1
|
Shen C, Liu X, Luo J, Xia K. Torsion Graph Neural Networks. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025; 47:2946-2956. [PMID: 40030998 DOI: 10.1109/tpami.2025.3528449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Geometric deep learning (GDL) models have demonstrated a great potential for the analysis of non-Euclidian data. They are developed to incorporate the geometric and topological information of non-Euclidian data into the end-to-end deep learning architectures. Motivated by the recent success of discrete Ricci curvature in graph neural network (GNNs), we propose TorGNN, an analytic Torsion enhanced Graph Neural Network model. The essential idea is to characterize graph local structures with an analytic torsion based weight formula. Mathematically, analytic torsion is a topological invariant that can distinguish spaces which are homotopy equivalent but not homeomorphic. In our TorGNN, for each edge, a corresponding local simplicial complex is identified, then the analytic torsion (for this local simplicial complex) is calculated, and further used as a weight (for this edge) in message-passing process. Our TorGNN model is validated on link prediction tasks from sixteen different types of networks and node classification tasks from four types of networks. It has been found that our TorGNN can achieve superior performance on both tasks, and outperform various state-of-the-art models. This demonstrates that analytic torsion is a highly efficient topological invariant in the characterization of graph structures and can significantly boost the performance of GNNs.
Collapse
|
2
|
Chen Y, Huo J, Lin F, Yan H. Beyond homophily in spatial-temporal traffic flow forecasting. Neural Netw 2025; 183:106950. [PMID: 39644594 DOI: 10.1016/j.neunet.2024.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
Traffic flow forecasting is a crucial yet complex task due to the intricate spatial-temporal correlations arising from road interactions. Recent methods model these interactions using message-passing Graph Convolution Networks (GCNs), which work for homophily graphs where connected nodes primarily exhibit close observations. However, relying solely on homophily graphs presents inherent limitations in traffic modeling, as road interactions can yield not only close but also distant observations over time, revealing diverse and dynamic node-wise correlations. We designate this phenomenon as homophily-heterophily dynamics, which has been largely overlooked in previous works. To address this gap, we propose a homophily-heterophily Spatial-Temporal Graph Convolution Network (H2STGCN) that exploits both homophily and heterophily components in the spatial-temporal domain. Specifically, we first adopt time-related node attributes to disentangle the diverse and dynamic node-wise relations across time, thereby obtaining homophily and heterophily Spatial-Temporal Graphs (STGs), which provide comprehensive insights into road interactions. Subsequently, we construct dual information propagation branches, each outfitted with a specific type of STG, to exploit multiple ranges of spatial-temporal correlations from distinct perspectives through dilated causal spatial-temporal graph convolution operations on STGs. Additionally, we introduce a Graph Collaborative Learning Module (GCLM) to capture the complementary information of these two branches via mutual information transfer. Experimental evaluation on four real-world traffic datasets reveals that our model outperforms state-of-the-art methods.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Jingyi Huo
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Fangru Lin
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Hui Yan
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
3
|
Kumar R, Ong J, Waisberg E, Lee R, Nguyen T, Paladugu P, Rivolta MC, Gowda C, Janin JV, Saintyl J, Amiri D, Gosain A, Jagadeesan R. Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine. Bioengineering (Basel) 2025; 12:156. [PMID: 40001676 PMCID: PMC11851544 DOI: 10.3390/bioengineering12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Ophthalmic diseases such as glaucoma, age-related macular degeneration (ARMD), and optic neuritis involve complex molecular and cellular disruptions that challenge current diagnostic and therapeutic approaches. Advanced artificial intelligence (AI) and machine learning (ML) models offer a novel lens to analyze these diseases by integrating diverse datasets, identifying patterns, and enabling precision medicine strategies. Over the past decade, applications of AI in ophthalmology have expanded from imaging-based diagnostics to molecular-level modeling, bridging critical gaps in understanding disease mechanisms. This paper systematically reviews the application of AI-driven methods, including reinforcement learning (RL), graph neural networks (GNNs), Bayesian inference, and generative adversarial networks (GANs), in the context of these ophthalmic conditions. RL models simulate transcription factor dynamics in hypoxic or inflammatory environments, offering insights into disrupted molecular pathways. GNNs map intricate molecular networks within affected tissues, identifying key inflammatory or degenerative drivers. Bayesian inference provides probabilistic models for predicting disease progression and response to therapies, while GANs generate synthetic datasets to explore therapeutic interventions. By contextualizing these AI tools within the broader framework of ophthalmic disease management, this review highlights their potential to transform diagnostic precision and therapeutic outcomes. Ultimately, this work underscores the need for continued interdisciplinary collaboration to harness AI's potential in advancing the field of ophthalmology and improving patient care.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.K.); (C.G.); (J.V.J.); (A.G.)
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY 10027, USA;
| | - Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA;
| | - Phani Paladugu
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Chiara Rivolta
- Department of Ophthalmology, University of Eastern Piedmont “A. Avogadro”, Via Ettore Perrone, 18, 28100 Novara, Italy;
| | - Chirag Gowda
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.K.); (C.G.); (J.V.J.); (A.G.)
| | - John Vincent Janin
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.K.); (C.G.); (J.V.J.); (A.G.)
| | - Jeremy Saintyl
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA;
| | - Dylan Amiri
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA;
- Mecklenburg Neurology Group, Charlotte, NC 28211, USA
| | - Ansh Gosain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.K.); (C.G.); (J.V.J.); (A.G.)
| | - Ram Jagadeesan
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| |
Collapse
|
4
|
Zhao L, Shang J, Meng X, He X, Zhang Y, Liu JX. Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction. Interdiscip Sci 2025:10.1007/s12539-024-00684-1. [PMID: 39873945 DOI: 10.1007/s12539-024-00684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025]
Abstract
Combination therapy, which synergistically enhances treatment efficacy and inhibits disease progression through the combined effects of multiple drugs, has emerged as a mainstream approach for treating complex diseases and alleviating symptoms. However, drug-drug interactions (DDIs) can sometimes lead to adverse reactions, potentially endangering lives. Therefore, developing efficient and accurate DDI prediction methods is crucial for elucidating drug mechanisms and preventing side effects. Current prediction methods often focus solely on the presence of interactions between drugs when constructing DDI graphs, neglecting the specific types of DDIs. This oversight can result in a decline in predictive performance. To address this issue, we propose an Adaptive Multi-Kernel Graph Neural Network (AMKGNN) for DDI prediction. AMKGNN differentiates DDIs into increase-type and decrease-type interactions, constructing separate increased DDI and decreased DDI graphs as convolutional kernels. AMKGNN employs a graph kernel learning mechanism that adaptively determines the optimal threshold between high-frequency and low-frequency signals in the network to capture node embeddings. Initially, AMKGNN learns drug embedding representations based on these two graph convolutional kernels and various drug features. These representations are then concatenated and input into a deep neural network to predict potential DDIs. The results show that our model achieved AUC and AUPR values above 90% across three sub-tasks on two datasets, significantly outperforming the other five comparison models. Furthermore, ablation experiments and case studies validate the superiority of AMKGNN.
Collapse
Affiliation(s)
- Linqian Zhao
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China.
| | - Xianghan Meng
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Xin He
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| |
Collapse
|
5
|
Shen C, Ding P, Wee J, Bi J, Luo J, Xia K. Curvature-enhanced graph convolutional network for biomolecular interaction prediction. Comput Struct Biotechnol J 2024; 23:1016-1025. [PMID: 38425487 PMCID: PMC10904164 DOI: 10.1016/j.csbj.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced graph convolutional network (CGCN) for biomolecular interaction prediction. Our CGCN employs Ollivier-Ricci curvature (ORC) to characterize network local geometric properties and enhance the learning capability of GCNs. More specifically, ORCs are evaluated based on the local topology from node neighborhoods, and further incorporated into the weight function for the feature aggregation in message-passing procedure. Our CGCN model is extensively validated on fourteen real-world bimolecular interaction networks and analyzed in details using a series of well-designed simulated data. It has been found that our CGCN can achieve the state-of-the-art results. It outperforms all existing models, as far as we know, in thirteen out of the fourteen real-world datasets and ranks as the second in the rest one. The results from the simulated data show that our CGCN model is superior to the traditional GCN models regardless of the positive-to-negative-curvature ratios, network densities, and network sizes (when larger than 500).
Collapse
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Junjie Wee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jialin Bi
- School of Mathematics, Shandong University, Jinan, 250100, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China
| | - Kelin Xia
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
6
|
Jiang Z, Ding P, Shen C, Dai X. Geometric Molecular Graph Representation Learning Model for Drug-Drug Interactions Prediction. IEEE J Biomed Health Inform 2024; 28:7623-7632. [PMID: 39226203 DOI: 10.1109/jbhi.2024.3453956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Drug-drug interaction (DDI) can trigger many adverse effects in patients and has emerged as a threat to medicine and public health. Therefore, it is important to predict potential drug interactions since it can provide combination strategies of drugs for systematic and effective treatment. Existing deep learning-based methods often rely on DDI functional networks, or use them as an important part of the model information source. However, it is difficult to discover the interactions of a new drug. To address the above limitations, we propose a geometric molecular graph representation learning model (Mol-DDI) for DDI prediction based on the basic assumption that structure determines function. Mol-DDI only considers the covalent and non-covalent bond information of molecules, then it uses the pre-training idea of large-scale models to learn drug molecular representations and predict drug interactions during the fine-tuning process. Experimental results show that the Mol-DDI model outperforms others on the three datasets and performs better in predicting new drug interaction experiments.
Collapse
|
7
|
Xu F, Xiong W, Fan Z, Sun L. Node Classification Method Based on Hierarchical Hypergraph Neural Network. SENSORS (BASEL, SWITZERLAND) 2024; 24:7655. [PMID: 39686189 DOI: 10.3390/s24237655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Hypergraph neural networks have gained widespread attention due to their effectiveness in handling graph-structured data with complex relationships and multi-dimensional interactions. However, existing hypergraph neural network models mainly rely on planar message-passing mechanisms, which have limitations: (i) low efficiency in encoding long-distance information; (ii) underutilization of high-order neighborhood features, aggregating information only on the edges of the original graph. This paper proposes an innovative hierarchical hypergraph neural network (HCHG) to address these issues. The HCHG combines the high-order relationship-capturing capability of hypergraphs, uses the Louvain community detection algorithm to identify community structures within the network, and constructs hypergraphs layer by layer. In the bottom-level hypergraph, the model establishes high-order relationships through direct neighbor nodes, while in the top-level hypergraph, it captures global relationships between aggregated communities. Through three hierarchical message-passing mechanisms, the HCHG effectively integrates local and global information, enhancing the multi-resolution representation ability of node representations and significantly improving performance in node classification tasks. In addition, the model performs excellently in handling 3D multi-view datasets. Such datasets can be created by capturing 3D shapes and geometric features through sensors or by manual modeling, providing extensive application scenarios for analyzing three-dimensional shapes and complex geometric structures. Theoretical analysis and experimental results show that the HCHG outperforms traditional hypergraph neural networks in complex networks.
Collapse
Affiliation(s)
- Feng Xu
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
- School of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou 324000, China
| | - Wanyue Xiong
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Zizhu Fan
- College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
| | - Licheng Sun
- Mechanical and Electrical Room, Quzhou Special Equipment Inspection & Testing Research Institute, Quzhou 324000, China
| |
Collapse
|
8
|
Li Y, You ZH, Yuan Y, Mi CG, Huang YA, Yi HC, Hou LX. Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction. J Chem Inf Model 2024; 64:8361-8372. [PMID: 39475566 DOI: 10.1021/acs.jcim.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The Co-administration of multiple drugs can enhance the efficacy of disease treatment by reducing drug resistance and side effects. However, it also raises the risk of adverse drug interactions, presenting a challenging problem in healthcare. Various approaches have been developed to predict drug-drug interactions (DDIs) by leveraging both knowledge graphs and drug attribute information. While these methods have shown promise, they often fail to effectively capture correlations between biomedical information in the knowledge graph and drug properties. This work introduces a novel end-to-end DDI predictor framework based on generative adversarial networks. This framework utilizes a message-passing neural network to capture molecular structure information while employing the knowledge-aware graph attention network to capture the representation of drugs in the knowledge graph through considering the importance of different multihop neighbor nodes and relationships. The dual generative adversarial networks employ two generators and two discriminators in knowledge graph embedding and molecular topology embedding for adversarial training to capture the interrelations and complementary knowledge between molecular structure information and semantic information from the knowledge graph. comprehensive experiments have demonstrated that the proposed method outperforms state-of-the-art algorithms in binary classification, with improvements of 1.0% in accuracy, 0.45% in area under the receiver operating characteristic curve (AUC), 0.24% in area under the precision-recall curve (AUPR), and 0.98% in F1 score. Furthermore, for multiclass classification tasks, improvements were observed across various evaluation metrics, including 0.9% in accuracy, 0.25% in macro precision, 0.2% in macro recall, and 0.28% in macro F1. Additionally, ablation studies were conducted to showcase the effectiveness and robustness of our method in DDI prediction tasks.
Collapse
Affiliation(s)
- Yu Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Yang Yuan
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou213164, China
| | - Cheng-Gang Mi
- Foreign Language and Literature Institute, Xi'an International Studies University, Xi'an710129, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Hai-Cheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Lin-Xuan Hou
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| |
Collapse
|
9
|
Zhang Z, Deng Z, Li R, Zhang W, Lou Q, Choi KS, Wang S. HGLA: Biomolecular Interaction Prediction Based on Mixed High-Order Graph Convolution With Filter Network via LSTM and Channel Attention. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2011-2024. [PMID: 39058607 DOI: 10.1109/tcbb.2024.3434399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Predicting biomolecular interactions is significant for understanding biological systems. Most existing methods for link prediction are based on graph convolution. Although graph convolution methods are advantageous in extracting structure information of biomolecular interactions, two key challenges still remain. One is how to consider both the immediate and high-order neighbors. Another is how to reduce noise when aggregating high-order neighbors. To address these challenges, we propose a novel method, called mixed high-order graph convolution with filter network via LSTM and channel attention (HGLA), to predict biomolecular interactions. Firstly, the basic and high-order features are extracted respectively through the traditional graph convolutional network (GCN) and the two-layer Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (MixHop). Secondly, these features are mixed and input into the filter network composed of LayerNorm, SENet and LSTM to generate filtered features, which are concatenated and used for link prediction. The advantages of HGLA are: 1) HGLA processes high-order features separately, rather than simply concatenating them; 2) HGLA better balances the basic features and high-order features; 3) HGLA effectively filters the noise from high-order neighbors. It outperforms state-of-the-art networks on four benchmark datasets.
Collapse
|
10
|
Tang X, Zhou Y, Yang M, Li W. TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks. IEEE Trans Nanobioscience 2024; 23:572-578. [PMID: 39133595 DOI: 10.1109/tnb.2024.3441590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
Collapse
|
11
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
12
|
Tanvir F, Saifuddin KM, Islam MIK, Akbas E. DDI Prediction With Heterogeneous Information Network - Meta-Path Based Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1168-1179. [PMID: 38905082 DOI: 10.1109/tcbb.2024.3417715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Drug-drug interaction (DDI) indicates where a particular drug's desired course of action is modified when taken with other drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms the baselines significantly.
Collapse
|
13
|
Pang H, Wei S, Du Z, Zhao Y, Cai S, Zhao Y. Graph Representation Learning Based on Specific Subgraphs for Biomedical Interaction Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1552-1564. [PMID: 38767994 DOI: 10.1109/tcbb.2024.3402741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Discovering the novel associations of biomedical entities is of great significance and can facilitate not only the identification of network biomarkers of disease but also the search for putative drug targets.Graph representation learning (GRL) has incredible potential to efficiently predict the interactions from biomedical networks by modeling the robust representation for each node.> However, the current GRL-based methods learn the representation of nodes by aggregating the features of their neighbors with equal weights. Furthermore, they also fail to identify which features of higher-order neighbors are integrated into the representation of the central node. In this work, we propose a novel graph representation learning framework: a multi-order graph neural network based on reconstructed specific subgraphs (MGRS) for biomedical interaction prediction. In the MGRS, we apply the multi-order graph aggregation module (MOGA) to learn the wide-view representation by integrating the multi-hop neighbor features. Besides, we propose a subgraph selection module (SGSM) to reconstruct the specific subgraph with adaptive edge weights for each node. SGSM can clearly explore the dependency of the node representation on the neighbor features and learn the subgraph-based representation based on the reconstructed weighted subgraphs. Extensive experimental results on four public biomedical networks demonstrate that the MGRS performs better and is more robust than the latest baselines.
Collapse
|
14
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
15
|
Li M, Wang Z, Liu L, Liu X, Zhang W. Subgraph-Aware Graph Kernel Neural Network for Link Prediction in Biological Networks. IEEE J Biomed Health Inform 2024; 28:4373-4381. [PMID: 38630566 DOI: 10.1109/jbhi.2024.3390092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Identifying links within biological networks is important in various biomedical applications. Recent studies have revealed that each node in a network may play a unique role in different links, but most link prediction methods overlook distinctive node roles, hindering the acquisition of effective link representations. Subgraph-based methods have been introduced as solutions but often ignore shared information among subgraphs. To address these limitations, we propose a Subgraph-aware Graph Kernel Neural Network (SubKNet) for link prediction in biological networks. Specifically, SubKNet extracts a subgraph for each node pair and feeds it into a graph kernel neural network, which decomposes each subgraph into a combination of trainable graph filters with diversity regularization for subgraph-aware representation learning. Additionally, node embeddings of the network are extracted as auxiliary information, aiding in distinguishing node pairs that share the same subgraph. Extensive experiments on five biological networks demonstrate that SubKNet outperforms baselines, including methods especially designed for biological networks and methods adapted to various networks. Further investigations confirm that employing graph filters to subgraphs helps to distinguish node roles in different subgraphs, and the inclusion of diversity regularization further enhances its capacity from diverse perspectives, generating effective link representations that contribute to more accurate link prediction.
Collapse
|
16
|
Zhou Y, Ning C, Tan Y, Li Y, Wang J, Shu Y, Liang S, Liu Z, Wang Y. ToxMPNN: A deep learning model for small molecule toxicity prediction. J Appl Toxicol 2024; 44:953-964. [PMID: 38409892 DOI: 10.1002/jat.4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common-Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common-Toxicity task but also enhances the stability of the model prediction. It shows that the graph-based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.
Collapse
Affiliation(s)
- Yini Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Chao Ning
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yijun Tan
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Jiaxu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
17
|
Lin J, Hong B, Cai Z, Lu P, Lin K. MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction. Front Pharmacol 2024; 15:1369403. [PMID: 38831885 PMCID: PMC11144894 DOI: 10.3389/fphar.2024.1369403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Accurately predicting Drug-Drug Interaction (DDI) is a critical and challenging aspect of the drug discovery process, particularly in preventing adverse reactions in patients undergoing combination therapy. However, current DDI prediction methods often overlook the interaction information between chemical substructures of drugs, focusing solely on the interaction information between drugs and failing to capture sufficient chemical substructure details. To address this limitation, we introduce a novel DDI prediction method: Multi-layer Adaptive Soft Mask Graph Neural Network (MASMDDI). Specifically, we first design a multi-layer adaptive soft mask graph neural network to extract substructures from molecular graphs. Second, we employ an attention mechanism to mine substructure feature information and update latent features. In this process, to optimize the final feature representation, we decompose drug-drug interactions into pairwise interaction correlations between the core substructures of each drug. Third, we use these features to predict the interaction probabilities of DDI tuples and evaluate the model using real-world datasets. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods in DDI prediction. Furthermore, MASMDDI exhibits excellent performance in predicting DDIs of unknown drugs in two tasks that are more aligned with real-world scenarios. In particular, in the transductive scenario using the DrugBank dataset, the ACC and AUROC and AUPRC scores of MASMDDI are 0.9596, 0.9903, and 0.9894, which are 2% higher than the best performing baseline.
Collapse
Affiliation(s)
- Junpeng Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Binsheng Hong
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Zhongqi Cai
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, China
| | - Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
18
|
Wang Y, Yang Z, Yao Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning. COMMUNICATIONS MEDICINE 2024; 4:59. [PMID: 38548835 PMCID: PMC10978847 DOI: 10.1038/s43856-024-00486-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Discovering potential drug-drug interactions (DDIs) is a long-standing challenge in clinical treatments and drug developments. Recently, deep learning techniques have been developed for DDI prediction. However, they generally require a huge number of samples, while known DDIs are rare. METHODS In this work, we present KnowDDI, a graph neural network-based method that addresses the above challenge. KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs. Then, it learns a knowledge subgraph for each drug-pair to interpret the predicted DDI, where each of the edges is associated with a connection strength indicating the importance of a known DDI or resembling strength between a drug-pair whose connection is unknown. Thus, the lack of DDIs is implicitly compensated by the enriched drug representations and propagated drug similarities. RESULTS Here we show the evaluation results of KnowDDI on two benchmark DDI datasets. Results show that KnowDDI obtains the state-of-the-art prediction performance with better interpretability. We also find that KnowDDI suffers less than existing works given a sparser knowledge graph. This indicates that the propagated drug similarities play a more important role in compensating for the lack of DDIs when the drug representations are less enriched. CONCLUSIONS KnowDDI nicely combines the efficiency of deep learning techniques and the rich prior knowledge in biomedical knowledge graphs. As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks, such as protein-protein interactions, drug-target interactions and disease-gene interactions, eventually promoting the development of biomedicine and healthcare.
Collapse
Affiliation(s)
| | - Zaifei Yang
- Baidu Research, Baidu Inc., Beijing, China
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Quanming Yao
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Luo H, Yin W, Wang J, Zhang G, Liang W, Luo J, Yan C. Drug-drug interactions prediction based on deep learning and knowledge graph: A review. iScience 2024; 27:109148. [PMID: 38405609 PMCID: PMC10884936 DOI: 10.1016/j.isci.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Weijie Yin
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| |
Collapse
|
20
|
Du J, Jin J, Zhuang J, Zhang C. Hierarchical graph contrastive learning of local and global presentation for multimodal sentiment analysis. Sci Rep 2024; 14:5335. [PMID: 38438435 PMCID: PMC11310212 DOI: 10.1038/s41598-024-54872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Multi-modal sentiment analysis (MSA) aims to regress or classify the overall sentiment of utterances through acoustic, visual, and textual cues. However, most of the existing efforts have focused on developing the expressive ability of neural networks to learn the representation of multi-modal information within a single utterance, without considering the global co-occurrence characteristics of the dataset. To alleviate the above issue, in this paper, we propose a novel hierarchical graph contrastive learning framework for MSA, aiming to explore the local and global representations of a single utterance for multimodal sentiment extraction and the intricate relations between them. Specifically, regarding to each modality, we extract the discrete embedding representation of each modality, which includes the global co-occurrence features of each modality. Based on it, for each utterance, we build two graphs: local level graph and global level graph to account for the level-specific sentiment implications. Then, two graph contrastive learning strategies is adopted to explore the different potential presentations based on graph augmentations respectively. Furthermore, we design a cross-level comparative learning for learning local and global potential representations of complex relationships.
Collapse
Affiliation(s)
- Jun Du
- School of Physics and Electronics, Shandong Normal University, Shandong, China
| | - Jianhang Jin
- School of Physics and Electronics, Shandong Normal University, Shandong, China.
| | - Jian Zhuang
- School of Physics and Electronics, Shandong Normal University, Shandong, China
| | - Cheng Zhang
- School of Ethnology and Sociology, Yunnan University, Yunnan, China
| |
Collapse
|
21
|
Pan D, Lu P, Wu Y, Kang L, Huang F, Lin K, Yang F. Prediction of multiple types of drug interactions based on multi-scale fusion and dual-view fusion. Front Pharmacol 2024; 15:1354540. [PMID: 38434701 PMCID: PMC10904638 DOI: 10.3389/fphar.2024.1354540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Potential drug-drug interactions (DDI) can lead to adverse drug reactions (ADR), and DDI prediction can help pharmacy researchers detect harmful DDI early. However, existing DDI prediction methods fall short in fully capturing drug information. They typically employ a single-view input, focusing solely on drug features or drug networks. Moreover, they rely exclusively on the final model layer for predictions, overlooking the nuanced information present across various network layers. To address these limitations, we propose a multi-scale dual-view fusion (MSDF) method for DDI prediction. More specifically, MSDF first constructs two views, topological and feature views of drugs, as model inputs. Then a graph convolutional neural network is used to extract the feature representations from each view. On top of that, a multi-scale fusion module integrates information across different graph convolutional layers to create comprehensive drug embeddings. The embeddings from the two views are summed as the final representation for classification. Experiments on two real-world datasets demonstrate that MSDF achieves higher accuracy than state-of-the-art methods, as the dual-view, multi-scale approach better captures drug characteristics.
Collapse
Affiliation(s)
- Dawei Pan
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, China
| | - Yunbing Wu
- College of Computer and Big Data, Fuzhou University, Fuzhou, China
| | - Liping Kang
- Pasteur Institute, Soochow University, Suzhou, China
| | - Fengxin Huang
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Fan Yang
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
- Department of Automation, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Korlepara DB, C S V, Srivastava R, Pal PK, Raza SH, Kumar V, Pandit S, Nair AG, Pandey S, Sharma S, Jeurkar S, Thakran K, Jaglan R, Verma S, Ramachandran I, Chatterjee P, Nayar D, Priyakumar UD. PLAS-20k: Extended Dataset of Protein-Ligand Affinities from MD Simulations for Machine Learning Applications. Sci Data 2024; 11:180. [PMID: 38336857 PMCID: PMC10858175 DOI: 10.1038/s41597-023-02872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Computing binding affinities is of great importance in drug discovery pipeline and its prediction using advanced machine learning methods still remains a major challenge as the existing datasets and models do not consider the dynamic features of protein-ligand interactions. To this end, we have developed PLAS-20k dataset, an extension of previously developed PLAS-5k, with 97,500 independent simulations on a total of 19,500 different protein-ligand complexes. Our results show good correlation with the available experimental values, performing better than docking scores. This holds true even for a subset of ligands that follows Lipinski's rule, and for diverse clusters of complex structures, thereby highlighting the importance of PLAS-20k dataset in developing new ML models. Along with this, our dataset is also beneficial in classifying strong and weak binders compared to docking. Further, OnionNet model has been retrained on PLAS-20k dataset and is provided as a baseline for the prediction of binding affinities. We believe that large-scale MD-based datasets along with trajectories will form new synergy, paving the way for accelerating drug discovery.
Collapse
Affiliation(s)
- Divya B Korlepara
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
- Divison of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, India
| | - Vasavi C S
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
- Department of Artificial Intelligence, School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Bengaluru, 560035, India
| | - Rakesh Srivastava
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Pradeep Kumar Pal
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Saalim H Raza
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Vishal Kumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shivam Pandit
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Aathira G Nair
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Sanjana Pandey
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shubham Sharma
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shruti Jeurkar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Kavita Thakran
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Reena Jaglan
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Shivangi Verma
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Indhu Ramachandran
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Prathit Chatterjee
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - U Deva Priyakumar
- IHub-Data, International Institute of Information Technology, Hyderabad, 500032, India.
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
23
|
Zhang C, Gao Q, Li M, Yu T. Implementing link prediction in protein networks via feature fusion models based on graph neural networks. Comput Biol Chem 2024; 108:107980. [PMID: 38000328 DOI: 10.1016/j.compbiolchem.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
MOTIVATION Protein-protein interactions serve as the cornerstone for various biochemical processes within biological organisms. Existing research methodologies predominantly employ link prediction techniques to analyze these interaction networks. However, traditional approaches often fall short in delivering satisfactory predictive performance when applied to multi-species datasets. Current computational methods largely focus on analyzing the network topology, resulting in a somewhat monolithic feature set. The integration of diverse features in the model could potentially yield superior performance and broader applicability. To this end, we propose an autoencoder model built on graph neural networks, designed to enhance both predictive performance and generalizability by leveraging the integration of gene ontology. RESULTS In this research, we developed AGraphSAGE, a model specifically designed for analyzing protein-protein interaction network data. By seamlessly integrating gene ontology into the graph structure, we employed a dual-channel graph sampling and aggregation network that capitalizes on topological information to process high-dimensional features. Feature fusion is achieved through the implementation of graph attention mechanisms, and we adopted a link prediction framework as the experimental training model. Performance was evaluated on real-world datasets using key metrics, such as Area Under the Curve (AUC). A hyperparameter search space was established, and a Bayesian optimization strategy was applied to iteratively fine-tune the model, assessing the impact of various parameters on predictive efficacy. The experimental results validate that our proposed model is capable of effectively predicting protein-protein interactions across diverse biological species.
Collapse
Affiliation(s)
- Chi Zhang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China
| | - Qian Gao
- College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ming Li
- College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Tianfei Yu
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
24
|
Kpanou R, Dallaire P, Rousseau E, Corbeil J. Learning self-supervised molecular representations for drug-drug interaction prediction. BMC Bioinformatics 2024; 25:47. [PMID: 38291362 PMCID: PMC10829170 DOI: 10.1186/s12859-024-05643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Drug-drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chemical spaces, primarily due to the scarcity of high-quality labeled DDI data. Inspired by recent advances in computer vision, we present SMR-DDI, a self-supervised framework that leverages contrastive learning to embed drugs into a scaffold-based feature space. Molecular scaffolds represent the core structural motifs that drive pharmacological activities, making them valuable for learning informative representations. Specifically, we pre-trained SMR-DDI on a large-scale unlabeled molecular dataset. We generated augmented views for each molecule via SMILES enumeration and optimized the embedding process through contrastive loss minimization between views. This enables the model to capture relevant and robust molecular features while reducing noise. We then transfer the learned representations for the downstream prediction of DDI. Experiments show that the new feature space has comparable expressivity to state-of-the-art molecular representations and achieved competitive DDI prediction results while training on less data. Additional investigations also revealed that pre-training on more extensive and diverse unlabeled molecular datasets improved the model's capability to embed molecules more effectively. Our results highlight contrastive learning as a promising approach for DDI prediction that can identify potentially hazardous drug combinations using only structural information.
Collapse
Affiliation(s)
- Rogia Kpanou
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada.
| | - Patrick Dallaire
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada
| | - Elsa Rousseau
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, QC, Canada
| | - Jacques Corbeil
- Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada.
- Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
25
|
Ren ZH, Yu CQ, Li LP, You ZH, Li ZW, Zhang SW, Zeng X, Shang YF. SiSGC: A Drug Repositioning Prediction Model Based on Heterogeneous Simplifying Graph Convolution. J Chem Inf Model 2024; 64:238-249. [PMID: 38103039 DOI: 10.1021/acs.jcim.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Drug repositioning plays a key role in disease treatment. With the large-scale chemical data increasing, many computational methods are utilized for drug-disease association prediction. However, most of the existing models neglect the positive influence of non-Euclidean data and multisource information, and there is still a critical issue for graph neural networks regarding how to set the feature diffuse distance. To solve the problems, we proposed SiSGC, which makes full use of the biological knowledge information as initial features and learns the structure information from the constructed heterogeneous graph with the adaptive selection of the information diffuse distance. Then, the structural features are fused with the denoised similarity information and fed to the advanced classifier of CatBoost to make predictions. Three different data sets are used to confirm the robustness and generalization of SiSGC under two splitting strategies. Experiment results demonstrate that the proposed model achieves superior performance compared with the six leading methods and four variants. Our case study on breast neoplasms further indicates that SiSGC is trustworthy and robust yet simple. We also present four drugs for breast cancer treatment with high confidence and further give an explanation for demonstrating the rationality. There is no doubt that SiSGC can be used as a beneficial supplement for drug repositioning.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Li-Ping Li
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shan-Wen Zhang
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Yi-Fan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
26
|
Zhang Y, Yao Q, Yue L, Wu X, Zhang Z, Lin Z, Zheng Y. Emerging drug interaction prediction enabled by a flow-based graph neural network with biomedical network. NATURE COMPUTATIONAL SCIENCE 2023; 3:1023-1033. [PMID: 38177736 DOI: 10.1038/s43588-023-00558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 01/06/2024]
Abstract
Drug-drug interactions (DDIs) for emerging drugs offer possibilities for treating and alleviating diseases, and accurately predicting these with computational methods can improve patient care and contribute to efficient drug development. However, many existing computational methods require large amounts of known DDI information, which is scarce for emerging drugs. Here we propose EmerGNN, a graph neural network that can effectively predict interactions for emerging drugs by leveraging the rich information in biomedical networks. EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths. The edges of the biomedical network are weighted to indicate the relevance for the target DDI prediction. Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
Collapse
Affiliation(s)
| | - Quanming Yao
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| | - Ling Yue
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Xian Wu
- Tencent Jarvis Lab, Shenzhen, China
| | | | | | | |
Collapse
|
27
|
Jin S, Hong Y, Zeng L, Jiang Y, Lin Y, Wei L, Yu Z, Zeng X, Liu X. A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks. PLoS Comput Biol 2023; 19:e1011597. [PMID: 37956212 PMCID: PMC10681315 DOI: 10.1371/journal.pcbi.1011597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/27/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.
Collapse
Affiliation(s)
- Shuting Jin
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
- School of Informatics, Xiamen University, Xiamen, China
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yue Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Li Zeng
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yinghui Jiang
- School of Informatics, Xiamen University, Xiamen, China
| | - Yuan Lin
- School of Economics, Innovation, and Technology, Kristiania University College, Bergen, Norway
| | - Leyi Wei
- School of Software, Shandong University, Shandong, China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Hunan, China
| | - Xiangrong Liu
- School of Informatics, Xiamen University, Xiamen, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
28
|
Li Z, Tu X, Chen Y, Lin W. HetDDI: a pre-trained heterogeneous graph neural network model for drug-drug interaction prediction. Brief Bioinform 2023; 24:bbad385. [PMID: 37903412 DOI: 10.1093/bib/bbad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
The simultaneous use of two or more drugs due to multi-disease comorbidity continues to increase, which may cause adverse reactions between drugs that seriously threaten public health. Therefore, the prediction of drug-drug interaction (DDI) has become a hot topic not only in clinics but also in bioinformatics. In this study, we propose a novel pre-trained heterogeneous graph neural network (HGNN) model named HetDDI, which aggregates the structural information in drug molecule graphs and rich semantic information in biomedical knowledge graph to predict DDIs. In HetDDI, we first initialize the parameters of the model with different pre-training methods. Then we apply the pre-trained HGNN to learn the feature representation of drugs from multi-source heterogeneous information, which can more effectively utilize drugs' internal structure and abundant external biomedical knowledge, thus leading to better DDI prediction. We evaluate our model on three DDI prediction tasks (binary-class, multi-class and multi-label) with three datasets and further assess its performance on three scenarios (S1, S2 and S3). The results show that the accuracy of HetDDI can achieve 98.82% in the binary-class task, 98.13% in the multi-class task and 96.66% in the multi-label one on S1, which outperforms the state-of-the-art methods by at least 2%. On S2 and S3, our method also achieves exciting performance. Furthermore, the case studies confirm that our model performs well in predicting unknown DDIs. Source codes are available at https://github.com/LinsLab/HetDDI.
Collapse
Affiliation(s)
- Zhe Li
- School of Computer Science, University of South China, Hengyang, 421001 Hunan, China
| | - Xinyi Tu
- School of Computer Science, University of South China, Hengyang, 421001 Hunan, China
| | - Yuping Chen
- School of Pharmacy, University of South China, Hengyang 421001, China
| | - Wenbin Lin
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| |
Collapse
|
29
|
Lin X, Dai L, Zhou Y, Yu ZG, Zhang W, Shi JY, Cao DS, Zeng L, Chen H, Song B, Yu PS, Zeng X. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Brief Bioinform 2023:bbad235. [PMID: 37401373 DOI: 10.1093/bib/bbad235] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
Collapse
Affiliation(s)
- Xuan Lin
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Lichang Dai
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Yafang Zhou
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, China
| | - Jian-Yu Shi
- Northwestern Polytechnical University, Xian, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Li Zeng
- AIDD department of Yuyao Biotech, Shanghai, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, 410013 Changsha, P. R. China
| | - Bosheng Song
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Philip S Yu
- University of Illinois at Chicago and also holds the Wexler Chair in Information Technology
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
30
|
Yu H, Li K, Dong W, Song S, Gao C, Shi J. Attention-based cross domain graph neural network for prediction of drug-drug interactions. Brief Bioinform 2023:7167644. [PMID: 37195815 DOI: 10.1093/bib/bbad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/19/2023] Open
Abstract
Drug-drug interactions (DDI) may lead to adverse reactions in human body and accurate prediction of DDI can mitigate the medical risk. Currently, most of computer-aided DDI prediction methods construct models based on drug-associated features or DDI network, ignoring the potential information contained in drug-related biological entities such as targets and genes. Besides, existing DDI network-based models could not make effective predictions for drugs without any known DDI records. To address the above limitations, we propose an attention-based cross domain graph neural network (ACDGNN) for DDI prediction, which considers the drug-related different entities and propagate information through cross domain operation. Different from the existing methods, ACDGNN not only considers rich information contained in drug-related biomedical entities in biological heterogeneous network, but also adopts cross-domain transformation to eliminate heterogeneity between different types of entities. ACDGNN can be used in the prediction of DDIs in both transductive and inductive setting. By conducting experiments on real-world dataset, we compare the performance of ACDGNN with several state-of-the-art methods. The experimental results show that ACDGNN can effectively predict DDIs and outperform the comparison models.
Collapse
Affiliation(s)
- Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - KangKang Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - WenMin Dong
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - ShuangHong Song
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Gao
- Rocket Force University of Engineering, Xi'an 710025, China
| | - JianYu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
31
|
Wang XW, Madeddu L, Spirohn K, Martini L, Fazzone A, Becchetti L, Wytock TP, Kovács IA, Balogh OM, Benczik B, Pétervári M, Ágg B, Ferdinandy P, Vulliard L, Menche J, Colonnese S, Petti M, Scarano G, Cuomo F, Hao T, Laval F, Willems L, Twizere JC, Vidal M, Calderwood MA, Petrillo E, Barabási AL, Silverman EK, Loscalzo J, Velardi P, Liu YY. Assessment of community efforts to advance network-based prediction of protein-protein interactions. Nat Commun 2023; 14:1582. [PMID: 36949045 PMCID: PMC10033937 DOI: 10.1038/s41467-023-37079-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
Comprehensive understanding of the human protein-protein interaction (PPI) network, aka the human interactome, can provide important insights into the molecular mechanisms of complex biological processes and diseases. Despite the remarkable experimental efforts undertaken to date to determine the structure of the human interactome, many PPIs remain unmapped. Computational approaches, especially network-based methods, can facilitate the identification of previously uncharacterized PPIs. Many such methods have been proposed. Yet, a systematic evaluation of existing network-based methods in predicting PPIs is still lacking. Here, we report community efforts initiated by the International Network Medicine Consortium to benchmark the ability of 26 representative network-based methods to predict PPIs across six different interactomes of four different organisms: A. thaliana, C. elegans, S. cerevisiae, and H. sapiens. Through extensive computational and experimental validations, we found that advanced similarity-based methods, which leverage the underlying network characteristics of PPIs, show superior performance over other general link prediction methods in the interactomes we considered.
Collapse
Affiliation(s)
- Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lorenzo Madeddu
- Translational and Precision Medicine Department Sapienza University of Rome, Rome, Italy
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Leonardo Martini
- Department of Computer, Control, and Management Engineering "Antonio Rubert", Sapienza University of Rome, Rome, Italy
| | | | - Luca Becchetti
- Department of Computer, Control, and Management Engineering "Antonio Rubert", Sapienza University of Rome, Rome, Italy
| | - Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, 60208, USA
| | - Olivér M Balogh
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Mátyás Pétervári
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Stefania Colonnese
- Department of Information Engineering, Electronics, and Telecommunications (DIET), University of Rome "Sapienza", Rome, Italy
| | - Manuela Petti
- Department of Computer, Control, and Management Engineering "Antonio Rubert", Sapienza University of Rome, Rome, Italy
| | - Gaetano Scarano
- Department of Information Engineering, Electronics, and Telecommunications (DIET), University of Rome "Sapienza", Rome, Italy
| | - Francesca Cuomo
- Department of Information Engineering, Electronics, and Telecommunications (DIET), University of Rome "Sapienza", Rome, Italy
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Laboratory of Molecular and Cellular Epigenetic, GIGA Institute, University of Liège, Liège, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetic, GIGA Institute, University of Liège, Liège, Belgium
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Enrico Petrillo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Albert-László Barabási
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paola Velardi
- Translational and Precision Medicine Department Sapienza University of Rome, Rome, Italy.
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
32
|
Zhao W, Yuan X, Shen X, Jiang X, Shi C, He T, Hu X. Improving drug-drug interactions prediction with interpretability via meta-path-based information fusion. Brief Bioinform 2023; 24:7030845. [PMID: 36750041 DOI: 10.1093/bib/bbad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Drug-drug interactions (DDIs) are compound effects when patients take two or more drugs at the same time, which may weaken the efficacy of drugs or cause unexpected side effects. Thus, accurately predicting DDIs is of great significance for the drug development and the drug safety surveillance. Although many methods have been proposed for the task, the biological knowledge related to DDIs is not fully utilized and the complex semantics among drug-related biological entities are not effectively captured in existing methods, leading to suboptimal performance. Moreover, the lack of interpretability for the predicted results also limits the wide application of existing methods for DDIs prediction. In this study, we propose a novel framework for predicting DDIs with interpretability. Specifically, we construct a heterogeneous information network (HIN) by explicitly utilizing the biological knowledge related to the procedure of inducing DDIs. To capture the complex semantics in HIN, a meta-path-based information fusion mechanism is proposed to learn high-quality representations of drugs. In addition, an attention mechanism is designed to combine semantic information obtained from meta-paths with different lengths to obtain final representations of drugs for DDIs prediction. Comprehensive experiments are conducted on 2410 approved drugs, and the results of predictive performance comparison show that our proposed framework outperforms selected representative baselines on the task of DDIs prediction. The results of ablation study and cold-start scenario indicate that the meta-path-based information fusion mechanism red is beneficial for capturing the complex semantics among drug-related biological entities. Moreover, the results of case study demonstrate that the designed attention mechanism is able to provide partial interpretability for the predicted DDIs. Therefore, the proposed method will be a feasible solution to the task of predicting DDIs.
Collapse
Affiliation(s)
- Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, PR China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xueling Yuan
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xianjun Shen
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Chuan Shi
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, PR China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xiaohua Hu
- College of Computing & Informatics, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Zhong W, He C, Xiao C, Liu Y, Qin X, Yu Z. Long-distance dependency combined multi-hop graph neural networks for protein-protein interactions prediction. BMC Bioinformatics 2022; 23:521. [PMID: 36471248 PMCID: PMC9724439 DOI: 10.1186/s12859-022-05062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/16/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Protein-protein interactions are widespread in biological systems and play an important role in cell biology. Since traditional laboratory-based methods have some drawbacks, such as time-consuming, money-consuming, etc., a large number of methods based on deep learning have emerged. However, these methods do not take into account the long-distance dependency information between each two amino acids in sequence. In addition, most existing models based on graph neural networks only aggregate the first-order neighbors in protein-protein interaction (PPI) network. Although multi-order neighbor information can be aggregated by increasing the number of layers of neural network, it is easy to cause over-fitting. So, it is necessary to design a network that can capture long distance dependency information between amino acids in the sequence and can directly capture multi-order neighbor information in protein-protein interaction network. RESULTS In this study, we propose a multi-hop neural network (LDMGNN) model combining long distance dependency information to predict the multi-label protein-protein interactions. In the LDMGNN model, we design the protein amino acid sequence encoding (PAASE) module with the multi-head self-attention Transformer block to extract the features of amino acid sequences by calculating the interdependence between every two amino acids. And expand the receptive field in space by constructing a two-hop protein-protein interaction (THPPI) network. We combine PPI network and THPPI network with amino acid sequence features respectively, then input them into two identical GIN blocks at the same time to obtain two embeddings. Next, the two embeddings are fused and input to the classifier for predict multi-label protein-protein interactions. Compared with other state-of-the-art methods, LDMGNN shows the best performance on both the SHS27K and SHS148k datasets. Ablation experiments show that the PAASE module and the construction of THPPI network are feasible and effective. CONCLUSIONS In general terms, our proposed LDMGNN model has achieved satisfactory results in the prediction of multi-label protein-protein interactions.
Collapse
Affiliation(s)
- Wen Zhong
- grid.267139.80000 0000 9188 055XCollege of Science, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| | - Changxiang He
- grid.267139.80000 0000 9188 055XCollege of Science, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| | - Chen Xiao
- grid.267139.80000 0000 9188 055XCollege of Science, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| | - Yuru Liu
- grid.267139.80000 0000 9188 055XCollege of Science, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| | - Xiaofei Qin
- grid.267139.80000 0000 9188 055XSchool of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| | - Zhensheng Yu
- grid.267139.80000 0000 9188 055XCollege of Science, University of Shanghai for Science and Technology, Jungong Road, Shanghai, 200093 China
| |
Collapse
|
34
|
Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and healthcare. Nat Biomed Eng 2022; 6:1353-1369. [PMID: 36316368 PMCID: PMC10699434 DOI: 10.1038/s41551-022-00942-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Networks-or graphs-are universal descriptors of systems of interacting elements. In biomedicine and healthcare, they can represent, for example, molecular interactions, signalling pathways, disease co-morbidities or healthcare systems. In this Perspective, we posit that representation learning can realize principles of network medicine, discuss successes and current limitations of the use of representation learning on graphs in biomedicine and healthcare, and outline algorithmic strategies that leverage the topology of graphs to embed them into compact vectorial spaces. We argue that graph representation learning will keep pushing forward machine learning for biomedicine and healthcare applications, including the identification of genetic variants underlying complex traits, the disentanglement of single-cell behaviours and their effects on health, the assistance of patients in diagnosis and treatment, and the development of safe and effective medicines.
Collapse
Affiliation(s)
- Michelle M Li
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kexin Huang
- Health Data Science Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
35
|
Zhao BW, Su XR, Hu PW, Ma YP, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Brief Bioinform 2022; 23:6692552. [PMID: 36125202 DOI: 10.1093/bib/bbac384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning (DR) is a promising strategy to discover new indicators of approved drugs with artificial intelligence techniques, thus improving traditional drug discovery and development. However, most of DR computational methods fall short of taking into account the non-Euclidean nature of biomedical network data. To overcome this problem, a deep learning framework, namely DDAGDL, is proposed to predict drug-drug associations (DDAs) by using geometric deep learning (GDL) over heterogeneous information network (HIN). Incorporating complex biological information into the topological structure of HIN, DDAGDL effectively learns the smoothed representations of drugs and diseases with an attention mechanism. Experiment results demonstrate the superior performance of DDAGDL on three real-world datasets under 10-fold cross-validation when compared with state-of-the-art DR methods in terms of several evaluation metrics. Our case studies and molecular docking experiments indicate that DDAGDL is a promising DR tool that gains new insights into exploiting the geometric prior knowledge for improved efficacy.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Peng-Wei Hu
- Merck China Innovation Hub, Shanghai 200000, China
| | - Yu-Peng Ma
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xi Zhou
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
36
|
Lin K, Kang L, Yang F, Lu P, Lu J. MFDA: Multiview fusion based on dual-level attention for drug interaction prediction. Front Pharmacol 2022; 13:1021329. [PMID: 36278200 PMCID: PMC9584567 DOI: 10.3389/fphar.2022.1021329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Drug-drug interaction prediction plays an important role in pharmacology and clinical applications. Most traditional methods predict drug interactions based on drug attributes or network structure. They usually have three limitations: 1) failing to integrate drug features and network structures well, resulting in less informative drug embeddings; 2) being restricted to a single view of drug interaction relationships; 3) ignoring the importance of different neighbors. To tackle these challenges, this paper proposed a multiview fusion based on dual-level attention to predict drug interactions (called MFDA). The MFDA first constructed multiple views for the drug interaction relationship, and then adopted a cross-fusion strategy to deeply fuse drug features with the drug interaction network under each view. To distinguish the importance of different neighbors and views, MFDA adopted a dual-level attention mechanism (node level and view level) to obtain the unified drug embedding for drug interaction prediction. Extensive experiments were conducted on real datasets, and the MFDA demonstrated superior performance compared to state-of-the-art baselines. In the multitask analysis of new drug reactions, MFDA obtained higher scores on multiple metrics. In addition, its prediction results corresponded to specific drug reaction events, which achieved more accurate predictions.
Collapse
Affiliation(s)
- Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Liping Kang
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Fan Yang
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
- Department of Automation, Xiamen University, Xiamen, China
| | - Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, China
| | - Jiangtao Lu
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
37
|
Demir A, Koike-Akino T, Wang Y, Erdogmus D. EEG-GAT: Graph Attention Networks for Classification of Electroencephalogram (EEG) Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:30-35. [PMID: 36086201 DOI: 10.1109/embc48229.2022.9871984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graph neural networks (GNN) are an emerging framework in the deep learning community. In most GNN applications, the graph topology of data samples is provided in the dataset. Specifically, the graph shift operator (GSO), which could be adjacency, graph Laplacian, or their normalizations, is known a priori. However we often have no knowledge of the grand-truth graph topology underlying real-world datasets. One example of this is to extract subject-invariant features from physiological electroencephalogram (EEG) to predict a cognitive task. Previous methods use electrode sites to represent a node in the graph and connect them in various ways to hand-engineer a GSO e.g., i) each pair of electrode sites is connected to form a complete graph, ii) a specific number of electrode sites are connected to form a k-nearest neighbor graph, iii) each pair of electrode site is connected only if the Euclidean distance is within a heuristic threshold. In this paper, we overcome this limitation by parameterizing the GSO using a multi-head attention mechanism to explore the functional neural connectivity subject to a cognitive task between different electrode sites, and simultaneously learn the unsupervised graph topology in conjunction with the parameters of graph convolutional kernels.
Collapse
|
38
|
Yu H, Zhao S, Shi J. STNN-DDI: a Substructure-aware Tensor Neural Network to predict Drug-Drug Interactions. Brief Bioinform 2022; 23:6603447. [PMID: 35667078 DOI: 10.1093/bib/bbac209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Computational prediction of multiple-type drug-drug interaction (DDI) helps reduce unexpected side effects in poly-drug treatments. Although existing computational approaches achieve inspiring results, they ignore to study which local structures of drugs cause DDIs, and their interpretability is still weak. In this paper, by supposing that the interactions between two given drugs are caused by their local chemical structures (substructures) and their DDI types are determined by the linkages between different substructure sets, we design a novel Substructure-aware Tensor Neural Network model for DDI prediction (STNN-DDI). The proposed model learns a 3-D tensor of $\langle $ substructure, substructure, interaction type $\rangle $ triplets, which characterizes a substructure-substructure interaction (SSI) space. According to a list of predefined substructures with specific chemical meanings, the mapping of drugs into this SSI space enables STNN-DDI to perform the multiple-type DDI prediction in both transductive and inductive scenarios in a unified form with an explicable manner. The comparison with deep learning-based state-of-the-art baselines demonstrates the superiority of STNN-DDI with the significant improvement of AUC, AUPR, Accuracy and Precision. More importantly, case studies illustrate its interpretability by both revealing an important substructure pair across drugs regarding a DDI type of interest and uncovering interaction type-specific substructure pairs in a given DDI. In summary, STNN-DDI provides an effective approach to predicting DDIs as well as explaining the interaction mechanisms among drugs. Source code is freely available at https://github.com/zsy-9/STNN-DDI.
Collapse
Affiliation(s)
- Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - ShiYu Zhao
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - JianYu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
39
|
Yao J, Sun W, Jian Z, Wu Q, Wang X. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction. Bioinformatics 2022; 38:2315-2322. [PMID: 35176135 DOI: 10.1093/bioinformatics/btac094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Polypharmacy is the combined use of drugs for the treatment of diseases. However, it often shows a high risk of side effects. Due to unnecessary interactions of combined drugs, the side effects of polypharmacy increase the risk of disease and even lead to death. Thus, obtaining abundant and comprehensive information on the side effects of polypharmacy is a vital task in the healthcare industry. Early traditional methods used machine learning techniques to predict side effects. However, they often make costly efforts to extract features of drugs for prediction. Later, several methods based on knowledge graphs are proposed. They are reported to outperform traditional methods. However, they still show limited performance by failing to model complex relations of side effects among drugs. RESULTS To resolve the above problems, we propose a novel model by further incorporating complex relations of side effects into knowledge graph embeddings. Our model can translate and transmit multidirectional semantics with fewer parameters, leading to better scalability in large-scale knowledge graphs. Experimental evaluation shows that our model outperforms state-of-the-art models in terms of the average area under the ROC and precision-recall curves. AVAILABILITY AND IMPLEMENTATION Code and data are available at: https://github.com/galaxysunwen/MSTE-master.
Collapse
Affiliation(s)
- Junfeng Yao
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China.,Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Ministry of Culture and Tourism, Xiamen University, Xiamen, Fujian 361005, China
| | - Wen Sun
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhongquan Jian
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingqiang Wu
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China.,Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Ministry of Culture and Tourism, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoli Wang
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
40
|
Graph neural network approaches for drug-target interactions. Curr Opin Struct Biol 2022; 73:102327. [PMID: 35074533 DOI: 10.1016/j.sbi.2021.102327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
|
41
|
Kc K, Li R, Cui F, Haake AR. Predicting Biomedical Interactions With Higher-Order Graph Convolutional Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:676-687. [PMID: 33587705 PMCID: PMC8518029 DOI: 10.1109/tcbb.2021.3059415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomedical interaction networks have incredible potential to be useful in the prediction of biologically meaningful interactions, identification of network biomarkers of disease, and the discovery of putative drug targets. Recently, graph neural networks have been proposed to effectively learn representations for biomedical entities and achieved state-of-the-art results in biomedical interaction prediction. These methods only consider information from immediate neighbors but cannot learn a general mixing of features from neighbors at various distances. In this paper, we present a higher-order graph convolutional network (HOGCN)to aggregate information from the higher-order neighborhood for biomedical interaction prediction. Specifically, HOGCN collects feature representations of neighbors at various distances and learns their linear mixing to obtain informative representations of biomedical entities. Experiments on four interaction networks, including protein-protein, drug-drug, drug-target, and gene-disease interactions, show that HOGCN achieves more accurate and calibrated predictions. HOGCN performs well on noisy, sparse interaction networks when feature representations of neighbors at various distances are considered. Moreover, a set of novel interaction predictions are validated by literature-based case studies.
Collapse
|
42
|
Abstract
Summary Computational methods to predict protein–protein interaction (PPI) typically segregate into sequence-based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global ‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms. Availability and implementation https://topsyturvy.csail.mit.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Samuel Sledzieski
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bonnie Berger
- To whom correspondence should be addressed. E-mail: or
| | - Lenore Cowen
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
43
|
Yu H, Dong W, Shi J. RANEDDI: Relation-aware network embedding for drug-drug interaction prediction. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Kang C, Zhang H, Liu Z, Huang S, Yin Y. LR-GNN: a graph neural network based on link representation for predicting molecular associations. Brief Bioinform 2021; 23:6456297. [PMID: 34889446 DOI: 10.1093/bib/bbab513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein-protein interaction and drug-drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
Collapse
Affiliation(s)
- Chuanze Kang
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Zhuo Liu
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Shenwei Huang
- College of Computer Science, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1400 R Street, 68588, Nebraska, USA
| |
Collapse
|
45
|
Wang F, Lei X, Liao B, Wu FX. Predicting drug-drug interactions by graph convolutional network with multi-kernel. Brief Bioinform 2021; 23:6447677. [PMID: 34864856 DOI: 10.1093/bib/bbab511] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
Drug repositioning is proposed to find novel usages for existing drugs. Among many types of drug repositioning approaches, predicting drug-drug interactions (DDIs) helps explore the pharmacological functions of drugs and achieves potential drugs for novel treatments. A number of models have been applied to predict DDIs. The DDI network, which is constructed from the known DDIs, is a common part in many of the existing methods. However, the functions of DDIs are different, and thus integrating them in a single DDI graph may overlook some useful information. We propose a graph convolutional network with multi-kernel (GCNMK) to predict potential DDIs. GCNMK adopts two DDI graph kernels for the graph convolutional layers, namely, increased DDI graph consisting of 'increase'-related DDIs and decreased DDI graph consisting of 'decrease'-related DDIs. The learned drug features are fed into a block with three fully connected layers for the DDI prediction. We compare various types of drug features, whereas the target feature of drugs outperforms all other types of features and their concatenated features. In comparison with three different DDI prediction methods, our proposed GCNMK achieves the best performance in terms of area under receiver operating characteristic curve and area under precision-recall curve. In case studies, we identify the top 20 potential DDIs from all unknown DDIs, and the top 10 potential DDIs from the unknown DDIs among breast, colorectal and lung neoplasms-related drugs. Most of them have evidence to support the existence of their interactions. fangxiang.wu@usask.ca.
Collapse
Affiliation(s)
- Fei Wang
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, 620 West Chang'an Avenue, 710119, Shaanxi, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, 99 Longkun South Road, 571158, Hainan, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
- Department of Mechanical Engineering and Department of Computer Science, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| |
Collapse
|
46
|
Deep learning in target prediction and drug repositioning: Recent advances and challenges. Drug Discov Today 2021; 27:1796-1814. [PMID: 34718208 DOI: 10.1016/j.drudis.2021.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Drug repositioning is an attractive strategy for discovering new therapeutic uses for approved or investigational drugs, with potentially shorter development timelines and lower development costs. Various computational methods have been used in drug repositioning, promoting the efficiency and success rates of this approach. Recently, deep learning (DL) has attracted wide attention for its potential in target prediction and drug repositioning. Here, we provide an overview of the basic principles of commonly used DL architectures and their applications in target prediction and drug repositioning, and discuss possible ways of dealing with current challenges to help achieve its expected potential for drug repositioning.
Collapse
|
47
|
Huang K, Xiao C, Glass LM, Critchlow CW, Gibson G, Sun J. Machine learning applications for therapeutic tasks with genomics data. PATTERNS (NEW YORK, N.Y.) 2021; 2:100328. [PMID: 34693370 PMCID: PMC8515011 DOI: 10.1016/j.patter.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thanks to the increasing availability of genomics and other biomedical data, many machine learning algorithms have been proposed for a wide range of therapeutic discovery and development tasks. In this survey, we review the literature on machine learning applications for genomics through the lens of therapeutic development. We investigate the interplay among genomics, compounds, proteins, electronic health records, cellular images, and clinical texts. We identify 22 machine learning in genomics applications that span the whole therapeutics pipeline, from discovering novel targets, personalizing medicine, developing gene-editing tools, all the way to facilitating clinical trials and post-market studies. We also pinpoint seven key challenges in this field with potentials for expansion and impact. This survey examines recent research at the intersection of machine learning, genomics, and therapeutic development.
Collapse
Affiliation(s)
- Kexin Huang
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Cao Xiao
- Amplitude, San Francisco, CA 94105, USA
| | - Lucas M. Glass
- Analytics Center of Excellence, IQVIA, Cambridge, MA 02139, USA
| | | | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jimeng Sun
- Computer Science Department and Carle's Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
48
|
Wanyan T, Vaid A, De Freitas JK, Somani S, Miotto R, Nadkarni GN, Azad A, Ding Y, Glicksberg BS. Relational Learning Improves Prediction of Mortality in COVID-19 in the Intensive Care Unit. IEEE TRANSACTIONS ON BIG DATA 2021; 7:38-44. [PMID: 33768136 PMCID: PMC7990133 DOI: 10.1109/tbdata.2020.3048644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 05/04/2023]
Abstract
Traditional Machine Learning (ML) models have had limited success in predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record (EHR) data partially due to not effectively capturing the inter-connectivity patterns between various data modalities. In this work, we propose a novel framework that utilizes relational learning based on a heterogeneous graph model (HGM) for predicting mortality at different time windows in COVID-19 patients within the intensive care unit (ICU). We utilize the EHRs of one of the largest and most diverse patient populations across five hospitals in major health system in New York City. In our model, we use an LSTM for processing time varying patient data and apply our proposed relational learning strategy in the final output layer along with other static features. Here, we replace the traditional softmax layer with a Skip-Gram relational learning strategy to compare the similarity between a patient and outcome embedding representation. We demonstrate that the construction of a HGM can robustly learn the patterns classifying patient representations of outcomes through leveraging patterns within the embeddings of similar patients. Our experimental results show that our relational learning-based HGM model achieves higher area under the receiver operating characteristic curve (auROC) than both comparator models in all prediction time windows, with dramatic improvements to recall.
Collapse
Affiliation(s)
- Tingyi Wanyan
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- School of Informatics, Computing, and EngineeringIndiana UniversityBloomingtonIN47405USA
- School of InformationUniversity of Texas at AustinAustinTX78712USA
| | - Akhil Vaid
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Jessica K De Freitas
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Sulaiman Somani
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Riccardo Miotto
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Girish N. Nadkarni
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Ariful Azad
- School of Informatics, Computing, and EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Ying Ding
- School of InformationUniversity of Texas at AustinAustinTX78712USA
- Dell Medical SchoolUniversity of Texas at AustinAustinTX78712USA
| | - Benjamin S. Glicksberg
- Hasso Plattner Institute for Digital Health at Mount SinaiIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|