Because of the trace presence of these biomolecules in mammals and the complex nature of biological matrices, highly sensitive and selective analytical methods are essential. Derivatization strategies with chiral reagents are highlighted as critical tools for enhancing detection capabilities. The latest advances in chiral derivatization reactions, coupled to LC-MS/MS analysis, have improved the enantioselective quantification of these AAs and allow the separation of several chiral metabolites in a single analytical run. The enhanced performances of these methods can provide an accurate correlation between specific D-AA profiles and disease states, allowing for a better understanding of neurological diseases and drug effects on the brain.
Collapse
Affiliation(s)
- Cinzia Lella
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Liam Nestor
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Yvan Vander Heyden
- Research Group Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| |
Collapse
|
3
|
Chang K, Cheng M, Tang H, Lin C, Chen C. Dysregulation of choline metabolism and therapeutic potential of citicoline in Huntington's disease. Aging Cell 2024; 23:e14302. [PMID: 39143698 PMCID: PMC11561662 DOI: 10.1111/acel.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Huntington's disease (HD) is associated with dysregulated choline metabolism, but the underlying mechanisms remain unclear. This study investigated the expression of key enzymes in this pathway in R6/2 HD mice and human HD postmortem brain tissues. We further explored the therapeutic potential of modulating choline metabolism for HD. Both R6/2 mice and HD patients exhibited reduced expression of glycerophosphocholine phosphodiesterase 1 (GPCPD1), a key enzyme in choline metabolism, in the striatum and cortex. The striatum of R6/2 mice also showed decreased choline and phosphorylcholine, and increased glycerophosphocholine, suggesting disruption in choline metabolism due to GPCPD1 deficiency. Treatment with citicoline significantly improved motor performance, upregulated anti-apoptotic Bcl2 expression, and reduced oxidative stress marker malondialdehyde in both brain regions. Metabolomic analysis revealed partial restoration of disrupted metabolic patterns in the striatum and cortex following citicoline treatment. These findings strongly suggest the role of GPCPD1 deficiency in choline metabolism dysregulation in HD. The therapeutic potential of citicoline in R6/2 mice highlights the choline metabolic pathway as a promising target for future HD therapies.
Collapse
Affiliation(s)
- Kuo‐Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| | - Mei‐Ling Cheng
- Department of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Hsiang‐Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Chung‐Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
- Institute for Radiological ResearchChang Gung UniversityTaoyuanTaiwan
| | - Chiung‐Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| |
Collapse
|
4
|
Chiang PI, Chang KH, Tang HY, Wu YR, Cheng ML, Chen CM. Diagnostic Potential of Alternations of Bile Acid Profiles in the Plasma of Patients with Huntington's Disease. Metabolites 2024; 14:394. [PMID: 39057717 PMCID: PMC11278952 DOI: 10.3390/metabo14070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Huntington's disease (HD) is characterized by progressive involuntary chorea movements and cognitive decline. Recent research indicates that metabolic disturbance may play a role in its pathogenesis. Bile acids, produced during cholesterol metabolism in the liver, have been linked to neurodegenerative conditions. This study investigated variations in plasma bile acid profiles among individuals with HD. Plasma levels of 16 primary and secondary bile acids and their conjugates were analyzed in 20 healthy controls and 33 HD patients, including 24 with symptoms (symHD) and 9 carriers in the presymptomatic stage (preHD). HD patients exhibited significantly higher levels of glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA) compared to healthy controls. Conversely, isolithocholic acid levels were notably lower in the HD group. Neurotoxic bile acids (glycocholic acid (GCA) + glycodeoxycholic acid (GDCA) + GCDCA) were elevated in symHD patients, while levels of neuroprotective bile acids (ursodeoxycholic acid (UDCA) + GUDCA + tauroursodeoxycholic acid (TUDCA)) were higher in preHD carriers, indicating a compensatory response to early neuronal damage. These results underscore the importance of changes in plasma bile acid profiles in HD and their potential involvement in disease mechanisms. The identified bile acids (GCDCA, GUDCA, and isolithocholic acid) could potentially serve as markers to distinguish between HD stages and healthy individuals. Nonetheless, further research is warranted to fully understand the clinical implications of these findings and their potential as diagnostic or therapeutic tools for HD.
Collapse
Affiliation(s)
- Ping-I Chiang
- Department of Medical Education, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan-333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Walitt B, Singh K, LaMunion SR, Hallett M, Jacobson S, Chen K, Enose-Akahata Y, Apps R, Barb JJ, Bedard P, Brychta RJ, Buckley AW, Burbelo PD, Calco B, Cathay B, Chen L, Chigurupati S, Chen J, Cheung F, Chin LMK, Coleman BW, Courville AB, Deming MS, Drinkard B, Feng LR, Ferrucci L, Gabel SA, Gavin A, Goldstein DS, Hassanzadeh S, Horan SC, Horovitz SG, Johnson KR, Govan AJ, Knutson KM, Kreskow JD, Levin M, Lyons JJ, Madian N, Malik N, Mammen AL, McCulloch JA, McGurrin PM, Milner JD, Moaddel R, Mueller GA, Mukherjee A, Muñoz-Braceras S, Norato G, Pak K, Pinal-Fernandez I, Popa T, Reoma LB, Sack MN, Safavi F, Saligan LN, Sellers BA, Sinclair S, Smith B, Snow J, Solin S, Stussman BJ, Trinchieri G, Turner SA, Vetter CS, Vial F, Vizioli C, Williams A, Yang SB, Nath A. Deep phenotyping of post-infectious myalgic encephalomyelitis/chronic fatigue syndrome. Nat Commun 2024; 15:907. [PMID: 38383456 PMCID: PMC10881493 DOI: 10.1038/s41467-024-45107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.
Collapse
Affiliation(s)
- Brian Walitt
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Komudi Singh
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Samuel R LaMunion
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | - Mark Hallett
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Steve Jacobson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kong Chen
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | - Patrick Bedard
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Robert J Brychta
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Brice Calco
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Brianna Cathay
- Texas A&M School of Engineering Medicine, College Station, TX, USA
| | - Li Chen
- Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Snigdha Chigurupati
- George Washington University Hospital, District of Columbia, Washington, DC, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | | | - Amber B Courville
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | | | | | | | - Scott A Gabel
- National Institute of Environmental Health Sciences (NIEHS), Chapel Hill, NC, USA
| | - Angelique Gavin
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - David S Goldstein
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | | | - Sean C Horan
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Silvina G Horovitz
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kory R Johnson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Anita Jones Govan
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kristine M Knutson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Joy D Kreskow
- National Institute of Nursing Research (NINR), Bethesda, MD, USA
| | - Mark Levin
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Jonathan J Lyons
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, MD, USA
| | - Nicholas Madian
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Nasir Malik
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | | | - Patrick M McGurrin
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | | | - Ruin Moaddel
- National Institute of Aging (NIA), Baltimore, MD, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences (NIEHS), Chapel Hill, NC, USA
| | - Amrita Mukherjee
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | - Sandra Muñoz-Braceras
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Gina Norato
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Katherine Pak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Traian Popa
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Lauren B Reoma
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Michael N Sack
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Farinaz Safavi
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, MD, USA
| | - Leorey N Saligan
- National Institute of Nursing Research (NINR), Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | - Bryan Smith
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Joseph Snow
- National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | | | - Barbara J Stussman
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | | | | | | | - Felipe Vial
- Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Carlotta Vizioli
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Ashley Williams
- Oakland University William Beaumont School of Medicine, Rochester, NY, USA
| | | | - Avindra Nath
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA.
| |
Collapse
|
6
|
McGarry A, Hunter K, Gaughan J, Auinger P, Ferraro TN, Pradhan B, Ferrucci L, Egan JM, Moaddel R. An exploratory metabolomic comparison of participants with fast or absent functional progression from 2CARE, a randomized, double-blind clinical trial in Huntington's disease. Sci Rep 2024; 14:1101. [PMID: 38212353 PMCID: PMC10784537 DOI: 10.1038/s41598-023-50553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Huntington's disease (HD) is increasingly recognized for diverse pathology outside of the nervous system. To describe the biology of HD in relation to functional progression, we previously analyzed the plasma and CSF metabolome in a cross-sectional study of participants who had various degrees of functional impairment. Here, we carried out an exploratory study in plasma from HD individuals over a 3-year time frame to assess whether differences exist between those with fast or absent clinical progression. There were more differences in circulating metabolite levels for fast progressors compared to absent progressors (111 vs 20, nominal p < 0.05). All metabolite changes in faster progressors were decreases, whereas some metabolite concentrations increased in absent progressors. Many of the metabolite levels that decreased in the fast progressors were higher at Screening compared to absent progressors but ended up lower by Year 3. Changes in faster progression suggest greater oxidative stress and inflammation (kynurenine, diacylglycerides, cysteine), disturbances in nitric oxide and urea metabolism (arginine, citrulline, ornithine, GABR), lower polyamines (putrescine and spermine), elevated glucose, and deficient AMPK signaling. Metabolomic differences between fast and absent progressors suggest the possibility of predicting functional decline in HD, and possibly delaying it with interventions to augment arginine, polyamines, and glucose regulation.
Collapse
Affiliation(s)
- Andrew McGarry
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA.
| | - Krystal Hunter
- Department of Medicine, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - John Gaughan
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Peggy Auinger
- Department of Neurology, Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Basant Pradhan
- Department of Psychiatry, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
8
|
Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research. Metabolites 2023; 13:1203. [PMID: 38132886 PMCID: PMC10744751 DOI: 10.3390/metabo13121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. The precise mechanisms of HD progression are poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntingtin gene. Important new strategies are of paramount importance to identify early biomarkers with predictive value for intervening in disease progression at a stage when cellular dysfunction has not progressed irreversibly. Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under certain conditions and is becoming an essential tool for the systemic characterization of metabolites to provide a snapshot of the functional and pathophysiological states of an organism and support disease diagnosis and biomarker discovery. This review briefly highlights the historical progress of metabolomic methodologies, followed by a more detailed review of the use of metabolomics in HD research to enable a greater understanding of the pathogenesis, its early prediction, and finally the main technical platforms in the field of metabolomics.
Collapse
Affiliation(s)
- Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Road, Louisville KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| |
Collapse
|
9
|
Nestor L, De Bundel D, Vander Heyden Y, Smolders I, Van Eeckhaut A. Unravelling the brain metabolome: A review of liquid chromatography - mass spectrometry strategies for extracellular brain metabolomics. J Chromatogr A 2023; 1712:464479. [PMID: 37952387 DOI: 10.1016/j.chroma.2023.464479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals. In vivo samples are obtained through microdialysis, cerebral open-flow microperfusion or solid-phase microextraction. The analytes of potential interest are typically low in concentration and can have a wide range of physicochemical properties. Liquid chromatography coupled to mass spectrometry has proven its usefulness in brain metabolomics. It allows sensitive and specific analysis of low sample volumes, obtained through different approaches. Several strategies for the analysis of the extracellular fluid have been proposed. The most widely used approaches apply sample derivatization, specific stationary phases and/or hydrophilic interaction liquid chromatography. Miniaturization of these methods allows an even higher sensitivity. The development of chiral metabolomics is indispensable, as it allows to compare the enantiomeric ratio of compounds and provides even more challenges. Some limitations continue to exist for the previously developed methods and the development of new, more sensitive methods remains needed. This review provides an overview of the methods developed for sampling and liquid chromatography-mass spectrometry analysis of the extracellular metabolome.
Collapse
Affiliation(s)
- Liam Nestor
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
10
|
Pradhan SS, Rao KR, Manjunath M, Saiswaroop R, Patnana DP, Phalguna KS, Choudhary B, Sivaramakrishnan V. Vitamin B 6, B 12 and folate modulate deregulated pathways and protein aggregation in yeast model of Huntington disease. 3 Biotech 2023; 13:96. [PMID: 36852176 PMCID: PMC9958225 DOI: 10.1007/s13205-023-03525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Huntington's disease (HD) is an incurable and progressive neurodegenerative disease affecting the basal ganglia of the brain. HD is caused due to expansion of the polyglutamine tract in the protein Huntingtin resulting in aggregates. The increased PolyQ length results in aggregation of protein Huntingtin leading to neuronal cell death. Vitamin B6, B12 and folate are deficient in many neurodegenerative diseases. We performed an integrated analysis of transcriptomic, metabolomic and cofactor-protein network of vitamin B6, B12 and folate was performed. Our results show considerable overlap of pathways modulated by Vitamin B6, B12 and folate with those obtained from transcriptomic and metabolomic data of HD patients and model systems. Further, in yeast model of HD we showed treatment of B6, B12 or folate either alone or in combination showed impaired aggregate formation. Transcriptomic analysis of yeast model treated with B6, B12 and folate showed upregulation of pathways like ubiquitin mediated proteolysis, autophagy, peroxisome, fatty acid, lipid and nitrogen metabolism. Metabolomic analysis of yeast model shows deregulation of pathways like aminoacyl-tRNA biosynthesis, metabolism of various amino acids, nitrogen metabolism and glutathione metabolism. Integrated transcriptomic and metabolomic analysis of yeast model showed concordance in the pathways obtained. Knockout of Peroxisomal (PXP1 and PEX7) and Autophagy (ATG5) genes in yeast increased aggregates which is mitigated by vitamin B6, B12 and folate treatment. Taken together our results show a role for Vitamin B6, B12 and folate mediated modulation of pathways important for preventing protein aggregation with potential implications for HD. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03525-y.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - K. Raksha Rao
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - R. Saiswaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Durga Prasad Patnana
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| |
Collapse
|
11
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
12
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
13
|
Chang KH, Cheng ML, Lo CJ, Fan CM, Wu YR, Chen CM. Alternations of Lipoprotein Profiles in the Plasma as Biomarkers of Huntington's Disease. Cells 2023; 12:cells12030385. [PMID: 36766727 PMCID: PMC9913722 DOI: 10.3390/cells12030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Alterations in lipid composition and disturbed lipoprotein metabolism are involved in the pathomechanism of Huntington's disease (HD). Here, we measured 112 lipoprotein subfractions and components in the plasma of 20 normal controls, 24 symptomatic (sympHD) and 9 presymptomatic (preHD) HD patients. Significant changes were found in 30 lipoprotein subfractions and components in all HD patients. Plasma levels of total cholesterol (CH), apolipoprotein (Apo)B, ApoB-particle number (PN), and components of low-density lipoprotein (LDL) were lower in preHD and sympHD patients. Components of LDL4, LDL5, LDL6 and high-density lipoprotein (HDL)4 demonstrated lower levels in preHD and sympHD patients compared with controls. Components in LDL3 displayed lower levels in sympHD compared with the controls, whereas components in very low-density lipoprotein (VLDL)5 were higher in sympHD patients compared to the controls. The levels of components in HDL4 and VLDL5 demonstrated correlation with the scores of motor assessment, independence scale or functional capacity of Unified Huntington's Disease Rating Scale. These findings indicate the potential of components of VLDL5, LDL3, LDL4, LDL5 and HDL4 to serve as the biomarkers for HD diagnosis and disease progression, and demonstrate substantial evidence of the involvement of lipids and apolipoproteins in HD pathogenesis.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8729); Fax: +886-3-3288849
| |
Collapse
|
14
|
Spick M, Hancox TPM, Chowdhury NR, Middleton B, Skene DJ, Morton AJ. Metabolomic Analysis of Plasma in Huntington's Disease Transgenic Sheep (Ovis aries) Reveals Progressive Circadian Rhythm Dysregulation. J Huntingtons Dis 2023; 12:31-42. [PMID: 36617787 DOI: 10.3233/jhd-220552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metabolic abnormalities have long been predicted in Huntington's disease (HD) but remain poorly characterized. Chronobiological dysregulation has been described in HD and may include abnormalities in circadian-driven metabolism. OBJECTIVE Here we investigated metabolite profiles in the transgenic sheep model of HD (OVT73) at presymptomatic ages. Our goal was to understand changes to the metabolome as well as potential metabolite rhythm changes associated with HD. METHODS We used targeted liquid chromatography mass spectrometry (LC-MS) metabolomics to analyze metabolites in plasma samples taken from female HD transgenic and normal (control) sheep aged 5 and 7 years. Samples were taken hourly across a 27-h period. The resulting dataset was investigated by machine learning and chronobiological analysis. RESULTS The metabolic profiles of HD and control sheep were separable by machine learning at both ages. We found both absolute and rhythmic differences in metabolites in HD compared to control sheep at 5 years of age. An increase in both the number of disturbed metabolites and the magnitude of change of acrophase (the time at which the rhythms peak) was seen in samples from 7-year-old HD compared to control sheep. There were striking similarities between the dysregulated metabolites identified in HD sheep and human patients (notably of phosphatidylcholines, amino acids, urea, and threonine). CONCLUSION This work provides the first integrated analysis of changes in metabolism and circadian rhythmicity of metabolites in a large animal model of presymptomatic HD.
Collapse
Affiliation(s)
- Matt Spick
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Thomas P M Hancox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Namrata R Chowdhury
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Benita Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
15
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
16
|
In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome. Biomed Pharmacother 2022; 156:113986. [DOI: 10.1016/j.biopha.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
17
|
Bogos LG, Pralea IE, Moldovan RC, Iuga CA. Indirect Enantioseparations: Recent Advances in Chiral Metabolomics for Biomedical Research. Int J Mol Sci 2022; 23:ijms23137428. [PMID: 35806433 PMCID: PMC9267260 DOI: 10.3390/ijms23137428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Chiral metabolomics is starting to become a well-defined research field, powered by the recent advances in separation techniques. This review aimed to cover the most relevant advances in indirect enantioseparations of endogenous metabolites that were published over the last 10 years, including improvements and development of new chiral derivatizing agents, along with advances in separation methodologies. Moreover, special emphasis is put on exciting advances in separation techniques combined with mass spectrometry, such as chiral discrimination by ion-mobility mass spectrometry together with untargeted strategies for profiling of chiral metabolites in complex matrices. These advances signify a leap in chiral metabolomics technologies that will surely offer a solid base to better understand the specific roles of enantiomeric metabolites in systems biology.
Collapse
Affiliation(s)
- Luisa-Gabriela Bogos
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Correspondence:
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Moaddel R, Zanos P, Farmer CA, Kadriu B, Morris PJ, Lovett J, Acevedo-Diaz EE, Cavanaugh GW, Yuan P, Yavi M, Thomas CJ, Park LT, Ferrucci L, Gould TD, Zarate CA. Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Transl Psychiatry 2022; 12:179. [PMID: 35501309 PMCID: PMC9061764 DOI: 10.1038/s41398-022-01941-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Subanesthetic-dose racemic (R,S)-ketamine (ketamine) produces rapid, robust, and sustained antidepressant effects in major depressive disorder (MDD) and bipolar disorder (BD) and has also been shown to effectively treat neuropathic pain, complex regional pain syndrome, and post-traumatic stress disorder (PTSD). However, to date, its mechanism of action remains unclear. Preclinical studies found that (2 R,6 R;2 S,6 S)-hydroxynorketamine (HNK), a major circulating metabolite of ketamine, elicits antidepressant effects similar to those of ketamine. To help determine how (2 R,6 R)-HNK contributes to ketamine's mechanism of action, an exploratory, targeted, metabolomic analysis was carried out on plasma and CSF of nine healthy volunteers receiving a 40-minute ketamine infusion (0.5 mg/kg). A parallel targeted metabolomic analysis in plasma, hippocampus, and hypothalamus was carried out in mice receiving either 10 mg/kg of ketamine, 10 mg/kg of (2 R,6 R)-HNK, or saline. Ketamine and (2 R,6 R)-HNK both affected multiple pathways associated with inflammatory conditions. In addition, several changes were unique to either the healthy human volunteers and/or the mouse arm of the study, indicating that different pathways may be differentially involved in ketamine's effects in mice and humans. Mechanisms of action found to consistently underlie the effects of ketamine and/or (2 R,6 R)-HNK across both the human metabolome in plasma and CSF and the mouse arm of the study included LAT1, IDO1, NAD+, the nitric oxide (NO) signaling pathway, and sphingolipid rheostat.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA.
| | - Panos Zanos
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Cristan A Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Elia E Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace W Cavanaugh
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Krivosova M, Gondas E, Murin R, Dohal M, Ondrejka I, Tonhajzerova I, Hutka P, Ferencova N, Visnovcova Z, Hrtanek I, Mokry J. The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics (Basel) 2022; 12:diagnostics12040813. [PMID: 35453861 PMCID: PMC9025710 DOI: 10.3390/diagnostics12040813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with a pathophysiology that is not yet fully clarified. An increasing number of studies show an association of MDD with energy metabolism alteration and the presence of oxidative stress. We aimed to evaluate plasma levels of 3-hydroxybutyrate (3HB), NADH, myeloperoxidase, and dityrosine (di-Tyr) in adolescent and adult patients with MDD, compare them with healthy age-matched controls, and assess the effect of antidepressant treatment during hospitalisation on these levels. In our study, plasmatic levels of 3HB were elevated in both adolescents (by 55%; p = 0.0004) and adults (by 88%; p < 0.0001) with MDD compared to controls. Levels of dityrosine were increased in MDD adults (by 19%; p = 0.0092) but not adolescents. We have not found any significant effect of antidepressants on the selected parameters during the short observation period. Our study supports the findings suggesting altered energy metabolism in MDD and demonstrates its presence independently of the age of the patients.
Collapse
Affiliation(s)
- Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Eduard Gondas
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Matus Dohal
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Hutka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Correspondence:
| |
Collapse
|
20
|
Quintero ME, Pontes JGDM, Tasic L. Metabolomics in degenerative brain diseases. Brain Res 2021; 1773:147704. [PMID: 34744014 DOI: 10.1016/j.brainres.2021.147704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022]
Abstract
Among the most studied diseases that affect the central nervous system are Parkinson's, Alzheimer's, and Huntington's diseases, but the lack of effective biomarkers, accurate diagnosis, and precise treatment for each of them is currently an issue. Due to the contribution of biomarkers in supporting diagnosis, many recent efforts have focused on their identification and validation at the beginning or during the progression of the mental illness. Metabolome reveals the metabolic processes that result from protein activities under the guided gene expression and environmental factors, either in healthy or pathological conditions. In this context, metabolomics has proven to be a valuable approach. Currently, magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the most commonly used bioanalytical techniques for metabolomics. MS-assisted profiling is considered the most versatile technique, and the NMR is the most reproductive. However, each one of them has its drawbacks. In this review, we summarized several alterations in metabolites that have been reported for these three classic brain diseases using MS and NMR-based research, which might suggest some possible biomarkers to support the diagnosis and/or new targets for their treatment.
Collapse
Affiliation(s)
- Melissa Escobar Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Guilherme de Moraes Pontes
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
21
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Gupta N, Ramakrishnan S, Wajid S. Emerging role of metabolomics in protein conformational disorders. Expert Rev Proteomics 2021; 18:395-410. [PMID: 34227444 DOI: 10.1080/14789450.2021.1948330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Metabolomics focuses on interactions among different metabolites associated with various cellular functions in cells, tissues, and organs. In recent years, metabolomics has emerged as a powerful tool to identify perturbed metabolites, pathways influenced by the environment, for protein conformational diseases (PCDs) and also offers wide clinical application.Area Covered: This review provides a brief overview of recent advances in metabolomics as applied to identify metabolic variations in PCDs, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, prion disease, and cardiac amyloidosis. The 'PubMed' and 'Google Scholar' database search methods have been used to screen the published reports with key search terms: metabolomics, biomarkers, and protein conformational disorders.Expert opinion: Metabolomics is the large-scale study of metabolites and is deemed to overwhelm other omics. It plays a crucial role in finding variations in diseases due to protein conformational changes. However, many PCDs are yet to be identified. Metabolomics is still an emerging field; there is a need for new high-resolution analytical techniques and more studies need to be carried out to generate new information.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| | | | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| |
Collapse
|